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Series III: Mathematics, Informatics, Physics, 99-108

INTELLIGENT PREDICTION OF CONCRETE
CARBORATION DEPTH USING NEURAL NETWORKS

Pinar AKPINAR∗1 and First Ikenna Desmond UWANUAKWA2

Abstract

Carbonation problem in concrete has the potential to cause severe degra-
dations in structures and therefore, its accurate prediction is critical in the
field of civil engineering. This study involves the results obtained from the
preliminary investigations on the use of artificial neural networks (ANN) as
a non-destructive method for the prediction of carbonation depth in con-
crete. A total of 225 experimental cases obtained from the related literature
have been used as the training and testing data set, with 18 different input
parameters identified to be influencing the output, which is the carbonation
depth measured in concrete. Two learning schemes were suggested with vary-
ing training: testing data distributions and three different values for hidden
neurons were tested in combination. Results show that the use of ANN for
the prediction of carbonation depth has a potential to provide predictions
with satisfactory accuracy. Variations in the coefficient of determination
(R), the mean squared error (MSE) and in the number of iterations required
for learning, within the proposed changing combinations of training:testing
data distribution and the number of hidden neurons has been discussed. The
combination of highest coefficient of determination ( R), and the lowest mean
squared error (MSE) that were determined as 0.975 and 0.0018 respectively,
was observed when CGP method is used with 50%:50% training:testing data
distribution) and with 10 hidden neurons.
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1 Introduction

Carbonation is a deleterious concrete durability problem that occurs as carbon
dioxide (CO2) gas in the atmosphere. It progresses through the pores of concrete,
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reacting with cement hydration products. This reaction is known to yield alter-
ation in the concrete characteristics; a relatively denser reaction product, calcium
carbonate (CaCO3) is formed and the naturally alkaline pH level of concrete pore
solution is converted to acidic [1-4]. The alkaline nature of pore solution is known
to provide protection for steel bars in the reinforced concrete structures against
corrosion. Therefore, a continuous progress of carbonation process in concrete
may yield severe deteriorations in the structures as a result of initiated steel cor-
rosion, which is also known to cause expansion and cracks in concrete.

Therefore, understanding the progress of carbonation process ongoing in con-
crete structures using prediction methods has the potential to enable us to take
precautions for the expected future damages and therefore, provides significant
advancements in increasing safety as well as decreasing economical losses.

Traditional experimental methods for detecting carbonation depth in concrete
are largely destructive [5-7] and usually not cost effective. Moreover, these tradi-
tional experimental methods only provide information on the specific case tested,
without providing insight on the effect of each parameter influencing the progress
of carbonation and therefore the extent of related future damage in the structures.

Artificial Neural Networks (ANN) have been widely used in various disciplines
[8-15] and have been proven to be a reliable tool for performing predictions, en-
abling the users to have understanding on the effect of influencing input parame-
ters on the determined output of concern.

Previous studies carried out by [16-17] have shown that Artificial Neural net-
works (ANN) have the potential to yield promising results in developing models
cable of predicting carbonation depth based on factors influencing the progress of
carbonation process in concrete. However, additional studies are required to pro-
vide further understanding on the influence of parameters and learning schemes
selected in the ANN model for acquiring improved accuracy in prediction.

The objective of this study is to evaluate the feasibility of ANN as a non-
destructive method in the prediction of carbonation depth in concrete by two
selected learning schemes by considering a detailed list of factors; in the form of
[18] input parameters that are known to affect the progress of carbonation depth
in concrete. Information on the learning schemes, including testing:training data
distribution and selected hidden neuron values, as well as the ANN algorithm
used are explained in detail in sections below.

2 Methodology

In this study, the four conjugate gradient algorithms used are; Scaled conju-
gate gradient backpropagation (SCG), Conjugate gradient backpropagation with
Powell-Beale restarts (CGB), Conjugate gradient backpropagation with Fletcher-
Reeves updates (CGF) and Conjugate gradient backpropagation with Polak-Ribire
updates (CGP). All the methods except SCG employ line search which is calcu-
lations for global error function or its derivative. SCG in order to scale the step
size, uses the Levenberg-Marquadt method.
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2.1 Data selection and use

The data used in this study has been extracted from related literature. Nu-
merous experimental studies in the related literature have been reviewed and data
sets that include sufficient and comparable experimental information have been
selected. In this way, a total of 225 sample cases obtained from 9 different exper-
imental works [20-28] was obtained to be used in this study.

