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ON HOLOMORPHIC LIE ALGEBROIDS

Alexandru IONESCU!

Abstract

The geometry of holomorphic Lie algebroids is analyzed in this paper.
Specific notions such as the anchor map or vertical and complete lifts are
studied globally and locally, as well as classical concepts such as the differ-
ential, nonlinear connection or semisprays and sprays, characterized in the
context of holomorphic Lie algebroids.
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Introduction

Lie algebroids are a generalization of Lie algebras and integrable distributions.
They are anchored vector bundles with a Lie bracket defined on the modules of
sections. Lie algebroids provide a natural setting in which one can develop the
theory of differential operators such as the exterior derivative of forms and the
Lie derivative with respect to a vector field. This setting is slightly more general
than that of the tangent and cotangent bundles of a smooth manifold and their
exterior powers.

Lie algebroids represent an active domain of research, with applications in
many areas of mathematics and physics. A well-known example is the work of A.
Weinstein [13] in the area of Mechanics, who developed a generalized theory of
Lagrangians on Lie algebroids and obtained the Fuler-Lagrange equations using
the structure of the dual of Lie algebroids and Legendre transformations associated
with a regular Lagrangian. E. Martinez [6, 7] developed the Klein’s formalism on
Lie algebroids using the notion of prolongation of Lie algebroid over a smooth
map, and has proposed a modified version of symplectic formalism, in which the
bundles tangent to £ and E* are replaced by their prolongations, TE and TE*.
More recently, Lie algebroids have been investigated by M. Anastasiei [2, 3] and
L. Popescu [11, 12].
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In complex geometry, some properties of complex and holomorphic Lie alge-
broids have been studied in [4], [5]. The present paper analyzes specific notions
from real Lie algebroids theory in the case of holomorphic Lie algebroids, where
all the geometrical objects considered are holomorphic. The first section gives
basic definitions of a holomorphic anchor map, holomorphic Lie algebroid, Lie
bracket on such an algebroid, which are locally characterized in the second sec-
tion, where the Lie algebroid is also complexified. The third section introduces
a linear connection on the holomorphic Lie algebroid, completed with its torsion
and curvature. The fourth section introduces the notions of vertical and complete
lifts of holomorphic vector fields on holomorphic Lie algebroids, completed with
local expressions. The classical notions of semisprays and sprays are defined in
this case in the last section following the construction of M. Anastasiei. An im-
portant new result of this last section is the obtaining of a complex spray from
the variational problem.

1 Basic concepts

Let M be a complex n-dimensional manifold and F a holomorphic vector
bundle of rank m over M. Denote by m : E — M the holomorphic bundle
projection, by I'(E) the module of holomorphic sections of 7 and let TcM =
T'M & T" M be the complexified tangent bundle of M, split into the holomorphic
and antiholomorphic tangent bundles.

On a vector bundle (E,m, M) the definition of a derivative law is D : x (M) x
I'(E) — I'(E), Dxs, such that Drxs = fDxs and Dx(fs) = fDxs+ X(f).
While these notions make sense on the fibers of E, the Lie bracket [s1, so] f, where
s1, 82 € I'(E), has no mathematical meaning. Hence the notion of Lie algebroids.

Definition 1.1. The holomorphic vector bundle E over M is called anchored if
there exists a holomorphic vector bundle morphism p : E — T'M, called anchor
map.

Denote by T'(T"M) the module of holomorphic sections of 7"M, that is, the
holomorphic vector fields on M, and by H(M) the ring of holomorphic functions
on M.

Using the anchor map, we can define a Lie bracket on F from the Lie bracket
on T"M by

pe([s1,s2]E) = [pE(s1), pE(s2)]r 0, (1.1)
s1,82 € I'(E). For any f € H(M),

pE(s1; fs2le = [pE(s1), pE(f32)lTrm = [pE(51), frE(S2)lT M =
= flpe(s1), pe(s2)lrm + pe(s1)(f)pe(s2).

