Bulletin of the *Transilvania* University of Braşov • Vol 9(58), No. 1 - 2016 Series III: Mathematics, Informatics, Physics, 83-90

UNIFICATION OF MAXIMALITY AND MINIMALITY OF OPEN AND μ -OPEN SETS

Ajoy MUKHARJEE¹ and Rebati Mohan ROY²

Abstract

In this paper, we introduce and study the notions of maximal and minimal generalized open sets of a GTS (X, μ) with respect to open sets of a topological space (X, τ) along with the notions of maximal and minimal open sets of a topological space (X, τ) with respect to generalized open sets of a GTS (X, μ) . We observe that contrary to maximal and minimal μ -open sets of a GTS (X, μ) , the unified notions of maximality and minimality of generalized open sets behave differently.

2010 Mathematics Subject Classification: 54A05.

Key words: maximal open set, minimal open set, maximal $\mu\text{-}\mathrm{open}$ set, minimal $\mu\text{-}\mathrm{open}$ set.

1 Introduction

The concept of generalized topological spaces was introduced by Császár [2]. A subcollection μ of the power set exp(X) of a nonempty set X is a generalized topology due to Császár [2] if the empty set $\emptyset \in \mu$ and the union of arbitrary numbers of members of μ is a member of μ . A nonempty set X equipped with a generalized topology μ is called a generalized topological space [2] and it is denoted by (X, μ) . Generally, we write a 'GT' for a 'generalized topology' μ on a nonempty set X and a 'GTS' for a 'generalized topological space' (X, μ) . A member of μ is called a μ -open set of (X, μ) . The complement of a μ -open set is called a μ -closed set.

Nakaoka and Oda [6] introduced and studied the concept of minimal open sets (Definition 1) in a topological space. Dualizing the concept of minimal open sets, Nakaoka and Oda [5] introduced and studied the notion of maximal open sets

¹Department of Mathematics, St. Joseph's College, Darjeeling, W. Bengal - 734 104, India, e-mail: ajoyjee@gmail.com, Corresponding author

²Department of Mathematics, Mathabhanga College, Coochbehar, W. Bengal- 736 146, India, e-mail: roy_rebati@rediffmail.com

(Definition 2) in a topological space. Generalizing the concept of maximal open sets, Roy and Sen [7] introduced and studied the notion of maximal μ -open sets (Definition 3) (and also minimal μ -closed sets) in a GTS. Since certain classes of sets like semi-open [3], preopen [4] sets on a topological space (X, \mathscr{T}) form generalized topologies on X, the notion of a GTS may be unified in terms of those sets including open sets of a topological spaces. That's why, we find a considerable number of articles on the unification of existing topological notions via a GT. In this paper, we unified the notions of maximality and minimality of μ -open sets of a GTS (X, μ) on a topological space (X, τ) , and we introduce and study the notions of maximal (τ, μ) -open sets (Definition 5) and minimal (τ, μ) -open sets (Definition 7). Contrary to maximal and minimal μ -open sets of a GTS, maximal (τ, μ) -open and minimal (τ, μ) -open sets behave differently e.g., Theorem 1 and Theorem 6 under operations of union and intersection respectively. Hence it follows the relevance of the study of properties of maximal (τ, μ) -open and minimal (τ, μ) -open sets.

For $A \subset X$, we write 'A is τ -open in X' (resp. ' μ -open in X') to mean ' $A \in \tau$ ' (resp.' $A \in \mu$ ') without referring the 'topology τ on X' (resp. 'GT μ on X') to be comprehended from the context. The meanings of terms ' τ -closed', ' μ -closed' used in the sequel are apparent. By a 'proper open set' (resp. 'proper μ -open set') of a 'topological space (X, τ) ' (resp. 'GTS (X, μ) '), we mean an 'open set' (resp. ' μ -open set') $G \neq \emptyset$, X. For a subset A of a topological space (X, τ) , $c_{\tau}(A)$ denotes the closure of A with respect to the topological space (X, τ) . Throughout the paper, R denotes the set of real numbers.

2 Unification of maximality of μ -open sets

Firstly, we recall some definitions to use in the sequel.

