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A CERTAIN CLASS OF ANALYTIC FUNCTIONS
ASSOCIATED WITH A DIFFERENTIAL OPERATOR

Dorina RADUCANU!

Abstract

Foro<u<M\O0<a<l —-7n/2<p<w/2and m € NU{0}, a new
class R™(\, u, v, 8) of analytic functions defined by means of the differential
operator DY) is introduced. Basic properties of the class R™(\, p, 0, B) are
investigated. Connections with previous known results are also pointed out.
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1 Introduction

Let H be the class of analytic functions in the unit disk U = {z € C: |2z| < 1}.
Denote by A the class of functions f in H of the form

f(z)zz—l—Zanz” z € U. (1)
n=2

Let R denote the family of functions f € A which satisfy the condition
R(f(2)+2f"(2)) >0, z€l. (2)

The class R was introduced and investigated by P. N. Chichra [4] and R. Sing
and S. Sing [12].

Later, H. Silverman [11] investigated the class R(«) (0 < a < 1) of all functions
f € A which satisfy the inequality

R(f(2) + 2f"(2) >a, zel. (3)

In [4], [11] and [12] lower bounds for Rf’(z) and §Rfiz) were obtained for

functions belonging to the classes R and R(«) respectively.
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Let P, g be the class of functions p € H with p(0) = 1 such that
R(ePp(z)) > acos B, zel. (4)

Here and through the rest of the paper we suppose that «, 8 are real numbers
T
with 0 < a <1 and \/3]<§.

Note that for o = 3 = 0 the class P, g reduces to the well known Carathéodory
class of functions

P={peH, p(0)=1and Rp(z) > 0}.
It is easy to see that a function p € } belongs to the class P, g if and only if

e®Pp(z) — (acos B + isin B)

(1—a)cosf €. (5)

The function

1+ ePe™ —2acosB)z

pa,,ﬁ’(z) - 1_ 2 , 2 € u. (6)

maps the open unit disk onto the half-plane H, 5 = {z € C: R(e"’2) > acos B)}.
If

Pap(z) =1+ pp2" (7)
n=1
then ‘
pn=2¢"P(1—a)cosB, n>1. (8)

Herglotz’ representation formula for the class P (see [6]) together with (5)
shows that a function p € H belongs to the class P, g if and only if there exists a
Borel probability measure p on the unit circle T'= {x € C : |z| = 1} such that

14 e B(e™ — 20 cos f)az
oo = [ e 2 ), = et ©)
|z|=1 —xz

If f € Aisgiven by (1.1) and g € A is given by
g(z) =z + Z by 2"
n=2

then the Hadamard product (or convolution) of the functions f and ¢ is defined
by

(fx9)(2) =2+ anbnz" = (g= f)(2), z€WU
n=2

For a function f € A we consider the following differential operator introduced
by Raducanu and Orhan in [8]:
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DY, f(z) = f(z)
Dy, f(2) = Dauf(2) = A2 f"(2) + (A — pw)zf'(2) + (1= A+ p) f(2)
DUf(z) = Dy (DL1(2)) (10)

where 0 < < Xand m € N:={1,2,...}.
Note that, if f € A is given by (1), then

DY, f(z) = z—i—ZA (A, m)ay 2" (11)
where

An(N prym) = [+ A+ A = p)(n = 1] n>2. (12)

It should be remarked that the operator Df\”# generalizes two other differential
operators considered earlier:

(i) D7yf(z) = D™ f(z), the operator introduced by Salagean in [10]
(i) DYy f(2) = DY f(2), the operator studied by Al-Oboudi in [1].

In view of (11) the operator DY f(z) can be written in terms of convolution

as
DY f(z) = (f*gn)(2), z€U (13)

where -
Pp(z) =2+ ZAn()\,,u,, m)z", ze€U. (14)

n=2

Define the function g/(\j)(z) such that

_ z
(gg\u ) *9>\M> (z) = T ? e Uu. (15)

It is easy to observe that
F2) = (95,7 + DEf) (), e (16)

Making use of the differential operator DY) f , we define the following class of
functions.

Definition 1. We say that a function f € A is in the class R™(\, u, o, B) if
(DR f(2)) + 2(D3,f(2))" € Pap, that is

R{e? (DY, f(2)) + 2(D5,f(2))"] } > accos 3 (17)

f0r0§a<1,BERwith|ﬁ|<g,0§u§)\andm€NU{0}.
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The class R™(\, u, o, ) contains as particular cases the following classes of
functions:

(i) R%(\, 11,0,0) = R, the class investigated by P. N. Chichra in [4] and R. Sing
and S. Sing in [12].