These considerations lead to the following definition ([13, 5, 4, 6]):
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Definition 1.2. A holomorphic Lie algebroid over M is a triple (E,[-, |, pE),
where E is a holomorphic vector bundle anchored over M, [-,-|g is a Lie bracket
on T'(E) and pg : T(E) — T(T'M) is the homomorphism of complex modules
induced by the anchor map p such that
81, fs2]p = fls1, s2]p + pE(s1)(f)s2 (1.2)
for all s1,s9 € T(E) and all f € H(M).
Note that (1.1) means that pg : (I'(E),[-,-]g) = (I(T"M),[-,"]) is a complex

Lie algebra homomorphism.
Also, the Lie bracket [-,]p satisfies the Jacobi identity

[s1,[s2, s3]E]E + [s2,[s3, s1]E|E + [$3, [s1, s2] E]E = 0. (1.3)

On a holomorphic Lie algebroid E, a differential dp : T(AFE*) — T\(AFHLE¥)
can be introduced in a classical manner, by

k
dE90(507 L) Sk) = Z(_l)sz(s’L)(@(807 s 7/8\1'7 s 75k:))+
=0
+ Z(—1>i+jg0([8i, Sj}E, S0, - - - ,:9\7;, ce 7§j> ce ,Sk), (1.4)
1<J

where ¢ € I(A*E*) and s5; € T'(E), i = 1, k.

2 Local expressions

If (2%) k=17 is a local complex coordinate system on U C M and {eqa},—17; 18
a local frame of sections of F on U, then (z*,u®) are local complex coordinates
on 7 1(U) C E, where e = u®e,(2), e € E.

Let gyv : UNV — GL(m, C) be the holomorphic transition functions of E. In
z € UNV, guy(z) is represented by the complex matrix of holomorphic functions
(Mg‘(z)), such that, if (2%, 4%) are local coordinates on 7~1(V'), then these change

by the rules

F=7Fz),  a* = Mg’ (2.1)
The Jacobi matrix of the transformation laws (2.1) is
~k
="
dzh
(2.2)
oOMg
B B a
Rk Mg

Let (WO/? ) be the inverse matrix of (M g), and {ey} a base of sections on F,
that is, u = u®e, for any u € T'(E). Then these change by the rules

o = Whep.
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The action of the holomorphic anchor map pg can locally be described by

0
k
pE(ea) = Pa 9k’ (2'3)

while the Lie bracket [-, ]z is locally given by
leaseslE = 007,867. (2.4)

The holomorphic functions pf = p%(z) and Cgﬁ = Cgﬂ(z) on M are called the
holomorphic structure functions of the Lie algebroid E. A change of local charts
on F implies

L OZF

P = Wfﬂﬁ@~ (2.5)

Since E is a holomorphic vector bundle, it has the structure of a complex
manifold, and the natural complex structure acts on its sections by Jg(e,) =
ieq and Jg(é,) = —ié,. Hence, the complexified bundle E¢ of E decomposes
into Ec = E' @ E”. The sections of E¢ are given as usual by T'(E') = {s —
iJgs | s € T(E)} and T'(E") = {s +iJgs | s € ['(E)}, respectively. The local
basis of sections of E’ is {€q }a=1,m, while for E”, the basis is represented by their
conjugates {€q 1= € }a=1,m- Since pg : E — T'M is a homomorphism of complex
modules, it extends naturally to the complexified bundle by p'(es) = pr(eq) and
p"(ea) = pe(ea). Thus, the anchor map can be decomposed into pp = p' & p”
on the complexified bundle, and since E is holomorphic, the functions p(z) are
holomorphic, hence pf = pf = 0 and p& = pk. Thus, the anchored bundles
(E',p',T"M) and (E", p",T" M) are complex Lie algebroids ([4]). The Lie brackets
are defined as

[ea7 6,3]/ = [eaa eﬁ]E = nge’yv [6@, 63]// = [ea, eB]E = 0256:/,

where Cg 5= Cgﬁ. On the complexified bundle E¢, we have to consider also the
Lie brackets

leasep] = Cogey + Cogeni  lea es] = Chgey + Crgsy.
It is obvious that [eq, €3] = [ea, €], hence CZB = CZB and C’ZB— = C;B.