Definition 1 (Nakaoka and Oda [6]). A proper open set U of (X, τ) is said to be a minimal open set if any open set which is contained in U is U or \emptyset .

Definition 2 (Nakaoka and Oda [5]). A proper open set U of (X, τ) is said to be a maximal open set if any open set which contains U is X or U.

Definition 3 (Roy and Sen [7]). A proper μ -open set U of a GTS (X, μ) is said to be a maximal μ -open set if any μ -open set which contains U is X or U.

Definition 4 (S. Al Ghour et al. [1]). A proper μ -open set U of X is said to be a minimal μ -open set if the only nonempty μ -open set which is contained in U is U itself.

We introduce the notions following henceforth.

Definition 5. A proper μ -open set A of a GTS (X, μ) is said to be maximal (τ, μ) -open on X if B is a τ -open set of (X, τ) containing A, then either B = A or B = X. A is said to be absolutely maximal (τ, μ) -open on X if A satisfies the following condition: if B is a τ -open set of (X, τ) containing A, then B = X.

It follows that a maximal (τ, μ) -open set on X is an absolutely maximal (τ, μ) open set on X iff it is not τ -open in X.

We note that a maximal (τ, μ) -open set on X switches to a maximal open set in (X, τ) , if we choose $\mu = \tau$. Also the existence of a notion like absolutely maximal (τ, μ) -open sets on X in a topological space (X, τ) as well as in a GTS (X, μ) is absurd.

Example 1. For $a, b \in R$ with a < b, we define

$$\begin{split} \tau &= \{ \emptyset, R, \{a\}, (-\infty, a), (-\infty, a] \}, \\ \mu &= \{ \emptyset, (-\infty, b), (-\infty, b] \}. \end{split}$$

Then τ is a topology in R and μ is a GT in R. $(-\infty, b)$ is maximal (τ, μ) -open on R but it is not maximal μ -open in (R, μ) .

Example 2. For $a \in R$, we define

$$\begin{aligned} \tau &= \{ \emptyset, R, \{a\}, (-\infty, a), (-\infty, a] \}, \\ \mu &= \{ \emptyset, (-\infty, a) \}. \end{aligned}$$

Then τ is a topology on R and μ is a GT on R. $(-\infty, a)$ is maximal μ -open in (R, μ) but it is not maximal (τ, μ) -open on R.

So it follows that notions of maximal μ -open sets in X and maximal (τ, μ) -open sets on X are independent.

Theorem 1. If A is maximal (τ, μ) -open on X and B is μ -open in X with $A \cup B \neq X$, then either $A \cup B$ is absolutely maximal (τ, μ) -open on X or A is both τ -open and μ -open with $B \subset A$.

Proof. We note that A is a proper μ -open set. Suppose there exists a τ -open set $U \neq X, A \cup B$ such that $A \cup B \subset U$. Then we get $A \subset A \cup B \subset U$. Since A is maximal (τ, μ) -open on X and $U \neq X$, we have $A = U \Rightarrow A \cup B = U$, a contradiction to our assumption $U \neq A \cup B$. So we have U = X or $U = A \cup B$ which imply that $A \cup B$ is maximal (τ, μ) -open on X. If $U = A \cup B \neq X$, then $A \cup B$ is both μ -open and τ -open, and so by maximal (τ, μ) -openness of A on X, we get $A = A \cup B$ which implies A is both τ -open and μ -open, and $B \subset A$. \Box

The assumption of $A \cup B \neq X$ in Theorem 1 is totally reasonable since $X \in \mu$ is not ensured in a GTS (X, μ) , and we make certain that $X \in \mu$, if opted $A \cup B = X$.

If A is maximal open (resp. maximal μ -open) in a topological space (X, τ) (resp. GTS (X, μ)), then there does not exist a maximal open set (resp. maximal μ -open set) distinct from A and containing A. But we see from Theorem 1 that if A is maximal (τ, μ) -open on X, then there may exist another maximal (τ, μ) -open set distinct from A and containing A. It is an odd property of maximal (τ, μ) open sets on X in comparison to maximal μ -open sets which also prompted us to investigate the notion of maximal (τ, μ) -open sets on X and some similar notions due to their such behaviour. **Corollary 1.** If A is absolutely maximal (τ, μ) -open on X and B is μ -open with $A \cup B \neq X$, then $A \cup B$ is absolutely maximal (τ, μ) -open on X.

