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UNIVALENCE CRITERIA RELATED WITH SĂLĂGEAN
AND RUSCHEWEYH OPERATORS

Andreea-Elena NISTOR-ŞERBAN1

Abstract

In this paper, by means of Sălăgean and Ruscheweyh operators, we ob-
tain new sufficient conditions for univalence using the method of Loewner
chains. In particular, we obtain some well-known univalence conditions due
to Lewandowski, Becker, Kanas and Lecko.
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1 Introduction

Let A be the class of all analytic functions f in the open unit disk U =
{z ∈ C : |z| < 1}, of the form:

f(z) = z +
∞∑
k=2

akz
k (1)

Denote by P the class of analytic functions of the form p(z) = 1+p1z+p2z
2 +

. . . , z ∈ U , such that <p(z) > 0 in U .

In this paper we will study some new criteria of univalence related to Ruscheweyh
and Sălăgean derivatives. Our considerations are based upon the theory of Loewner
chains.

Before proving our main results we briefly recall the method of Loewner chains:

A function L(z, t) : U × [0,∞)→ C is said to be a Loewner chain if it satisfies
the following conditions:

i) L(z, t) is analytic and univalent in U for all t ∈ [0,∞),

ii) L(z, t) ≺ L(z, s) for all 0 ≤ t ≤ s <∞,
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where the symbol ′ ≺′ stands for subordination.

Lemma 1. [5] Let r ∈ (0, 1] and let

L(z, t) = a1(t)z + a2(t)z
2 + · · · , a1(t) 6= 0 (2)

be an analytic function in Ur for all t ≥ 0. Suppose that:

i) L(z, t) is a locally absolutely continuous function in [0,∞) and locally uni-
formly with respect to Ur.

ii) a1(t) is a complex valued continuous function on [0,∞) such that lim
t→∞
|a1(t)| =

∞ and {
L(z, t)

a1(t)

}
t∈[0,∞)

is a normal family of functions in Ur.

iii) There exists an analytic function p : Ur× [0,∞)→ C satisfying <p(z, t) > 0
for all (z, t) ∈ U × [0,∞) and

z
∂L(z, t)

∂z
= p(z, t)

∂L(z, t)

∂t
, z ∈ Ur, t ∈ [0,∞). (3)

Then, for each t ∈ [0,∞), the function L(z, t) has an analytic and univalent
extension to the whole disk U , i.e L(z, t) is a Loewner chain.

2 Main results

2.1 Univalence criteria connected with Sălăgean operator

For a function f ∈ A Sălăgean (see [7]) introduced the operator Dn : A → A

defined by

D0f(z) = f(z),
D1f(z) = Df(z) = zf ′(z),
...
Dnf(z) = D(Dn−1f(z)), z ∈ U.

(4)

In this section, making use of Lemma 1, we obtain some new univalence criteria
related to Sălăgean differential operator.

Theorem 1. Let f ∈ A and p an analytic function with p(0) = 1. If the inequal-
ities ∣∣∣∣ 2

p(z) + 1
· zf ′(z)

Dn+1f(z)
− 1

∣∣∣∣ ≤ 1 (5)

and∣∣∣∣( 2

p(z) + 1
· zf ′(z)

Dn+1f(z)
− 1

)
|z|2 + (1− |z|2)

(
Dn+2f(z)

Dn+1f(z)
− 1 +

zp′(z)

p(z) + 1

)∣∣∣∣ ≤ 1

(6)
holds true for z ∈ U , then the function f is univalent in U .
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Proof. Let f ∈ A and p an analytic function with p(0) = 1. We will prove that
there exists a real number r ∈ (0, 1] such that the function

L(z, t) := f(e−tz) + (etz − e−tz)p(e
−tz) + 1

2
(Dnf)′(e−tz) (7)

is analytic in Ur for all t ∈ [0,∞), where Dnf is Sălăgean differential operator
defined in [7].

From (7) we observe that L(z, t) = a1(t)z + · · · , where

a1(t) = et, a1(t) 6= 0, for t ∈ [0,∞) and lim
t→∞
|a1(t)| =∞.

From the form of the chain L(z, t) it follows that L(·, t) is regular in U for all
t ∈ [0,∞) and L(z, ·) is locally absolutely continuous on [0,∞) for all z ∈ U .

The limit function g(z) = z belongs to the family {L(z, t)/a1(t)} then, in every
closed disk Ur there exists a constant K > 0 such that∣∣∣∣L(z, t)

a1(t)

∣∣∣∣ < K, ∀z ∈ Ur, t ∈ [0,∞)

uniformly in this disk, provided that t is sufficiently large. Then, by Montel’s

Theorem,

{
L(z, t)

a1(t)

}
is a normal family in Ur.

Let p(z, t) be the function defined by

p(z, t) = z
∂L(z, t)

∂z
/
∂L(z, t)

∂t
.

