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7-RICCI SOLITONS IN (LCS),-MANIFOLD

Kanak Kanti BAISHYA*! and Partha Roy CHOWDHURY?

Abstract

The object of the present paper is to bring out curvature conditions for
which 7 -Ricci solitons in (LC'S),-manifolds are sometimes shrinking or ex-
panding and some other time remain steady. Finally, the existence of shrink-
ing and expanding n-Ricci solitons in such manifolds are ensured by examples.
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1 Introduction

The notion of Lorentzian concircular structure manifolds (briefly (LCS), -
manifolds) has been initiated by Shaikh [24]. Thereafter, a lot of study has been
carried out. For details we refer [25], [26], [27], [28] and the references therein.
Recently, in tune with Yano and Sawaki [33], the present authors [20] have intro-
duced and studied generalized quasi-conformal curvature tensor W, in the context
of N(k,u) -manifold. The generalized quasi-conformal curvature tensor is defined
for n-dimensional manifold as

WX, Y)Z = ”;1 {1+ (n—Da—b}— {1+ (n—1)(a+b)}C(X.Y)Z
1 —b+ (n—DaEX,Y)Z + (n—1)(b—a)P(X,Y)Z
P e D+ (= D)@+ D)X, V) Z (1)

for all X, Y & Z € x(M) , the set of all vector field of the manifold M |,
where the scalers triples (a,b,c) being real constants and the symbols C, C, E, P
stand for Conformal, Conharmonic, Concircular and Projective curvature tensor
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respectively. The beauty of such curvature tensor lies in the fact that it has the
flavour of Riemann curvature tensor R if (a,b,c) = (0,0,0), Conformal curvature

tensor C [12] if (a, b,c) = (—%, —ﬁ, 1), Conharmonic curvature tensor C' [15] if
(a,b,c) = (=15, —-15,0), Concircular curvature tensor E ([2], p. 84) if (a,b,c) =
(0,0, 1), Projective curvature tensor P([2], p. 84)if (a,b,c) = (—-15,0,0) and m-

1 1

Projective curvature tensor H [21], if (a,b,c) = (—5,—, —5.—5>

(1) can also be written as

0). The equation

W(X,Y)Z = R(X,Y)Z+alS(Y,2)X — S(X,Z)Y]
cr 1
I (A e X g 2] @
n \n-—1
where, S, @, r being Ricci tensor, Ricci operator and scalar curvature respectively.
The study of the Ricci solitons in contact geometry has begun with the work
of Ramesh Sharma ([23], [13]). Ricci solitons in contact metric manifolds are
also extensively studied by Mukut Mani Tripathi [32], Cornelia Livia Bejan and
Mircea Crasmareanu ([7], [6]) and the references therein. Ricci solitons are defined
as triples (g, V, \), where (M, g) is a Riemannian manifold and V" is a vector field
(the potential vector field) so that the following equation is satisfied

%fvg—i-S—i-)\g:O (3)
where £ denotes the Lie derivative, S is the Ricci tensor and A a constant on
M. A Ricci soliton is said to be shrinking, steady or expanding according to A
negative, zero and positive respectively. A Ricci soliton with V' zero is reduced to
Einstein equation.

During the last two decades, the geometry of Ricci solitons has been the focus
of attention of many mathematicians ([11], [5]). It has become more important
after Grigory Perelman applied Ricci solitons to solve the long standing Poincaré
conjecture posed in 1904.

n -Ricci solitons (M, g, A, i) is the generalization of Ricci solitons (M, g, A)
which is defined as

Leg +2S+2Mg+2um®@n =0, (4)

where L¢ is the Lie derivative operator along the vector field £, S is the Ricci
curvature tensor field of the metric g, A and p are real constants.

Our paper is structured as follows. Section 2 is concerned with (LCS),-
manifolds and some known results. 7-Ricci solitons in (LC'S),-manifold satisfying
W(¢, X)- S = 0 has been studied in section 3. It is observed that Ricci soliton of
such manifold is expanding, steady or shrinking according to a? % p for each of
C(6,X)- S=0, P(¢,X)- S=0and H(¢, X)- S =0 provided p # —a.

In section 4, n-Ricci solitons in (LC'S),-manifolds admitting (§ Ag X)W =0
have been investigated. It is also determined that Ricci soliton of such manifold
is either expanding, steady or shrinking according to o % por p+3a < 0 for each
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of (Ng X)-C =0, (EAg X)-P =0and (£ Ag X)-H = 0. Finally, the existence
of shrinking and expanding 7-Ricci solitons in such manifolds are ensured by
examples.