Proof. It follows easily.

Corollary 2. If $A \notin \tau$ is maximal (τ, μ) -open on X and B is μ -open with $A \cup B \neq X$, then $A \cup B$ is absolutely maximal (τ, μ) -open on X.

Proof. Similar to the proof of Theorem 1.

Theorem 2. If A, B are distinct maximal (τ, μ) -open sets on X, then $A \cup B$ is absolutely maximal (τ, μ) -open on X if $A \cup B \neq X$.

Proof. Proceeding like the proof of Theorem 1, we see that if there exists a τ -open set U such that $A \cup B \subset U$, then U = X or $U = A \cup B$. If $U = A \cup B \neq X$, then $A \cup B$ is proper τ -open and so by maximal (τ, μ) -openness of A on X, we get $A = A \cup B$ which implies A is τ -open and $B \subset A$. Since B is maximal (τ, μ) -open on X and $A \neq X$, we get A = B which is not possible by hypothesis. Similarly, considering $B \subset A \cup B \subset U$, we may have U = X or A = B. Hence $A \cup B$ is absolutely maximal (τ, μ) -open on X if $A \cup B \neq X$.

Corollary 3. If A, B are distinct absolutely maximal (τ, μ) -open sets on X, then $A \cup B$ is absolutely maximal (τ, μ) -open on X if $A \cup B \neq X$.

Theorem 3. If a τ -open set A is maximal (τ, μ) -open on X, then either A is the only such set in X or X is the union of two such sets.

Proof. Let another τ -open set B be also maximal (τ, μ) -open on X. Then $A \cup B$ is τ -open. As $A \subset A \cup B$ and A is maximal (τ, μ) -open on X, we have $A = A \cup B \Rightarrow B \subset A$ or $A \cup B = X$. Similarly, for B, we get $A \subset B$ or $A \cup B = X$. $B \subset A$ and $A \cup B = X$ imply that A = X which is not possible. Similarly, $A \subset B$ together with $A \cup B = X$ is not possible. The only possible cases are $B \subset A, A \subset B \Rightarrow A = B$ and $A \cup B = X$.

Definition 6. A proper τ -open set A of a topological space (X, τ) is said to be maximal (μ, τ) -open on X if B is a μ -open set of X containing A, then either B = A or B = X. A is said to be absolutely maximal (μ, τ) -open on X if Asatisfies the following condition: if B is a μ -open set of X containing A, then B = X.

If there exists no proper μ -open set containing A, then A is said to be absolutely maximal (μ, τ) -open on X.

It follows that a maximal (μ, τ) -open set on X is an absolutely maximal (μ, τ) open set on X iff it is not μ -open in X.

We note that a maximal (μ, τ) -open set on X switches to a maximal open set in (X, τ) , if we choose $\tau = \mu$.

Example 3. For $a, b \in R$ with a < b, we define

$$\begin{aligned} \tau &= \{ \emptyset, R, \{b\}, (-\infty, b), (-\infty, b] \}, \\ \mu &= \{ \emptyset, (-\infty, a), (-\infty, a] \}. \end{aligned}$$

Then τ is a topology in R and μ is a GT in R. $(-\infty, b)$ is maximal (μ, τ) -open on R but it is not maximal open in (R, τ) .

Example 4. For $a, b \in R$ with a < b, we define

$$\begin{aligned} \tau &= \{ \emptyset, R, \{a\}, (-\infty, a), (-\infty, a] \}, \\ \mu &= \{ \emptyset, (-\infty, b) \}. \end{aligned}$$

Then τ is a topology in R and μ is a GT in R. $(-\infty, a]$ is maximal open in (R, τ) but it is not maximal (μ, τ) -open on R.

So it follows that notions of maximal open sets on X and maximal (μ, τ) -open sets on X are independent.

Lemma 1. If a subset A of X is both τ -open in (X, τ) and maximal (τ, μ) -open on X, then A is maximal open in (X, τ) .