In order to prove that p ∈ P, we will show that the function

w(z, t) :=
p(z, t)− 1

p(z, t) + 1

is analytic in U and |w(z, t)| < 1 for all z ∈ U and t ∈ [0,∞). After a simple
computation we obtain

w(z, t) = e−2tA(z, t) + (1− e−2t)B(z, t), (8)

where

A(z, t) =
2

p(e−tz) + 1
· zf ′(e−tz)

Dn+1f(e−tz)
− 1 (9)

and

B(z, t) = e−t
(
Dn+2f(e−tz)

Dn+1f(e−tz)
− 1 +

zp′(e−tz)

p(e−tz) + 1

)
, z ∈ U, t ∈ [0,∞). (10)

From (5) and (6) we deduce that w(z, t) is analytic in U .
In view of (5), (9)and (10), we have

|w(z, 0)| = |A(z, 0)| < 1 and |w(0, t)| < 1.
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Since |e−tz| ≤ e−t < 1 for t > 0 fixed and z ∈ U, z 6= 0, then w(z, t) is analytic in
Ū = {z ∈ C : |z| ≤ 1}. Making use of the maximum modulus principle we know
that there exists θ = θ(t) ∈ R such that

|w(z, t)| = max
|ζ|=1

|w(ζ, t)| = |w(eiθ, t)|, ∀z ∈ U.

Let us denote u = e−teiθ. Then |u| = e−t and, because u ∈ U , we get that
|w(eiθ, t)| ≤ 1.

From the above relations we conclude that |w(z, t)| < 1 for all z ∈ U and
t ∈ [0,∞) which means that p(z, t) is regular in U and <p(z, t) > 0 for all
t ∈ [0,∞) and z ∈ U .

Therefore, in view of Lemma 1, L(z, t) is a Loewner chain and hence the
function L(z, 0) = f(z) is univalent in U .

By setting n = 0 in Theorem 1 we obtain the following corollary due to
Lewandowski [4].

Corollary 1. [4] Let f ∈ A and p ∈ P. If∣∣∣∣1− p(z)1 + p(z)
|z|2 +

(
1− |z|2

)(zf ′′(z)
f ′(z)

+
zp′(z)

p(z) + 1

)∣∣∣∣ ≤ 1, z ∈ U,

then the function f is univalent in U ..

For p ≡ 1 the following criterion reduces to a well-known criterion found by
Becker [1] and Duren et al. [2].

Corollary 2. [1] Let f ∈ A. If

(
1− |z|2

) ∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1, z ∈ U,

then the function f is univalent in U ..

For n = 1, Theorem 1 yields

Corollary 3. Let f ∈ A and p an analytic function with p(0) = 1. If the inequal-
ities ∣∣∣∣ 2

p(z) + 1
· f ′(z)

f ′(z) + zf ′′(z)
− 1

∣∣∣∣ ≤ 1

and ∣∣∣∣( 2

p(z) + 1
· f ′(z)

f ′(z) + zf ′′(z)
− 1

)
|z|2

+
(
1− |z|2

)(2zf ′′(z) + z2f ′′′(z)

f ′(z) + zf ′′(z)
+

zp′(z)

p(z) + 1

)∣∣∣∣ ≤ 1

holds true for z ∈ U then the function f is univalent in U ..
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For the Loewner chain

L(z, t) := f(e−tz) + (etz − e−tz) · p(e
−tz) + 1

2
· D

n+1f(e−tz)

Dnf(e−tz)
, z ∈ U, t ∈ [0,∞),

following the same steps as in the proof of Theorem 1, we obtain:

Theorem 2. Let f ∈ A and p an analytic function with p(0) = 1. If the inequal-
ities ∣∣∣∣ 2

p(z) + 1
· f ′(z) Dnf(z)

Dn+1f(z)
− 1

∣∣∣∣ ≤ 1

and ∣∣∣∣( 2

p(z) + 1
· f ′(z) Dnf(z)

Dn+1f(z)
− 1

)
|z|2

+(1− |z|2)
(
Dn+2f(z)

Dn+1f(z)
− Dn+1f(z)

Dnf(z)
+

zp′(z)

p(z) + 1

)∣∣∣∣ ≤ 1

holds true for z ∈ U , then the function f is univalent in U .

Setting n = 0 in previous theorem we obtain the following result:

Corollary 4. Let f ∈ A and p an analytic function with p(0) = 1. If the inequal-
ities ∣∣∣∣ 2

p(z) + 1
· f(z)

z
− 1

∣∣∣∣ ≤ 1

and ∣∣∣∣( 2

p(z) + 1
· f(z)

z
− 1

)
|z|2

+(1− |z|2)
(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+

zp′(z)

p(z) + 1

)∣∣∣∣ ≤ 1

holds true for z ∈ U , then the function f is univalent in U .