2 (LCS),-manifolds and some known results

An ndimensionally Lorentzian manifold M is a smooth connected paracom-
pact Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth
symmetric tensor field g of type (0,2) such that for each point p € M, the tensor
gp : TyM xT,M — R is a non-degenerate inner product of signature (—, +, ..., +),
where T, M denotes the tangent vector space of M at p and R is the real number
space. A non-zero vector v € T,M is said to be timelike (resp., non-spacelike,
null, spacelike) if it satisfies g,(U,U) < 0 (resp, < 0, = 0, > 0)[18]. The category
into which a given vector falls is called its causal character.

Let M™ be a Lorentzian manifold admitting a unit timelike concircular vector
field &, called the characteristic vecotor field of the manifold. Then we have

Since ¢ is a unit concircular vector field, there exists a non-zero 1-form 7 such
that for

9(X, &) = n(X) (6)

the equation of the following form holds

(Vxm)(Y) = afg(X,Y) +n(X)n(Y)} (@ #0) (7)

n for all vector fields X, Y where V denotes the operator of covariant differenti-
ation with respect to the Lorentzian metric g and « is a non-zero scalar function
satisfying

Vxa = (Xa) = a(X) = pn(X), (8)

p being a certain scalar function. If we put

6X = TV, 9)
e
then from (7) and (9), we have
X = X +n(X)E, (10)

from which it follows that ¢ is a symmetric (1,1) tensor. Thus the Lorentzian
manifold M™together with the unit timelike concircular vector field &, its asso-
ciated 1-form n and (1,1) tensor field ¢ is said to be a Lorentzian concircular
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structure manifold (briefly (LCS),-manifold) [5]. In an (LCS),-manifold, the
following relations hold [24]:

n€) = -1, ¢o&=0, (11)

n@X) = 0, g(¢X,9Y)=g(X,Y)+n(X)n(Y), (12)
n(R(X,Y)Z) = (p—a®)[g(Y, Z)n(X) - g(X, Z)n(Y)], (13)
R(X,Y)¢ = (p—a®)n(Y)X —n(X)Y], (14)

for any vector fields X,Y, Z.
Let (M, ,&,1m,9) be a (LCS), manifold satisfying (4). Writing L¢g in terms
of the Levi-Civita connection V, we obtain from (4) that,

25(X,Y) = —g(Vx&Y) = g(X, Vy§) = 2Ag(X,Y) — 2un(X)n(Y),  (15)

for any X, Y € x(M). As a consequence of (9) and (10), the above equation
becomes
S(X,Y) =-(A+a)g(X,)Y) = (n+ a)n(X)n(Y). (16)

Thus, for (LCS),-manifold with n-Ricci solution the generalized quasi-conformal
curvature tensor W takes the form

W(X,Y)Z = R(X,Y)Z- [(A+a)(a+ b) + % (nll +a +b> }
l9(Y, 2)X — g(X, Z)Y]=a(p + c)n(Z){n(Y)X —n(X)Y}
—b(p + a){g(Y, Z)n(X) — g(X, Z)nY }E. (17)
In particular, replacing Y = £ in (16), we have
S(X,8) = [ = Aln(X). (18)
From (13) and (18) one can easily bring out
[ = Al = (n = 1)(p—a?). (19)
Also, from (16) we have
= p—n\—2na. (20)

3 n-Ricci solitons in (LCS),-manifold satisfying
W(E, X) - S =0
In this section we consider an (LC'S),-manifold satisfying W (¢, X)- S = 0.

Hence, we have

for any XY, Z € x(M).
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In view of the expression (14), (16) and (17) we get

—(p+a) {aQ—p—l—)\(a—}—b)—i-Z (ni1+a+b>}
2n(X)n(Y)n(Z) + g(X, Z)n(Y) + 9(X,Y)n(Z2)] = 0, (22)

which yields for Y = ¢

(/L+oz)[oz2p+)\(a+b)+c¢:<ni1+a+b>} X
x[n(Xn(2) +9(x. 2)] =0

= (u—i—a)[aQ—p—i-)\(a—i-b)

+C{,U, —nA ; (n—1)a}

1
(n — +a +b> }g(ng, SY) = 0. (23)
for any X, Y € x(M). This leads to the following

Theorem 1. Let M"(¢,&,n,g) be an (LCS),,-manifold bearing an n-Ricci soliton
satisfying W(&, X)- S = 0. Then