Proof. Let U be a τ -open set such that $A \subset U$. Since A is maximal (τ, μ) -open on X, we have U = A or U = X. Since A is τ -open, it follows from the definition that A is maximal open in (X, τ) .

Lemma 2. If a subset A of X is both μ -open in (X, μ) and maximal (μ, τ) -open on X, then A is maximal μ -open in (X, μ) .

Proof. Similar to the proof of Lemma 1.

Theorem 4. A subset of X is both maximal (τ, μ) -open and maximal (μ, τ) -open on X iff it is both maximal open in (X, τ) and maximal μ -open in (X, μ) .

Proof. Firstly, suppose that A is both maximal open in (X, τ) and maximal μ -open in (X, μ) . So A is proper τ -open as well as μ -open. As A is maximal open (resp. maximal μ -open) in X, we have A = U or U = X for any τ -open (resp. μ -open) set U containing A. Considering A as μ -open, we do not get a τ -open set U such that $A \subset U$ and $U \neq A, X$. So A is maximal (τ, μ) -open on X. Similarly, A is maximal (μ, τ) -open on X.

Conversely, if A is both maximal (τ, μ) -open and maximal (μ, τ) -open on X, then A is both τ -open and μ -open. The result follows by Lemma 1 and Lemma 2.

Theorem 5. If A is τ -open in X and maximal (τ, μ) -open on X, then either $c_{\tau}(A) = X$ or $c_{\tau}(A) = A$.

Proof. Let $x \in X - A$ and G be τ -open in X. Since $A \cup G$ is τ -open, we get $A \cup G = A$ or $A \cup G = X$. But $A \cup G = A$ is impossible. It follows that for any $x \in X - A$ and any τ -open nbd G of x, we have $A \cup G = X$. The two cases arise. Case I: There is $x \in X - A$ and a τ -open nbd G of x such that $A \cap G = \emptyset$. Then $c_{\tau}(A) = A$.

Case II: For any $x \in X - A$ and any τ -open nbd G of x we have $A \cap G \neq \emptyset$. Then $c_{\tau}(A) = X$.

3 Unification of minimality of μ -open sets

We introduce the concept of minimal (τ, μ) -open sets on X by dualizing the concept of maximal (τ, μ) -open sets on X.

Definition 7. A proper μ -open set A of (X, μ) is said to be minimal (τ, μ) -open on X if B is a τ -open set of (X, τ) contained in A, then either B = A or $B = \emptyset$. A is said to be absolutely minimal (τ, μ) -open on X if A satisfies the following condition: if B is a τ -open set of (X, τ) contained in A, then $B = \emptyset$.

It follows that a minimal (τ, μ) -open set on X is an absolutely minimal (τ, μ) open set on X iff it is not τ -open.

We note that a minimal (τ, μ) -open set on X switches to a minimal open set in (X, τ) , if we choose $\mu = \tau$. Also the existence of a notion like absolutely minimal (τ, μ) -open sets on X in a topological space (X, τ) as well as in a GTS (X, μ) is absurd.

In Example 1, $(-\infty, b)$ is minimal μ -open in (R, μ) but it is not minimal (τ, μ) -open on R. In Example 3, $(-\infty, a]$ is minimal (τ, μ) -open on R but it is not minimal μ -open in (R, μ) . So the notions of minimal μ -open sets in X and minimal (τ, μ) -open sets on X are independent.

By dualizing some earlier results, we have the results through Theorem 6 to Theorem 9. The proofs of these results are omitted as the proofs are similar to the proofs of corresponding results already established.

Theorem 6. If A is minimal (τ, μ) -open on X and B is μ -open with $A \cap B \neq \emptyset$ and $A \cap B \in \mu$, then either $A \cap B$ is absolutely minimal (τ, μ) -open on X or A is both τ -open and μ -open with $A \subset B$.

Corollary 4. If A is absolutely minimal (τ, μ) -open on X and B is μ -open with $A \cap B \neq \emptyset$ and $A \cap B \in \mu$, then $A \cap B$ is absolutely minimal (τ, μ) -open on X.