(i) R°(\, u,,0) = R(a), the class studied by Silverman in [11].

In this paper we investigate some properties of the class R™(\, p, o, 3). In
particular, for this class, we derive inclusion results, membership characterization,
integral formula, coefficient estimates and also convolution property. Connections
with previous known results are also pointed out.

2 Inclusion results

In order to obtain our results, we shall need the following two lemmas.

Lemma 1. (/5], [9]) Let {cp},7, be a convex decreasing sequence, i.e
Cn—2cp+1+cnt22>0 and cpy1 —cpt2 >0, neN.
Then

= 1
?R{E cnz"_1}>27 z e U.
n=1

The next lemma follows from Herglotz’ representation formula for the class P
(see [6]).

1
Lemma 2. Let P(z) be analytic in U with P(0) =1 and RP(z) > 3 in W. Then,

for any analytic function F in U, the function F x P takes values in the convex

hull of F(U).

Theorem 1. Let A >0 and p > 0 such that A > p+ 1. Then
R™(\, p,a, B) € R™(\, p, a0, ), m € NU{0}.

Proof. Let f given by (1) be in R™(\, u, o, B). It follows that
R{e? (D (2)) + (DR £(2))"] } > vcos B

or, making use of (11) and (12)

Rty {eiﬁ

1+ ZnQ[l + (Aun 4+ A — p)(n — 1)]m+1anz”_1] } > acosfB, z€l.
n=2
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We have
(DR f(2) + 2D f(2)" = 14> n’[1+ Aun+ X —p)(n—1)]"an2"""
n=2
= {1 + inQ[l + (Apun+ A —p)(n — 1)]m+1anz”_1}
n=2
> on—1
*{1—1_7;214-()\/”14—/\—#)(72—1)}'
Let

> 1
P(Z):1+7Z§:21+()\Mn+)\_ﬂ>(n—l)z

n—1

and consider the sequence

1
=1 and ¢, = . n>2.
R A PP DR T

After lengthy but elementary calculations, we obtain that for A\ > u + 1,
the sequence {c,},-; is convex decreasing. Therefore, from Lemma 1 we have

RP(z) > 3 for all z € U. Now, our result follows as an application of Lemma
2. O

Making use of Lemma 1 and Lemma 2 we obtain the next result.

Theorem 2. Let f € R™(\, p,«, 3). Then

(i) %{e’ﬂ(Df{Lf(z))’} > acosf, z€U;

(ii) %{eiﬁ <D’\Tl(2)>} > acosf, zeU.

Proof. Let f € R™(\, u, o, B). It follows that

R {eiﬁ [(D/’{Lf(z))’ + 2( S\Zf(z))”]} > acos f3

or equivalently

R {ew

1
(i) The sequence {c,},., defined by ¢; =1 and ¢, = —, n > 2 is a convex
n

1+ i n2[1+ (Aun + X — ) (n — 1)]manz”1] } > acos .

n=2

decreasing sequence and in view of Lemma 1, we have
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, z€U.

N |

3‘8{1 +Ziz”_1} >
n=2

Writing (DY), f(2))" as

(D51() = {1 £ 37 21+ a4+ A — o) — 1>]manzn—1}*{1 + Z;}
n=2 o

and making use of Lemma 2, we conclude that R {eiﬁ(D;\’Lf(z))’} >acosf3, z¢€
Uu. )
(i) We observe that the sequence {¢, },-; given by ¢; =l and ¢, = —, n > 2

2 )
n
is a convex decreasing sequence. It follows, from Lemma 1 that

=1 1
%{1+Z77/22n1}>2, ZEU

n=2
Since
AL o 2 m n—1 n—1
— = 1—|—Zn[1—|—()\,un+)\—,u)(n—l)] anz * 1+Zﬁz ,
n=2 n=2
we obtain our result as an application of Lemma 2. O

Letting m = 0 and @ = 8 = 0 in Theorem 2 (i), we have the next result due
to Chichra [4].

Corollary 1. If R{f'(z) + zf"(z)} > 0, z € U, then Rf'(z) > 0, z € U and

thus, the function f is univalent in U.
Letting m = 0 in Theorem 2, we obtain the following result.
Corollary 2. If R{e(f'(z) + 2f"(2))} > acos B, z € U, then
(i) ReP f'(2) > acos B, z € U;

(ii) &e{eiﬁ [f(;)}} > acosf3, z € U.
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3 Membership characterization

A necessary and sufficient condition for a function f € A to be in the class
R™(\, pu, o, B), in terms of convolution, is given in the following theorem.