Proposition 2.1. The structure functions of the complexified Lie algebroid
(Ec, [, -], pE) satisfy the identities:

Opt 9Pt . . - 9pi - Oph
B Po _ iy i~y j9Pa iAT B
Pagas Pz — PCa PCas= TPigz PCas = Pagy
195 50p5 7 0Pk, 705

— i (ol N

Pags ~Pigs = PiCar PCas = —PhgLe PiCas = Pazggy

Proof. The identities follow by direct computations using (1.1), (2.3) and (2.4).
O
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Next, we consider the dual algebroid E* and its complexification Ef = E™ &
E"* according to the eigenvalues +i of the dual complex structure defined by
J5(eY) = ie® and J5(e*) = —ie®, with the dual cobasis {e“, e5}, that is, e*(eg) =
0§, e*(eg) = 0 and their conjugates. We have I'(E"™) = {w —iJpw | w € I'(E™)}
and I'(E™) = {w + iJfw | w € T'(E*)}. Then, the differential operator (1.4)
extends to the complexified forms Q¢ (F) = F(QP’Q(E@)) by dg = 05 +0p + 0 +
0%, where

By - QPI(Ep) — QP20 Y (Er) s O QP(Eg) — QPHY9(Eg);
g : QP4(Eg) — QPITH(Eg) o 8l QPY(Eg) — QP12 (Eg).

The total space of the holomorphic Lie algebroid F has a structure of com-
plex manifold, since the transition functions Mg(z) are holomorphic. Consider
the complexified tangent bundle of E, TcFE = T'E & T"E, where T'E is the
holomorphic tangent bundle and T"FE = T'E.

On T'E, a natural frame of fields is { 0 9

8’“’(‘30‘}’ which, due to the (2.2)
2k Ou

matrix, changes by the rules

o _oF o oMy ;0

—_— — 2.
Ozh  02h 9ZF ozh 7 oue’ (2:6)

0 0
— = My —.
duP P o
Since E is a complex manifold, it follows that g, —— ¢ is a local frame on
0zk’ ou®

T"E = T'E and its rules of change are deduced from (2.6) by conjugation.

As a mapping between manifolds, the holomorphic anchor p induced by pg
maps (z¥,u®) on E to (2*,7%) on T'M, where n* = u®p¥(z). A change of local
charts implies that (2¥,%®) is mapped to (2%, n'¥), where

Z/k — zk(z) — Z,k(Z)

and ) N
07 07
1k _ ~a~k _ h _.h
77 - uapa(z) - uﬂyp’y aZh - 77 azha
such that
k k 1k haz,k
=2 (2), no= u’yp'y 9z (2.7)

are local coordinates in a new chart on 7M.
The local expression of the differential operator 0 for f € H(M) is

af k o
Opf = 9.k Pat

and, for w € T'(E'*), w = wye?,
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In particular,

1
Ok = pl;ea, Oge® = —50/3%65 Aev.

3 Linear connections on F

Definition 3.1. A linear connection on the holomorphic Lie algebroid (E, pg, [., .| £)
is a map V :I'(E) x T'(E) — I'(E) such that

1) V is R-bilinear;

2) Vv =f Vv forall f € C®°(M) and u,v € I'(E);

3) Vufvo=(pe(u)f)v+ fVy for all f € C*(M) and u,v € T'(E);
4) Vv = Vgo.

A linear connection can be interpreted as a linear mapping V : I'(E) — AY(E)
given by V : s — Vg, Vs(u) = Vsu satisfying 3) and 4). As on any holomorphic
bundle, with respect to the holomorphic field of frames {s,} we can consider the
connection 1-forms 65 : I'(E) — Con (E,pg,|[.,.|r) given by

Vseo = Hg(s)eg, a=1m. (3.1)

By denoting V., es = l“gﬁe77 then Gg(ea) = Fgﬁeﬂ,. For s = s%, and u =
uPegp, the action of the linear connection on T'(E) is

w0
Veu=s { a—uk—i—FOﬁu } €, (3.2)

which yields the expression of the 1-form u +— Vu, Vu(s) = Vsu as
Vu = (podEuv—i-Hgouﬁ)ev. (3.3)

By considering the natural complex structure on E, we obtain by C—linearity
a linear connection on (Ec, pg,[.,.]g) acting on I'(E’) and T'(E”) as follows:
Ve 8 = I“Z/@e7 + I‘Zﬁe:Y ; Ve,e5= Fvgey + F:Y 567 ; (3.4)
Vesep =Tlgey + F;ﬁexy i Vegeg =T zey + 1W

The connection V satisfies 4), hence FZY =17, a3 i, of = F - ete.

The connection forms 6} extended to E¢ are called of (1, 0)-type if Gg(s) =0
for all s € T'(E"), that is, Ve,e5 = Vesep = 0.