Curvature condition The values of A & u
R(,X)- S=0 U= —«a
C,X) S= ,u:—aor)\:(n—l)(az—p)—i—%
C,X)S=0 p=—a orA=(n-1)(a®~-p)
E¢X)S=0 ,u:—aor)\:(n—l)(oﬁ—p)—i-@
P, X)-S=0 p=—aor\=(n—1)(a®—p)
H(,X)-S=0 p=—aor\=(n—1)(a®-p)

Theorem 2. Let M"(¢,&,1,g) be an (LCS),-manifold bearing an n-Ricci soliton.
Then the n-Ricci soliton of such manifold is expanding, steady or shrinking ac-
cording to a® % p for each of C(£,X)- S =0, P(6,X)-S=0and H(,X)- S=0
provided p # —a.

Theorem 3. Let M"(¢,&,1,g) be an (LCS),-manifold bearing an n-Ricci soliton.
Then the n-Ricci soliton of such a manifold is expanding, steady or shrinking
according as (n — 1)(a® — p) + % % 0 for each of C(£,X)- S = 0 and
E(,X)- S =0 provided p # —a.
4 (LCS),~-manifold satisfying ((£,A\sX) - W) =0

Let M"(¢,&,m,9)(n > 1), be an (LCS),-manifold satisfying the condition

(€, AgX) - W)(Y, 2)U =0, (24)
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which is equivalent to

S(X,W(Y,Z2)U)¢§ - SEWY, Z2)U)X — S(X, Y)W, Z)U
FS(E,YYW(X, Z)U — S(X, ZYW(Y,E)U + S(€, ZYW(Y, X)U
—S(X,UYW(Y, Z)¢ + S(&, UYW(Y, Z)X = 0. (25)

Taking the inner product with &, we have

0 = =SX, W, 2)U) = S5EW, 2)U)n(X) = S(X,Y)n(W(E, 2)U)
+5(6,Y)n(W(X, 2)U) = S(X, Z)n(W(Y,§U) + S(&, 2)n(W(Y, X)U)
+S(X, U)n(W(Y; 2)¢) + S(& U)n(W(Y, 2)X). (26)

In view of (16) and (18), we get

{p—a2 “Ma+b) - <ni tat b> } [+ ) {29(X,Y)g(Z,U)

+2n(X)n(Y)g(Z,U) + 2n(U)n(Y)g(X, Z)— 29(X, U)n(Z)n(Y)}
+(p + a){2n(X (Y )n(Z)n(U) + 2n(Z)n(Y)g(X,U) + g(X, Z)n(Y)n(U)
—g(X,Y)n(Z)n(U)}] =0, (27)

which yields for U = € that

{p—aQ—)\(a—Fb)—(Z <n—1 +a+b>}
20\ +a) + (p+ a)][g(X, Y)n(Z) — g(X, Z)n(Y)] = 0, (28)

which leads to

(1 + 3a)

nin—1)(a® —p)+c{p— (n—1)a}[l + (n—1)(a+ b)]

= — (c—a—=b)[1+ (n—1)(a+Db)

or, A =
(29)

Theorem 4. Let M"(p,&,1,g) be an (LCS),-manifold bearing an n-Ricci soliton
and (E Ns X)- W=0. Then

Curvature condition The values of A & p
(NsX)-R =0 )\:_(#Lj’a)
(€rs Xy 0 =0 A= 5B or 3= fa= 1)(e” ~ ) + B
(ENs X)-C = N = or A= (n—1)(a® - p)
(f/\sX)'E:O )\:_@ Or)\—(n—l)(a _p)+u(n Da
((Nns X)-P =0 /\:_(u+23a) or A= (n—1)(a® - p)
(Ens X)-H =0 A= —0070 or A= (n—1)(a? )

Theorem 5. Let M"(¢p,&,1,g) be an (LCS),-manifold bearing an n-Ricci soliton.
The n-Ricci soliton of such a manifold is either expanding, steady or shrinking
according to o % p or p+3a <0 for each of (€ Ag X)-C =0, (EAgX)-P =0
and (§ Ng X)-H = 0.
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Theorem 6. Let M"(¢p,&,n,g) be an (LCS),-manifold bearing an n-Ricci soliton.
The n-Ricci soliton of such a manifold is either expanding, steady or shrinking
according to the Ricci soliton of such manifold is expanding, shrinking or steady
according as (n—l)(az—p)%—% = 0 or p+3a < 0 for each of (EAsX)-C =0
and (§ Ns X)-E(£,X) S=0.