Theorem 3. Let 0 < a < 1,|[| < g and 0 < p < X\;m € N. Then, f € A belongs
to the class R™ (X, i, v, B) if and only if (f * Hxue)(2)/2 # 0 in U, where

Hyup(2) = (P ho)(2) (18)

with hy,(2) and hg(z) defined by

hau(2) = 2+ Y n*An(\, p,m)2" (19)
n=2
and
z 1+ e (e — 2acos B)e?
h = - — . . 0 <2 . (2
o(2) 1—2{ 629[1—{—6*15(6*15—2a0085)]2 » 0<f<im zell. (20)

Proof. Let p(2) = (DY, f(2)) + 2(DY,,f(2))" = [2(D},,f(2))']'. Since p € Pq, B if
and only if p < p, g and noting that the function p, g given by (6) is univalent,
we have that p(z) € P, g if and only if

1+ e (e — 2acos f)e'?
1— et

p(2) , 0<f<2m, zeU

or
(1—e“)p(z) — {1 +e B e — 20 cos ﬁ)eie} #0, 0<0<2m, z€ U
Further, using the convolution, we obtain

(1= e"pz) - {1 +e (e — 2a cos ﬁ)eie}

=(1—¢€"Y) [1 i . *p(z)] - {1 +e (e — 20 cosﬁ)eie} * p(2)

_ { 11—_629 B [1 + e (e — 20 cos 5)ei9} } *p(2) # 0.

Consider the function gy(z) defined by

1 _ ¢if , . :
: - [1 +e Bl — 20 cosﬁ)e’ﬂ
. —Z
q9(z) = —e¥ [1 + e=B(e=i8 — 2a cos B)]
or
| 1+ e7i8 (e~ — 2a.cos f)ei?
_ _ A 0<60<2 u. (21
q9(2) 1~ { €0 [1 + e~ P(e~B — 2a cos B)] °f e 2!
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It follows that p(z) € P, g if and only if (gy * p)(2) # 0. Since

2p(2) = 2[2(DX,f(2))'] = (f * hap)(2)

and zqp(z) = he(z), we obtain that p(z) € P, g if and only if (fxhy,xhe)(2)/z # 0.
Consequently, we have that f € R™ (A, i, o, 8) if and only if (f*Hy,6)(2)/2 # 0
in U, where H),; is given by (18). O

Theorem 4. The coefficients Hy, of the function Hy,g(2) defined by (3.1) satisfy
the inequality

n2A,(\, p,m)
(1—a)cosf ’

where Ap (A, pu,m) is given by (12).

|Hy| < n > 2

Proof. In view of (18), (19) and (20) we have

e — 1

H = : : _n’A, n
wio(z) =2 + ;::2 1+ e #(e i — 2acos B)]e’en (A ym)z

or

o
H)\wg(z) =z+ Z ann
n=2
where
e —1
~ 2¢i0-8)(1 — o) cos 8
It is easy to check that

H, n2An(\, p,m), n>2.

n2A,(\, p,m)

Hy| < ;
[Hal < (1 —a)cosp

n>2

and thus, our theorem is proved. O

Theorem 4 enables us to show that the function class R™ (A, u, o, ) is non-
empty.

Corollary 3. Let f(z) =z + az". If

1l (1 —a)cosp
=024, 1 m)

then, f € R™(\, u, «, 5).
Proof. Since

’ (f * Hxup)(2)

=1+aH, 2" Y >1—|a|]|Hul|z| >1—1]2| >0, z€U
z

it follows that f € R"™(\, u, o, B). O
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4 Integral representation

Making use of the integral representation of the functions in P, g, given by
(9), we obtain an integral representation for the class R™(\, u, a, B).

Theorem 5. A function f € A is in the class R™(\, u, v, B) if and only if it can
be expressed as

(x

) (@)

£(2) = g5 () + /| y

z+2(1 — a)e ¥ cos B Z

n=2
where p(x) is a Borel probability measure on T = {x € C: |z| =1} and gg_ﬁl)(z)
is given by (15).

Proof. In view of the definition of the class R™(\, u,a, B), we have that f €
R™(\, pu, o, B) if and only if

(DR f(2)) + 2(D5,f(2))" € Pag.
Making use of (9), we obtain

1+ e ¥ (e — 2a cos B) 2
1—zz

(D) + =55 = [ )

or

/ ~if(iB _
[z(Df{f#f(z))/] _ /lx:l 1+e (61 . xZQa cos B)zz

du(x).

Integrating the above equality, we have

z —iB(,—iB _
2D F(2) = /IM [ [ (el_wfmsﬂ)xcdc} du()

which is equivalent to

du(z).

o (22)"
14 2(1 —a)e P cosp Z
ot

oRpE) = [

Integrating again this equality, we obtain

 (22)"

z+2(1 —a)e P cos fz Z 3 ] du(x). (23)

n=2

Dy = |

|z|=1

Equality (22) follows easily from (16) and (23).
Since this deductive process can be converse, we have proved our theorem. [
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5 Coefficient estimates

The first result on coefficient estimates for the class R™(\, u, «, 8) is the fol-
lowing.

