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A NEW MIXED δ-SHOCK MODEL

Eugen PĂLTĂNEA1

Abstract

In this paper, we introduce and study a realistic shock model. In this
new type of mixed δ-shock model it is assumed that the failure of a system
subjected to a random sequence of shocks occurs if a shock exceeds a given
tolerance level or two strong shocks, not necessarily consecutive, occur in an
interval of length δ. We provide the distribution of the number of shocks
until the failure of the system. Special attention is given to the Poisson case.
A lower bound for the expected index of the fatal shock is also obtained.
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1 Introduction

Shock models are extensively studied in literature, especially in reliability the-
ory. General properties of the distribution of the lifetime of a system subjected
to a sequence of shocks occurring randomly in time as events in a renewal pro-
cess have been studied by Esary et al. (1973), Shaked and Shantikumar (1991),
Nakagawa (2007), among many others. Let µ be the index of the fatal shock. If
the sequence of occurrence of shocks follows a Poisson process with parameter λ,
then the survival function of the lifetime Tµ of the system is simply represented
in relation to the decreasing sequence of probabilities pn of surviving the first n
shocks (i.e. pn = P{µ > n}). So, we have (see Esary et al. (1973))

P{Tµ > t} =
∞∑
n=0

pn
(λt)n

n!
e−λt, ∀t ≥ 0. (1)

The above formula holds if µ and the Poisson renewal process are independent.
The probabilities pn depend on the particular situations causing the failure of the
system.

There are four typical shock models studied in literature: the extreme shock
model, the cumulative model, the run shock model, and the δ-shock model. In
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epaltanea@unitbv.ro



50 Eugen Păltănea

the extreme shock model, a system is considered to fail as soon as the magnitude
of any shock exceeds a given threshold (see Gut and Hüsler (1999)). In the cumu-
lative shock model (see Gut (1990)) the system will break down if the cumulative
magnitudes of shocks cross over a critical level. The run shock model (see Mallor
and Omey (2001)) assumes that a system will be operational unless k-consecutive
shocks with critical magnitudes occur. In the δ-shock model (see Li and Kong
(2007)), the system will fail when the interval between two successive shocks is
less that a positive constant δ. There are many generalizations of these shock
models (see, for example, Cirillo and Hüsler (2011)). A combination of some of
the above described models is commonly called a ”mixed shock model”.

The δ-shock model was extended in many directions. In a mixed δ-shock
model it is assumed that the failure of the system occurs when the time between
two successive shocks is less than a critical threshold δ, or the magnitude of a
shock (alternatively, the cumulative magnitude of shocks) is larger than another
critical threshold γ. This model, introduced by Wang and Zang (2005), were
recently developed by Parvardeh and Balakrishnan (2015). Also, we mention that
Eryilmaz (2012) studied a mixed δ-shock model in which the system fails if the
interval between k-consecutive shocks is less than δ or m-consecutive shocks have
the magnitude larger than a tolerance level γ.

In this paper, we propose a new realistic mixed δ-shock model. Given three
positive constants (levels) α, β and δ, with β < α, we shall suppose that the
failure of the system appears in the following two situations: 1) the magnitude of
a shock exceeds the tolerance level α, or 2) the time between two shocks whose
magnitudes exceed the critical level β is at most equal to the threshold δ. In the
second situation, it is not relevant that the two stronger than β shocks (causing
the failure of the system) are consecutive.

Let {(Xn, Yn), n ≥ 1} be a sequence of independent identically distributed
(i.i.d.) two-dimensional random vectors. Xn means the magnitude of the nth
shock and Yn is the time between the (n − 1)th and the nth shock, for n ≥ 1.
Xn and Yn are assumed independent positive random variables, with the com-
mon distribution functions F and G, and common survival functions F and G,
respectively. In what follows, we assume 0 < F (β) < F (α) < 1 and G(δ) ∈ (0, 1).
Also, we denote by X0 a real number of the interval (β, α]. Let Tn =

∑n
i=1 Yi

be the moment of the nth shock, n = 1, 2, · · · , and denote T0 = 0. Let us con-
sider the renewal process (N(t))t>0 associated to the sequence (Yn, Tn)n≥1. That
is N(t) = max{n ∈ N : Tn ≤ t}, for t > 0. If µ is the index of the fatal
shock, then Tµ is the lifetime (time to failure) of the system and Xµ is the mag-
nitude of the fatal shock. In the particular case of a Poisson process of parameter
(intensity) λ, Yn is an exponential random variable with the hazard rate λ and
P{N(t) = n} = e−λt(λt)n/n!, n = 0, 1, 2, · · · .