Data set for each sample case is analyzed and as a result 18 input param-
eters that are known to influence progress of carbonation process are defined.
Table-1 demonstrates these 18 input parameters that can be classified under 6
main groups. In all cases, cements blended with fly ash were used as the binder
in concrete. In order to differentiate between the different types of cements and
to identify their influence on concrete characteristics, contents for each cement
compound have been considered as distinct input parameters. Similarly, as each
study used different types of fly ashes, the individual contents of each fly ash com-
pounds were considered as inputs. Note that even though the basic compounds
of cement and fly ash seem the same, they should be considered separately due
to being in different form and having different reaction rates when in cement and
in fly ash forms. Besides cement and fly ash compositions, concrete mix design
parameters, curing conditions applied to prepared concrete samples, conditions
of the environment that the samples were exposed to and the age of each sample
experiencing carbonation were considered as input neurons.

This study has focused only on one output parameter, which is the carbonation
depth in concrete samples observed in each case. Data were normalized within
the range of 0 and 1 and normalization was applied to each parameter within
its set in order to minimize scaling variable towards zero thereby reducing their
significance due variation in units.

Table 1. Groups of factors influencing concrete carbonation and relevant
input parameters belonging to these groups that are used in this study.
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2.2 Network training

A three-layer feedforward backpropagation algorithm with one input layer,
one hidden layer and one output layer was used on MATLAB 2015a platform for
training of the network.

Two different learning schemes were established taking into consideration the
reliability of results from previous studies on NNs [29] consisting of 40:60 and 50:50
training-testing ratio. Under each learning scheme, 4 different conjugate-gradient
methods were used. The best combination of parameters that will minimize the
mean squared error (MSE) between measured and predicted depth and at the
same time establish a good generality of the network was identified.

There is no established rule in the selection of hidden neuron size [30]. Different
researchers [31-32] have made proposed models for estimating number hidden
neurons, however these models cannot be generalized to be valid for all cases
involving neural networks [30]. A parametric analysis was carried out with varying
numbers of hidden neurons, and therefore a decision tree was formed. Initial
training of the network started with 5 hidden neurons in the hidden layer. Further
analysis was performed with 10 and 15 hidden neurons to measure the sensitivity
of the network towards the learning scheme. A logistic sigmoid transfer function
was used in the hidden layer. The scale factor and initial step size were determined
and the model was trained accordingly. Network goal was set to 0.001 over 20000
iterations.

For learning parameters, alpha (Scale factor that determines sufficient reduc-
tion in performance) was set to 0.1, 0.0001, and 0.3 for CGB, CGF, and CGP
respectively. Beta (Scale factor that determines sufficiently large step size) was
set to 0.001, 0.01, 0.001 for CGB, CGF, and CGP respectively. SCG algorithm
sigma was 5.00E-05 for the two proposed learning schemes.

3 Results and discussions

The results obtained for the values of correlation coefficient (R) and mean
squared error (MSE) as well as iterations required for learning with the aimed
accuracy in each case are presented in Table 2.
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Table 2: Results obtained for the two defined learning schemes (LS-1 & LS-2)
with varying training:testing data distribution for selected hidden neuron values.

LS1 and LS2 comparison for constant 5 Hidden Neurons: the selected distri-
butions of training:testing data is observed to yield a significant difference mainly
on the number of iterations. Increase in the training data from 40% to 50% is
observed to yield a significantly lower number of iterations. This tendency is even
more evident for CGB and CGP methods within this case. The coefficient of
determination R and mean squared error MSE are observed to be improved only
slightly as a result of this increase in the training data set while hidden neuron
value was kept constant at 5.

LS1 and LS2 comparison for constant 10 Hidden Neurons: for this case of
relatively increased number of hidden neurons, the coefficient of determination R
is observed to be improved more significantly for each method with the increase
in the percentage of training data from 40 to 50%. Similarly, the improvement
in the MSE is more detectable with the increase in training data percentage for
this hidden neuron value. However, the number of iterations required with each
method is observed to increase with the increase of training data percentage from
40 to 50%, unlike what is observed in the case of 5 hidden neurons.