Theorem 6. If f € R™(\, u, o, ) is given by (1), then

2(1 —«a)cos

P i L 24
on] < 24,0 pm) T (24
where Ap (A, i, m) is given by (12).

Proof. Let f € R™(\, u,«, ). Then

p(z) = (DX, f(2)) + 2(D5,,f(2))" € Pap.
Since

p(z) =1+ Z n? A, (N, g, m)anz" 1,

n=2

in view of (8), we have
In2 A, (N, g, m)an| < 2(1 — a)cos B, n > 2,
that is

2(1 —
(1 —a)cosf n> 9

< 7
‘an| - n2An()\nu'vm) ’ B

O]

In order to obtain our next result on coefficient estimates, we need the following
lemma.

Lemma 3. ([7]) Let w(z) = c12+c22%+. .. be an analytic function with |w(z)| < 1
in W. Then, for any complexr number v

lco — ved| < max {1, |v]}. (25)
The equality is attained for w(z) = 2% and w(z) = 2.

Theorem 7. Let f € R™(\, i, ., 8) be given by (1) and let § be a complex number.

Then 21 ) 5
9 — @) cos
_ < R 1 2
‘a3 5a2| = 9A3()\,,u,m) max{ 7|V|}7 ( 6)
where ‘
9(1 — a)e_Z/B COS BA3()‘, Hy m)5 - 8A2(>‘a Ky m)2
UV =
8As (N, 1, m)?
and

AN psm) = A+ A —p+ )™ Ag(A, p,m) = (6Ap +2(A — p) + 1)™.

The result is sharp.
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Proof. Suppose f € R™(A, p,a, 8). Then (DY f(2))' + 2(D},, f(2))" € Pap. It
oo

follows from (6), that there exists an analytic function w(z) = chzn, with
n=1

|w(z)] < 1 in U such that

p_ 1+ e~ (™ — 20 cos Bw(2)

(DX (2)) + 2(Dy.f(2)) 1—w(z)

which is equivalent to
(1 —w(z)) [(D;’Lf(z))’ + z(D}\TLf(z))”] =1+ e_iﬁ(e_’ﬂ —2acos Bw(z). (27)
Equating the coefficients of z and 2?2 on both sides of (27), we obtain

(1—a)e #cos B
2A9(A, p,m)

as = C1 (28)

and .
2(1 — a)e"# cos 8
9A3()‘7 H, m)

From (28) and (29), it follows that

(ca 4+ c2). (29)

a3 =

2(1 — a)e™
a5 — Bad = (1 —a)e P cosp 2

oA ) 2
where '
9(1 — a)e= cos BA3 (A, g, m)d — 8A3(A, 1, m)?
v = .
8142()" Ky m)2
Applying Lemma 3, we get
2(1 —«a)cos
sl = A P )2
2(1 — «)cos 3
_— 1 .
= 0400 ey LD
The sharpness of (26) follows from the sharpness of inequality (25). O

6 Convolution property

Making use of Lemma 2, we obtain a convolution property for the class
R™(X, p, @, B).

Theorem 8. The class R"™(\, u, o, B) is closed under the convolution with a
convex function. That is, if f € R™(\,p,«,B) and g is conver in U, then

frxg€ R"(\ p,a,B).
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Proof. It is known that, if ¢ is a convex function in U, then

éreg(;) > % (30)

Suppose f € R"™(\, u, o, ). Making use of the convolution properties, we have

2DYL(f * 9)(2)) = 2(DX,f(2))" * 9(2)

and thus
(DY(F #9) () + (DG (F # 9)(2))"
— (DRI + =05 r))] » 22, (31)
Since
R{PI(DY£(2)) + 2(DEf(2)"]} > acos b,
the desired result follows immediately from (30), (31) and Lemma 2. O

Corollary 4. The class R™(\, u, o, B) is invariant under Bernardi integral oper-
ator (see [3]) defined by

_1+4ec

ZC

/ tLf@)dt , Re >0
0

that 7;37 fo € Rm(/\,/.L,Oé,,B), then Fc(f) € Rm()\,/.L,Oé,B).

Proof. Assume f € R™(\, u, a, B). It is easy to check that F.(f)(z) = (f * g)(z),
where
l4c n

g(z):ZrH-cz '

n=1

Since the function g is convex (see [2]), by applying Theorem 8, the result follows.
O
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