Our study focuses on the evaluation of the random variable µ. Let us define
the random variable W (n) = max{i ∈ {0, 1, · · · , n} : Xi ∈ (β, α]}. Clearly,
W (0) = 0. The description of our mixed δ-shock model leads to the following
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definition of µ

µ = min
{
n ∈ N∗ : (Xn > α) or (Xn ∈ (β, α] and Tn − TW (n−1) ≤ δ)

}
. (2)

2 Main results

Let us denote by Gn the distribution function of Tn. Also, let Gn = 1 − Gn
be the survival function of Tn. We have Gn = G ∗G ∗ · · · ∗G︸ ︷︷ ︸

n − times

, where

Gi+1(t) = (Gi ∗G) (t) =

∞∫
0

G(t− x)dGi(x), t ≥ 0, i ≥ 1.

Firstly, we point out the survival function of µ.

Lemma 1. The survival function of the arithmetic random variable µ is given by

pn = P{µ > n} =

n∑
k=0

ψn,k(δ)F
n−k(β)[F (α)− F (β)]k, n ≥ 1, (3)

where

ψn,k(t) =
∑

1≤i1<i2<···<ik≤n
Gi1(t)Gi2−i1(t) · · ·Gik−ik−1

(t), t ≥ 0, k ∈ {1, · · · , n},

and ψn,0(t) = 1, t ≥ 0.

Proof. Let n be a positive integer. Observe that {µ > n} ⊂ {X1 ≤ α, · · · , Xn ≤ α}.

Denote In = {i ∈ {1, · · · , n} : Xi ∈ (β, α]}. Since {µ > n} =

n⋃
k=0

{µ > n, |In| = k},

we get P{µ > n} = P {µ > n, In = ∅}+

n∑
k=1

P {µ > n, |In| = k}. We have

P {µ > n, In = ∅} = P {X1 ≤ β, · · · , Xn ≤ β} = Fn(β).

Then, for k ∈ {1, · · · , n}, we obtain

P {µ > n, |In| = k} =
∑

1≤i1<···<ik≤n
P {µ > n, In = {i1, · · · , ik}} ,

with

P {µ > n, In = {i1, · · · , ik}}

= P

⋂
i/∈In

{Xi ≤ β}

 ∩(⋂
i∈In

{Xi ∈ (β, α]}

)
∩

 k⋂
j=1


ij∑

s=ij−1

Ys > δ


 ,
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where i0 = 0. By taking into account the independence of the random variables
Xi, Yi, i = 1, · · · , n, we find

P {µ > n, In = {i1, · · · , ik}} = Fn−k(β)[F (α)− F (β)]k
k∏
j=1

Gij−ij−1(δ).

Thus, we get the conclusion.

Thus, we can find the exact distribution of µ.

Theorem 1. The random variable µ has the following distribution:

P{µ = 1} = F (α) +G(δ)[F (α)− F (β)],

and, for n > 1,

P{µ = n} =

n−1∑
k=0

[ψn−1,k(δ)− ψn,k(δ)F (β)]Fn−k−1(β)[F (α)− F (β)]k (4)

−Gn(δ)[F (α)− F (β)]n.

Proof. We have
P{µ = 1} = P ({X1 > α} ∪ {X1 ∈ (β, α], Y1 ≤ δ}) = F (α) +G(δ)[F (α)− F (β)].
For n > 1, we observe that P{µ = n} = pn−1− pn. Thus, (4) follows from (3) and
the relation ψn,n(δ) = G

n
(δ).

Theorem 1 shows that it is crucial to evaluate the functions ψn,k. Let us
consider the generating function of the sequence (Gn(t))n≥1:

u(t, z) = G1(t)z +G2(t)z
2 + · · ·+Gn(t)zn + · · · ,

for t ≥ 0 and z ∈ C. Since Gn(t) ∈ [0, 1], for all t ≥ 0 and n ∈ N \ {0}, the above
power series is convergent for |z| < 1. Then, for k ∈ N∗, the function uk(t, z) can
be expressed as a convergent power series in z ∈ C, with |z| < 1. Assume that

uk(t, z) =

∞∑
i=k

c
(k)
i (t)zi, t ≥ 0, |z| < 1.

Lemma 2. For a positive integer n, we have

ψn,k(t) =

n∑
i=k

c
(k)
i (t), k ∈ {1, 2, · · · , n}, t ∈ [0,∞).

Proof. For k ∈ {1, · · · , n}, t ≥ 0 and z ∈ C, with |z| < 1, we obtain

uk(t, z) =
∑

s1,s2,··· ,sk≥1
Gs1(t)Gs2(t) · · ·Gsk(t)zs1+s2+···+sk
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=

∞∑
i=k

∑
s1,··· ,sk≥1;

∑k
j=1 sj=i

Gs1(t)Gs2(t) · · ·Gsk(t)zi.

Thus, for i ≥ k, we find that the coefficient c
(k)
i (t) has the form:∑

s1,··· ,sk≥1;
∑k

j=1 sj=i

Gs1(t) · · ·Gsk(t) =
∑

1≤i1<···<ik=i
Gi1(t)Gi2−i1(t) · · ·Gik−ik−1

(t),

where ij = s1 + s2 + · · ·+ sj , for j = 1, 2, · · · , k. Therefore,

n∑
i=k

c
(k)
i (t) =

∑
1≤i1<i2<···<ik≤n

Gi1(t)Gi2−i1(t) · · ·Gik−ik−1
(t) = ψn,k(t).