5 Existence of expanding and shrinking 7-Ricci soli-
ton

Example 1. Let us consider a 4dimensional manifold M = {(z', 2, 2, v*) € R*
2t £ 0, where (24, 22, 23, 21) being standard coordinates in R*. Let {61, €9,€3,€4}
be a linearly independent global frame on M given by

e1 = cosh el es = cosh a* 952 e3 = coshx4$, €4 = 8i
Let g be the Lorentzian metric defined by g(a T, i) = g(ai a%) = g(ai, a%) =
sec h2z4 g(am4,am4)— 1andg(axl ,axj): fori#4j=1,2 3, 4. Let n be
the I—form defined by n(U) = g(U, eq) for any U € x(M). Let ¢ be a tensor
field of type (1,1), defined by pe; = e1, des = ea, des = e3 peqs = 0. Then
using the linearity of ¢ and g we have n(es) = —1, ¢*U = U +n(U) e4 and

9(oU,oW) = g(UW) + n(U)n(W) for any UW € x(M). Thus for es = &,
(¢,€,m,9) defines a Lorentzian paracontact structure on M.

Let V be the Levi-Civita connection with respect to the Lorentzian metric g
and R be the curvature tensor of g. Then we have

[e1, ea] = — cosh ztey, le1,e3] = — cosh zes, [e1, e4] = — tanh zteq,

[e2, e4] = — tanh ztes, [es,eq] = — tanh zes.

Taking e4 = & and using Koszul formula for the Lorentzian metric g, we can easily
calculate

Ve, e4 = —tanh x461, Ve,€4 = —tanh (1,‘462, Veseq = —tanh x463,
V. e = —tanhz? Ve,e1 = coshz? Ve,e1 = coshz?
e;€1 = —tanhx ey, es€1 = cosh z”eq, ez€1 = coshz”es,
_ 4 4 _ 4 4
Ve,€2 = —tanhz"es — coshx™ey, Ves,e3 = —tanhz®e; — coshx™ey,
v6163 = 07 v€4€1 = 07 ve1 €2 = 07 ve362 == 07
Ve,e2 =0, Ve,e3 =0, Ve,e4 =0, Ve,e3 = 0.

From the above, it can be easily seen that (¢,£,n,g) is an (LCS)4 structure on
M. Consequently M*(¢4,&,n,g) is an (LCS)s-manifold with a = — tanh ztey # 0
and p = sec h?z*.
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Using the above relations, we can easily calculate the non-vanishing compo-
nents of the curvature tensor as follows :

cosh? z* — tanh? 2%)e3, R(ez, e3)es = (tanh? 2% — cosh? 21)ey,
cosh? 2! — tanh? 2%)e;,  R(e1,e3)es = (tanh? 2* — cosh? 2%)ey,
sec h’z? — tanh? z%)es3, R(es,eq)e3 = (sec hz? — tanh? z)ey,
)
)
)

(

( T
( T
(tanh? z* — cosh? 2
( x
( x

o
S
@
w
5y
A

Il

Cb
—
@
N
e Y o
@
N
I

e1, Rlep,ez)e; = (cosh2 2% — tanh? x4)eg,
sec b2zt — tanh? 24)ey, R(e1,eq)eq = (sec h2z* — tanh? x4)el,

sec h2z* — tanh? 24)ey, R(ea,e4)eq = (sec h2z* — tanh? x4)eg,

=
AAA/&\AA
ot
@
iy
D Q)
= =~
Il Il

€y =

The non-vanishing components of the Ricci tensor in (LCS)s manifold under
consideration satisfying n- Ricci solution are

S(er,e1) = S(e, e2) = S(es, e3) = tanha? — ),
S(eq,e4) =\ — p.

Using the above relations, we can easily calculate the non-vanishing components
as follows

(W(eq,e;) S)(es,ei) = —(\—tanha?) [sec h2z* — tan h2z* — a(\ — p)
1
—b(p — tan hat) — g(u — 4\ + Stan ha?) <3 +a+ b) ]
—(—A) [sec h2z* — tan k22 — a(\ — tan ha)

1
+b(p — tan hat) — g(u — 4\ + Stan ha?) <3 +a+ b> ]

for ¢ = 1,2,3 and the components which can be obtained from these by the sym-
metric properties. Using the above relation we can easily bring out the following

Theorem 7. There exists an (LCS)4-manifold bearing an n-Ricci soliton where
the Ricci soliton is expanding or shrinking according to sinh? % 1 for each of

C(6,X)- S=0, P(¢,X)- S=0 and H(¢,X)- S =0 provided y # tanh z*.