Moreover, we assume that V is a complex connection ([4]) with respect to Jg,
ie. (VuJg)(v) = Jp(Vyuv). Then, F'Yﬁ = F'y =I5 = F;B =0 in (3.4), hence V

preserves the distributions I'(E’) and F(E” ) respectively.
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Consider on (E, pg, [.,.]g) a Hermitian scalar product g : I'(E) x I'(E) — C,
which means that besides the linearity of the first term we have g(u,v) = g(v, u).
The connection V is called metric with respect to g if Vg = 0, where

(Vsg)(u,v) = p(s) (g(u,v)) — g(Vsu,v) — g(u, Vgv), Vs,u,v € T(E). (3.5)

As in the case of Hermitian bundles, there is a unique linear connection, metric
with respect to g, of (1,0)-type. Indeed, from

0= (Ve,9)(es, e’y) = p(ea) (9(657 ey)) — 9 (Ve,€5,64) — gleg, Ve, €4),

r 9985
"Dk
connection is of (1,0)-type, we have 6 (eq) = 03(es) = 0, hence

by denoting g(eg, e5) = ggy, we get p = Qg(ea)gﬁ + @(ea)gﬁg. Since the

_ 0935
1) §
03(ca) = 90k 7 1 (3.6)
The torsion of a complex linear connection V on FE is defined as usual by
T(u,v) = Vyv — Vyu — [u,v]g. Its extension to I'(E¢) has the local components
Tojﬁe,y :=T(eq,e€p), etc. given by
To?ﬁ = F(Zﬂ - Fga - CC;YB
T 17 gl
TaB = FaB - CaB (3.7)
T _ 17 v
Ta— — PQB - CCMB

and their conjugates.

Again in a classical manner, the curvature of the complex linear connec-
tion V is R(u,v)s = V,Vys — Vy,Vus — V)8, Where u,v,s € T'(E). On
the complexified bundle Ec, its local components are R(eq,eg)ey = R,Y‘Saﬁeg,

R(eq,ep)ey = Rﬁiﬁeg, etc., where

§ oo oo oo k arg’)/ k 8F0‘j’7
Ryag =T Las = Larlge = Caploy + Pa— 1 — P35 %

5 DS N SR .2
Riap =T as = Toslss = Caplon + Pz i — Po gk

g 5
8F67 k (‘H‘M

5 1) d 1) G0 k
R’YOIB = Fg,yfaa — FO‘;FB—O — CaUBFO"Y — C’;BFM + Pa 8Zk - pB 8,2]5

5 513 58 o8 oo L 08 o
Riop =Tg3las —Tal'ss = Calon = Caplon + Pag i — P55 %

(3.8)

and R% . =RJY , etc.
ya 3 YoB
By writing the curvature of V as R = V oV, then the structure equations can

be written in terms of the curvature 2-form Rg of V, that is,

R§ = do + 05 A0},
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such that
dpRj :Rg‘/\eg—eﬁARg

are the Bianchi identities.
The linear connection V on E decomposes into ([8])

V=V +V,

where V' : QP4(Eg) — QPHL9(Eg) and V7 @ QP9(Ec) — QP9HY(Ec). The
decomposition of the curvature is

R=V' oV +V V' +V' oV +V" 0V,
such that the connection and curvature forms can be written as
0 =60 6% R=R 4 RY 4 ROZ.
For u € T'(E¢) and f € H(M), the identity (3.3) yields
V'(fu) = p(wdpf + fV'u,  V'(fu) = p(w)Orf + fV"u,

such that, if the connection form 6 is of (1,0)-type, that is, 601 = 0, then V is
of (1,0)-type and V" = 9g. The converse holds as well.

4 Vertical and complete lifts

Since all the objects considered are holomorphic, the construction from this
section is similar to the real case (see, for instance, [6, 10]). Let f be a holomorphic
function on M. Its vertical lift f¥ on F is defined by fY(e) = f(n(e)), e € E. The
vertical lift of a section Z € Ty, (E), Z = Z%s,, is a vector field on E given by

0

Z%(z,u) = Zo‘(z)%.

(4.1)

) 0
In particular, s}, = Jue
Some basic properties of the vertical lift are given in the following

Lemma 4.1. If Z, W are holomorphic sections of E and f is a holomorphic
function on M, then

(Z+W)=Z2"+W",  (f2)"=f"2°, Z°f'=0.