For p ≡ 1 in previous corollary we obtain Corollary 3.5 due to Kanas and
Lecko [3].

Setting p(z) =
f(z)

z
we obtain:

Corollary 5. Let f ∈ A with <f(z)

z
> 0 . If the inequality∣∣∣∣(f(z)

z
− 1

)
|z|2 + (1− |z|2)

[
1 +

zf ′′(z)

f ′(z)

(
f(z)

z
+ 1

)
− zf ′(z)

f(z)

]∣∣∣∣ ≤ ∣∣∣∣f(z)

z
+ 1

∣∣∣∣
holds true for z ∈ U , then the function f is univalent in U .

Now, setting p(z) =
zf ′(z)

f(z)
in Corollary 4, we obtain the following result:
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Corollary 6. Let f ∈ A. If the inequalities∣∣∣∣2f(z)

z
− zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ ∣∣∣∣1 +
zf ′(z)

f(z)

∣∣∣∣
and ∣∣∣∣(2

f(z)

z
− zf ′(z)

f(z)
− 1

)
|z|2

+(1− |z|2)
(

2
zf ′(z)

f(z) + 1

)(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)∣∣∣∣ ≤ ∣∣∣∣1 +
zf ′(z)

f(z)

∣∣∣∣
holds true for z ∈ U , then the function f is univalent in U .

2.2 Univalence criteria connected with Ruscheweyh operator

For a function f ∈ A Ruscheweyh (see [6]) introduced the operatorRλ : A→ A

defined by

Rλf(z) =
1

(1− z)λ+1
∗ f(z), λ > −1, z ∈ U.

In particular, for λ = n, we have

Rn(z) =
z

n!

dn

dzn
{
zn−1f(z)

}
, n ∈ n, z ∈ U.

Following the same steps as in the proof of Theorem 1 for the Loewner chain:

L(z, t) := f(e−tz)+(etz−e−tz)p(e
−tz) + 1

2
(Rnf)′(e−tz), z ∈ U, t ∈ [0,∞), (11)

and using the well known condition:

z(Rnf(z))′ = (n+ 1)Rn+1f(z)− nRnf(z),

we obtain the following theorem:

Theorem 3. Let f ∈ A and p ∈ P. If the inequalities∣∣∣∣ 2

p(z) + 1
· zf ′(z)

(n+ 1)Rn+1f(z)− nRnf(z)
− 1

∣∣∣∣ ≤ 1

and ∣∣∣∣( 2

p(z) + 1
· zf ′(z)

(n+ 1)Rn+1f(z)− nRnf(z)
− 1

)
|z|2

+(1− |z|2)
[
(n+ 1)

(
(n+ 2)Rn+2f(z)− (n+ 1)Rn+1f(z)

(n+ 1)Rn+1f(z)− nRnf(z)
− 1

)
+

zp′(z)

p(z) + 1

]∣∣∣∣ ≤ 1

holds true for z ∈ U , then the function f is univalent in U .
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For n = 0 in Theorem 3 we obtain the result in Corollary 1 and for n = 0 and
p = 1 we obtain the result in Corollary 2.

By setting n = 1 in Theorem 3, we have

Corollary 7. Let f ∈ A and let p be an analytic function with p(0) = 1. If the
inequalities ∣∣∣∣ 2

p(z) + 1
· zf ′(z)

zf ′(z) + z2f ′′(z)
− 1

∣∣∣∣ ≤ 1

and ∣∣∣∣( 2

p(z) + 1
· zf ′(z)

zf ′(z) + z2f ′′(z)
− 1

)
|z|2

+(1− |z|2)
[
zp′(z)

p(z) + 1
+

2zf ′(z) + 4z2f ′′(z) + z3f ′′′(z)

zf ′(z) + z2f ′′(z)
− 2

]∣∣∣∣ ≤ 1

holds true for z ∈ U , then the function f is univalent in U .

For the Loewner chain

L(z, t) := f(e−tz) + (etz − e−tz) · p(e
−tz) + 1

2
· R

n+1f(e−tz)

Rnf(e−tz)
, z ∈ U, t ∈ [0,∞),

we obtain:

Theorem 4. Let f ∈ A and let p be an analytic function with p(0) = 1. If the
inequalities ∣∣∣∣ 2

p(z) + 1
· f ′(z) Rnf(z)

Rn+1f(z)
− 1

∣∣∣∣ ≤ 1

and ∣∣∣∣( 2

p(z) + 1
· f ′(z) Rnf(z)

Rn+1f(z)
− 1

)
|z|2

+(1− |z|2)
(

(n+ 2)
Rn+2f(z)

Rn+1f(z)
− (n+ 1)

Rn+1f(z)

Rnf(z)
− 1 +

zp′(z)

p(z) + 1

)∣∣∣∣ ≤ 1

holds true for z ∈ U , then the function f is univalent in U .

For n = 0 we obtain the result in Corollary 4.
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