Theorem 8. There exists an (LCS)4-manifold bearing an n-Ricci soliton where
the Ricci soliton is expanding or shrinking according to 3(tanh2 x* — sech?z?) g

M for each of C(&,X)- S =0 and E(¢,X)- S = 0 provided u #
tanh 2.

Example 2. Let us consider a 4dimensional manifold M = {(z', 22,23, 2%) € R*

st # 0, where (21, 2%, 23, 2*) being standard coordinates in R*. Let {e1, e, e3,e4}

be a linearly independent global frame on M given by
14 0 . 0 4 0

_ _ _ (43
e =zl o, e 52 =T g5 e=() :
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Let g be the Lorentzian metric deﬁned by g(8 8i) = (11124) . 9(2 5.7 8‘22) =
6

:9(8%37 8%3): (%4)27 9( 824’ ger) = — (3r) an amwaxa)_ofw“’é]_
1,2,3,4. Let n be the 1-form defined by 77(U) = g(U 64) for any U € x(M). Let
¢ be the (1, 1) tensor field defined by ¢e1 = e1, ¢ea = e, pes = e3 peg = 0.
Then using the linearity of ¢ and g we have n( e4) = —1, ¢*U = U + n(U) ey
and g(oU, W) = g(U, W) +n(U)n(W) for any U, W € x(M). Thus for es = &,

(¢,€,1m,9) defines a Lorentzian paracontact structure on M.

Let V be the Levi-Civita connection with respect to the Lorentzian metric g
and R be the curvature tensor of g. Then we have

le1, ea] = —96462, le1, eq] = — (1‘4)2 e1, [e2,eq] = — (554)262, [e3, eq] = — (96‘4)263-

Taking e4 = £ and using Koszul formula for the Lorentzian metric g, we can easily
calculate

Veer=—(2Y)’e1,  Veea=—(2")’er,  Veea=— (2" es,
Vo= () er,  Vaa=dte,  Vaew=- (e
Ve,€2 = — (x4)2 eq — 1‘461, Ve,e1 =0, Vese2 =0,

V€163 = 0, Veleg = 0, Ve361 = 0,
ve462 = 0, Ve4€3 = 0, ve4€4 =0.

From the above it can be easily seen that (¢,£,n,¢g) is an (LCS)4 structure on
M. Consequently M*(¢,&,1,g) is an (LCS)4-manifold with o = — (a:4)2 # 0 and

p=2 (ac4)2. Using the above relations, we can easily calculate the non-vanishing
components of the curvature tensor as follows :

R(ez, e3)ez = — (334)4 es, R(ez, e3)es = ($4)462, R(e1,eq4)e1 = (1174)4 e4,

R(er,es)er = — (x*)"es,  Rler,ea)es = (2)'er,  Rlea,ea)es = (%) ey,

4 4 4
R(er,es)es = (2*) e1, Rles,es)es = (%) e3, Rles,eq)es = (z) e,
4\4 4)2 4\4
R(ei,ez)es = (3*) e — ()€1, Rleg,es)eq = (2) ea,
4 2

R(ei,e9)e; = — (:U4) eq + (x4) e
and the components which can be obtained from these by the symmetric proper-
ties.

The non-vanishing components of the Ricci tensor in (LC'S)4 manifold under
consideration satisfying n- Ricci solution are

S(e1,e1) = S(ea,e2) = S(es,e3) = (x4)2 -
Sles,eq) = —(p—A)
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As a consequence of the above, one can easily bring out the non-vanishing com-
ponents as follows

((ea, Ngei) - W)( ej,ea)es = Leo
((64, /\Sei) . W)( €;, 63)64 = Les
((64, /\Sei) . W)( €;, 64)64 = Ley
for i = 1,2, 3, where
L=[2 (534)2— ()" = Ma+b) — — (u—n)\+2n (334)2)

This motivates

Theorem 9. There exists an (LCS)4-manifold bearing an n-Ricci soliton where
the Ricci soliton is expanding or shrinking according to (:1:4)2 % 20 p S
3(1:4)2 for each of (€ Ag X)-C =0, (EAsX)-P =0 and (£ Ag X)-H = 0.
Theorem 10. There exists an (LCS)4-manifold bearing an n-Ricci soliton where
the Ricci soliton is expanding or shrinking according to 3((334)4 — 2($4)2) %
S =0.

%O TS 3(:64)2 for each of (ENg X)-C =0 and (ENs X)-E(§, X)
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