The complete lift of a holomorphic function f on M is the holomorphic func-
tion f¢ on E given by f¢(e) = 0¥ f(e) = pr(e)f. Its local expression is

0
Fo(e) = upk T (12)



Holomorphic Lie algebroids 61

Lemma 4.2. If Z is a holomorphic section on E and f,g are holomorphic func-
tions on M, then

(f+9)=r+g"  (J9' =19+  Z2°f = (pe(2)f)"

The complete lift Z¢ of a section Z € 'y (F) is a vector field on E defined by

0 oz 0
c a k k «@
9 v 89

: c _ k_~
In particular, s, = p 9 C gu el

Lemma 4.3. If Z is a holomorphic section on E and f is a holomorphic function
on M, then

2= (pe(2)f),  Z°f" = (pe(2)f)".
Proof. The first property is proven by a straightforward computation using (4.1),
(4.3) and Proposition 2.1.

The second property is a consequence of the first. Indeed, using also Lemma
4.2

L2 = 2O ) = (Z5) 17 + E(2F) = (pp(Z) )T + F(2°F°).

But the first identity gives, on the other hand,

S 7P = Sop(2) ) = (For( )1 = [ op(2)f) + [ (pp(2)f)
and these lead to Z¢f¥ = (pp(Z)f)". O

The Lie brackets of the complete and vertical lifts on E are given in the
following

Lemma 4.4. If Z and W are holomorphic sections on E, then

[ch WC] = [Z7 W]CEﬂ [ZC7Wv] = [27 W]%v [ZU7WU] =0.

5 Semisprays and sprays for holomorphic anchored
vector bundles

Following the steps from the real case ([2, 3]), semisprays can also be intro-

duced on a holomorphic anchored vector bundle (F,w, M). Let pg denote the

anchor map, m,, the tangent map of the projection m and 7 : T'"E — E, the
holomorphic tangent bundle of E.

Definition 5.1. A holomorphic section S : E — T'E is called semispray if

i) 7508 =1dg,
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ii) .08 = pg.

Let ¢c: I — M, I C R be a complex curve on M, ¢: I — E a complex curve
on E such that mo¢ = ¢ and denote by ¢ the tangent vector field to curve ¢.

Definition 5.2. The vector field ¢ is called admissible if

m.(6) = p(@). (5.1)

. dZ¥ 0 du® 0
— (K 5~ (k e g
Locally, c(t) = (2%(t)), ¢ = (2"(t),u*(t)) and ¢ = pTapw + TR tel

Then, curve ¢ is admissible if and only if

dzF ) .
O = pa(z(®)u(t), Ve e L.

If s = zFk 88 + U 88 then, using the definition, it follows that S is a
2k u®

semispray if and only if
ZF(z,u) = pk(2)u®. (5.2)
The coefficients U%(z,u) are not determined, thus, for easier computations, let
U% = —2G%, such that
0

S = phu®— — 2G*(z,u) 5 — 0

0z u>’ (53)

The rules of change for the coordinates of S are obtained using the (2.2)
matrix:

~p O

zZF = 8thh (5.4)
and oM
1

G = M§GP — o —£ ﬁpﬁ (5.5)

Moreover, due to (2.5), the coefficients Z*(z,u) given by (5.2) verify the (5.4)
laws of change, which leads to the following result.

o 0 0

Proposition 5.1. A vector field S = pFu 8 QGQG— € I(T'E) is a semispray
z u

if and only if the coefficients G* verify the (5.5) rules of transformation.

A curve ¢ : t + (2%(t),u%(t)) on E is an integral curve of the semispray S if it
satisfies the system of differential equations

dz' ki o du® o
F oo (t)u®, . +2G%(z,u) = 0. (5.6)

A semispray can then be characterized also by

Proposition 5.2. A vector field on E is a semispray if and only if all its integral
curves are admissible.
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Another result similar to the real case is

Proposition 5.3. Any two semisprays on E differ by a vertical vector field on
E.

Now, if hy : E — F is the complex homothety hy : e — de, A € C, e € E|
then a semispray S on F is called spray if

Sohy=Ay,o08S. (5.7)

Since the action of h, is locally described by hy : (2%, u®) — (2*, Au®), condition
(5.7) becomes, equivalently,

Gz, \u) = N2G%(z,u), (5.8)

that is, the functions G* are complex homogeneous of degree 2 in u.