The above lemma leads to a nice result in the Poisson case.

Lemma 3. Assume that the sequence (Yn, Tn)n≥1 generates a Poisson process
with parameter λ, i.e. P{Yn > t} = e−λt, t ≥ 0, n ≥ 1. Then we have:

uk(t, z) =
zkeλkt(z−1)

(1− z)k
, |z| < 1, t ≥ 0, k ∈ N∗.

and

ψn,k(t) = e−λkt
n−k∑
i=0

(λkt)i

i!

(
n− i
k

)
, n ≥ k.

Proof. We have

u(t, z) =
∞∑
n=1

(
e−λt

n−1∑
k=0

λktk

k!

)
zn = e−λt

∞∑
k=0

(
λktk

k!

∞∑
n=k+1

zn

)

=
ze−λt

1− z

∞∑
k=0

λktkzk

k!
=
ze−λt(1−z)

1− z
.

Hence

uk(t, z) =
zkeλkt(z−1)

(1− z)k
, |z| < 1, t ≥ 0, k ∈ N∗.

For fixed t ∈ [0,∞) and k ∈ N∗, let us denote

f(z) = (1− z)−keλkt(z−1) =
uk(t, z)

zk
=
∞∑
p=0

c
(k)
p+k(t)z

p, z ∈ C, |z| < 1.

Therefore, c
(k)
k (t) = f(0) = e−λkt and c

(k)
p+k(t) =

f (p)(0)

p!
, p ∈ N∗. By using the

general Leibniz rule, we obtain

f (p)(z) = eλkt(z−1)
p∑
i=0

[(
p
i

)
(k + p− i− 1)!

(k − 1)!
(λkt)i(1− z)−(k+p−i)

]
, p ≥ 1.
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Thus,

c
(k)
p+k(t) = e−λkt

p∑
i=0

[(
k + p− i− 1

k − 1

)
(λkt)i

i!

]
.

From Lemma 2, it results

ψn,k(t) =
n−k∑
p=0

c
(k)
p+k(t) = e−λkt

n−k∑
p=0

p∑
i=0

[(
k + p− i− 1

k − 1

)
(λkt)i

i!

]

= e−λkt
n−k∑
i=0

(λkt)i

i!

n−k∑
p=i

(
k + p− i− 1

k − 1

)
= e−λkt

n−k∑
i=0

(λkt)i

i!

(
n− i
k

)
.

Therefore, we obtain the explicit formula of the probability pn of surviving
the first n shocks.

Theorem 2. If the sequence of occurrence of shocks follows a Poisson process
with parameter λ, we have

pn = P{µ > n} =
n∑
k=0

n−k∑
i=0

(λkδ)i

i!

(
n− i
k

)
e−λkδFn−k(β)[F (α)− F (β)]k, n ≥ 1.

Proof. We apply Lemma 1 and Lemma 3.

Remark that, since µ depends on the sequence (Yn)n≥1, the classical relation
(1) is inappropriate to express the reliability of our model.

Finally, we propose a nice lower bound for the mean of the random variable
µ. We refer here to the general case.

Theorem 3. The following inequality holds

E(µ) ≥ 1

1− F (α) + F (α)G(δ)− F (β)G(δ)
.

Proof. We start from the elementary inequality

Gi(δ) = P{Y1 + · · ·+ Yi > δ} ≥ P{Y1 > δ} = G(δ), i = 1, 2, · · · .

Hence

ψn,k(δ) =
∑

1≤i1<i2<···<ik≤n
Gi1(δ)Gi2−i1(δ) · · ·Gik−ik−1

(δ) ≥
(
n
k

)
G
k
(δ).

From Lemma 1, we find

pn = P{µ > n} ≥
n∑
k=0

(
n
k

)
G
k
(δ)Fn−k(β)[F (α)− F (β)]k
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= {F (β) +G(δ)[F (α)− F (β)]}n = [F (α)− F (α)G(δ) + F (β)G(δ)]n .

Remark that p0 = P{µ > 0} = 1. The mean of µ can be expressed as

E(µ) =
∞∑
n=1

nP{µ = n} =
∞∑
n=1

n
(
pn−1 − pn

)
= p0 +

∞∑
n=1

pn[(n+ 1)− n] =
∞∑
n=0

pn.

Since

0 < G(δ)F (α) + F (β)G(δ) = F (α)− F (α)G(δ) + F (β)G(δ) < F (α) < 1,

we obtain

E(µ) ≥
∞∑
n=0

[F (α)− F (α)G(δ) + F (β)G(δ)]n =
1

1− F (α) + F (α)G(δ)− F (β)G(δ)
.
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