LS1 and LS2 comparison for constant15 Hidden Neurons: Similar to the case
of 10 hidden neurons, the increase in the percentage of data dedicated to training
from 40 to 50%, is observed to improve R and MSE parameters while the number
of iterations required seems to be affected negatively with this increase.

Therefore, within these selected combinations of parameters, increased per-
centage of training data, from the case of LS1 to LS2, improves R and MSE
values more significantly for 10 and 15 hidden neurons, but the number of itera-
tions required for learning is only improved (i.e. decreased) only in the case of 5
hidden neurons.

For constant 40:60 % distribution of data for training:testing, presented in
learning scheme-1 (LS1); the increase in the number of hidden neurons from 5 to
10 and then to 15 is observed to mainly affect the performance in the aspect of
number iterations required. This increase in the number of hidden neurons had
caused a significant decrease in the number of iterations required, while R and
MSE values were observed not to be affected significantly in the positive manner.
For LS-1, the best R and MSE values combination is observed with 10 hidden
neurons.

For constant 50:50 % distribution of data for training:testing, presented in
learning scheme-2 (LS2); the increase in the number of hidden neurons from 5 to
10 seems to improve R (since it increases) and MSE (since it decreases). However,
the performance observed with these parameters seems to be negatively affected
with the increase of hidden neurons from 10 to 15. In this latter case it is observed
that for each method R is observed to be decreased and MSE is observed to have
an increased value. In parallel with this observation, the number of iterations is
observed to be positively affected for CGB and CGF methods with the increase in
the number of hidden neurons from 5 to 10 and it is negatively affected with the
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change from 10 to 15 hidden neurons. On the other hand, CGP method yields
a decreasing number of iterations even with the change from 10 to 15 hidden
neurons. SGC method is observed to yield the lowest number of iterations with
5 hidden neurons for LS2. For LS2, the best R and MSE values combination is
also observed with 10 hidden neurons, like in the case of LS1. When all network
training parameter combinations presented in Table-2 are considered, the best
combination for coefficient of determination R and mean squared error MSE are
observed to be obtained when CGP method is used in learning scheme-2 (50:50
distribution) with 10 hidden neurons. Figures 1 and 2 show, the training perfor-
mance graph and the regression plot for this selected cased that is observed to
yield the best R and MSE combination.

Fig. 1. Best MSE graph for combination determined in the case of CGP
method, 50:50 distribution and 10 neurons

Fig. 2. Regression plot for predicted against measured carbonation depth
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for training, testing and validation dataset for the highest R value obtained in the
case of 50:50, CGP-10H.

When all network training parameter combinations presented in Table-2 are
considered, the best combination for the coefficient of determination R and mean
squared error MSE are observed to be obtained when CGP method is used in
learning scheme-2 (50:50 distribution) with 10 hidden neurons. Figures 1 and 2
show, the training performance graph and the regression plot for this selected case
that is observed to yield the best R and MSE combination.

4 Conclusions and recommendations

Preliminary investigations for ANN applications on the prediction of carbona-
tion depth in concrete have been carried out in this study with a special focus on
the effect of varying number of hidden neurons and training:testing data distri-
butions. The results obtained from four Conjugate- gradient methods have been
discussed.

The results obtained results indicate that the use of ANN for the prediction
of carbonation depth has a potential to provide predictions with satisfactory ac-
curacy. However, it is observed that the coefficient of determination ( R), mean
squared error (MSE) and the number of iterations required for learning are af-
fected significantly by the changing combinations of training:testing data distri-
bution and the number of hidden neurons. Within the range of parameter com-
binations tested in this study, the best result combination suggesting the highest
coefficient of determination ( R), and the lowest mean squared error (MSE) was
yielded when CGP method is used in learning scheme-2 (50:50 distribution) with
10 hidden neurons.

Further studies are recommended to be carried out with a greater range of
hidden neurons and training:testing data distributions in order to be able to ex-
plore the effect of these parameters on the accuracy of the proposed model, which
eventually would contribute to carrying out improved prediction practices for the
determination of carbonation depth in concrete.
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