Corollary 5. If $A \notin \tau$ is minimal (τ, μ) -open on X and B is μ -open with $A \cap B \neq \emptyset$ and $A \cap B \in \mu$, then $A \cap B$ is absolutely minimal (τ, μ) -open on X.

Theorem 7. If A, B are distinct minimal (τ, μ) -open sets on X with $A \cap B \in \mu$, then $A \cap B$ is absolutely minimal (τ, μ) -open on X if $A \cap B \neq \emptyset$.

Corollary 6. If A, B are distinct absolutely minimal (τ, μ) -open sets on X with $A \cap B \in \mu$, then $A \cap B$ is absolutely minimal (τ, μ) -open on X if $A \cap B \neq \emptyset$.

Theorem 8. If A, B are τ -open sets in X as well as minimal (τ, μ) -open sets on X with $A \cap B \in \mu$, then either A = B or $A \cap B = \emptyset$.

Definition 8. A proper τ -open set A of a topological space (X, τ) is said to be minimal (μ, τ) -open on X if B is a μ -open set of X contained in A, then either B = A or $B = \emptyset$. A is said to be absolutely minimal (μ, τ) -open on X if A satisfies the following condition: if B is a μ -open set of X contained in A, then $B = \emptyset$.

It follows that a minimal (μ, τ) -open set on X is an absolutely minimal (μ, τ) -open set on X iff it is not μ -open.

We note that a maximal (μ, τ) -open set on X switches to a maximal open set in (X, τ) , if we choose $\tau = \mu$.

In Example 3, $(-\infty, b)$ is minimal open in (R, τ) but it is not minimal (μ, τ) open on R. In Example 1, $(-\infty, a]$ is minimal (μ, τ) -open on R but it is not
minimal open in (R, τ) . So it follows that the notions of minimal open sets in Xand minimal (μ, τ) -open sets on X are independent.

Lemma 3. If a subset A of X is both τ -open in (X, τ) and minimal (τ, μ) -open on X, then A is minimal open in (X, τ) .

Lemma 4. If a subset A of X is both μ -open in (X, μ) and minimal (μ, τ) -open on X, then A is minimal μ -open in (X, μ) .

Theorem 9. A subset of X is both minimal (τ, μ) -open and minimal (μ, τ) -open on X iff it is both minimal open in (X, τ) and minimal μ -open in (X, μ) .

Suppose that a topological space (X, τ) has only one proper open set A and a GTS (X, μ) has only one proper μ -open set B with $A \cap B = \emptyset$. Then B is absolutely maximal (τ, μ) -open as well as absolutely minimal (τ, μ) -open on Xand A is absolutely maximal (μ, τ) -open as well as minimal (μ, τ) -open on X. Again suppose that a topological space (X, τ) has only one proper open set Aand a GTS (X, μ) has only one proper μ -open set B with $A \subsetneq B$. Then B is absolutely maximal (τ, μ) -open and A is absolutely minimal (μ, τ) -open on X.

Acknowledgement. The authors would like to thank the referee(s) for examining this paper carefully, and providing a number of important comments and suggestions towards the improvement of contents of the paper. The proof of Theorem 5 is rewritten as suggested by the referee.

References

- Al Ghour, S., Al-Omari A., and Noiri, T., On homogeneity and homogeneity components in generalized topological spaces, Filomat 27 (2013), no. 6, 1097– 1105.
- [2] Császár, A., Generalized topology, generalized continuity, Acta Math. Hungar 96 (2002), no. 4, 351–357.

- [3] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [4] Mashhour, A. S., Abd El-Monsef, M. E., and El-Deeb, S. N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
- [5] Nakaoka, F., and Oda, N., Some properties of maximal open sets, Int. J. Math. Math. Sci. 2003 (2003), 1331–1340.
- [6] Nakaoka, F., and Oda, N., Some applications of minimal open sets, Int. J. Math. Math. Sci. 27 (2001), no. (8), 471–476.
- [7] Roy, B., and Sen, R., On Maximal μ-open and minimal μ-closed sets via generalized topology, Acta Math. Hungar. 136 (2012), no. 4, 233–239.