0
Let L = u®— be the complex Liouville vector field on E. Then, an even sim-

1
pler formulation for the condition of spray can be obtained using Euler’s theorem
for homogeneous functions:

[L,S]E = S. (5.9)

We now try to obtain a complex spray from the variational problem. The first

step is to express the Euler-Lagrange equations on the holomorphic Lie algebroid

FE. Since
d dzF 9 dzk o du® 0 du® 0

dt Tt 9k T dt 9% T dt oue T dt ou
from (5.6) it follows that

d (0L e o 0L . . L 9°L 2L
Z =) = - kg~ = _ oo~ < oy~
dt (auﬂ) Pat 5 ks TP gzrgud 20 gueguwd 20 gueoup

or
d (0L ko O°L ia OL .
_ _ — [ 2 a . 2 o] _ 1
dt (auﬁ) Pati® 5 55 T Pall” 5gg g — 2G%9as — 26 gpa (5.10)

Following the ideas of Weinstein ([13]), the Euler-Lagrange equations on E
are

dt <auﬁ> = PegLk +Pﬁa T Qg o T Qg (5.11)

where pé = 0 since E is holomorphic and Qg and Qg must be determined.
From (5.10) and (5.11) we obtain

%L oL oL
k. o k a 7= «a
(pau ozFouB B ozk L ou® 26 gaﬁ)

0*L 8L
k g
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which leads to

. P, 0L L
oy, — (a9l padl
" 9pa (pa“ 0zFouP ﬂaw)

0’L OL oL
k, o k a . «a
+ (pau kP PPk L Ou® 26 gag) - (512)

If we denote by —FEj3 the second paranthesis in (5.12), then

1 9L oL 1
G¥ Ba Q‘z ﬁa E-
— 27 ( 02k0us p 8u7> 27
. 0? 0
1 3 L L
a_ ~ Ba k, v — O Ny »e%
¢ 2g <p7u 0zkous 58u7> 7, (5.13)

1 _
where R* = — gﬂaEB. From the arbitrariness of Qg, we can assume that R® is a

variable amount to be determined in the following.
Thus, we have to determine next Q% and R® such that G be the coefficients

of the spray satisfying (5.5). We have

- 1 = 3
Ga:2g5EM§M3{ oF M) u®

oL ~ oL N
”79 ’Y”re o
< Bou 9>_ B du 0}_R
_165 B ra wY BaL Y OaL Do
5 MM{ 2F 5 (Wﬁae Wi~ R

1 5 3 0’L oL ~
— g(saMéﬁMg{ h ’ng Q')’We } _ Ra

o3k

2 Bozkoud BT oul
or 32 5
o 16 o L ~a 0 L PO
G* = -g"MZp akaf*BQﬁ o (5.14)

In order for G to Verlfy (5.5), we write

o o 1 de h,~ Y ~ a2L 8L & 18Mﬂa B h
G" =M (29 {”V“ grow ~ Ygwn I ) Taga
1.3 oL 1 5 N 10M¢
| 2 =BaAy Y0 Y Taga denyy YN « a pe B Bh'y
(29 QW g0 — M9 Qéam) (R MR = e )
(5.15)

Comparing this with (5.5) it yields that the second row must vanish. Forcing
things a bit, we ask that both brackets in this row be cancelled, which means that
Q7 and R° must satisfy

e oL 5. . 0L

P55 = 9= Q1M 57 (5.16)
- 10M¢
R — MR = PP pls (5.17)
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A simple computation shows that any (distinguished) tensor Qg on F verifies
(5.16), so it would be best to choose Q;—Y = 0, and the spray will look like the
canonical spray from Lagrange spaces ([8]). Following an idea from [2], another

(&7

choice of d-tensor could be Q% =C) Fu.

By taking
10M¢
M‘?RE = _Z az’f UBP§U77
which means aLe
1
R = —ZW§ 82’5 uﬁpiju“’, (5.18)

we have

N 1. OW5
R = —ZMS 025 uﬂp§u7

Hence R® from (5.18) satisfies (5.17).

Theorem 5.1. On a holomorphic Lie algebroid E endowed with a regular La-
grangian L(z,u) and a Hermitian metric tensor gsp with det(gag) # 0, a complex
canonical spray is given by

1( 3o 0°L 1 OM§
— B BB\ )k
G* = 5 ( a@zkﬁaﬁ +3 > ok U > pu” (5.19)

Remark 5.1. If the Lagrangian on E is complex homogeneous, then the spray is
complex homogeneous of degree 2 in u.
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