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ON HOLOMORPHIC LIE ALGEBROIDS

Alexandru IONESCU1

Abstract

The geometry of holomorphic Lie algebroids is analyzed in this paper.
Specific notions such as the anchor map or vertical and complete lifts are
studied globally and locally, as well as classical concepts such as the differ-
ential, nonlinear connection or semisprays and sprays, characterized in the
context of holomorphic Lie algebroids.
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Introduction

Lie algebroids are a generalization of Lie algebras and integrable distributions.
They are anchored vector bundles with a Lie bracket defined on the modules of
sections. Lie algebroids provide a natural setting in which one can develop the
theory of differential operators such as the exterior derivative of forms and the
Lie derivative with respect to a vector field. This setting is slightly more general
than that of the tangent and cotangent bundles of a smooth manifold and their
exterior powers.

Lie algebroids represent an active domain of research, with applications in
many areas of mathematics and physics. A well-known example is the work of A.
Weinstein [13] in the area of Mechanics, who developed a generalized theory of
Lagrangians on Lie algebroids and obtained the Euler-Lagrange equations using
the structure of the dual of Lie algebroids and Legendre transformations associated
with a regular Lagrangian. E. Martinez [6, 7] developed the Klein’s formalism on
Lie algebroids using the notion of prolongation of Lie algebroid over a smooth
map, and has proposed a modified version of symplectic formalism, in which the
bundles tangent to E and E∗ are replaced by their prolongations, TE and TE∗.
More recently, Lie algebroids have been investigated by M. Anastasiei [2, 3] and
L. Popescu [11, 12].
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In complex geometry, some properties of complex and holomorphic Lie alge-
broids have been studied in [4], [5]. The present paper analyzes specific notions
from real Lie algebroids theory in the case of holomorphic Lie algebroids, where
all the geometrical objects considered are holomorphic. The first section gives
basic definitions of a holomorphic anchor map, holomorphic Lie algebroid, Lie
bracket on such an algebroid, which are locally characterized in the second sec-
tion, where the Lie algebroid is also complexified. The third section introduces
a linear connection on the holomorphic Lie algebroid, completed with its torsion
and curvature. The fourth section introduces the notions of vertical and complete
lifts of holomorphic vector fields on holomorphic Lie algebroids, completed with
local expressions. The classical notions of semisprays and sprays are defined in
this case in the last section following the construction of M. Anastasiei. An im-
portant new result of this last section is the obtaining of a complex spray from
the variational problem.

1 Basic concepts

Let M be a complex n-dimensional manifold and E a holomorphic vector
bundle of rank m over M . Denote by π : E → M the holomorphic bundle
projection, by Γ(E) the module of holomorphic sections of π and let TCM =
T ′M ⊕T ′′M be the complexified tangent bundle of M , split into the holomorphic
and antiholomorphic tangent bundles.

On a vector bundle (E, π,M) the definition of a derivative law is D : χ(M)×
Γ(E) → Γ(E), DXs, such that DfXs = fDXs and DX(fs) = fDXs + X(f).
While these notions make sense on the fibers of E, the Lie bracket [s1, s2]f , where
s1, s2 ∈ Γ(E), has no mathematical meaning. Hence the notion of Lie algebroids.

Definition 1.1. The holomorphic vector bundle E over M is called anchored if
there exists a holomorphic vector bundle morphism ρ : E → T ′M , called anchor
map.

Denote by Γ(T ′M) the module of holomorphic sections of T ′M , that is, the
holomorphic vector fields on M , and by H(M) the ring of holomorphic functions
on M .

Using the anchor map, we can define a Lie bracket on E from the Lie bracket
on T ′M by

ρE([s1, s2]E) = [ρE(s1), ρE(s2)]T ′M , (1.1)

s1, s2 ∈ Γ(E). For any f ∈ H(M),

ρE [s1, fs2]E = [ρE(s1), ρE(fs2)]T ′M = [ρE(s1), fρE(s2)]T ′M =

= f [ρE(s1), ρE(s2)]T ′M + ρE(s1)(f)ρE(s2).

These considerations lead to the following definition ([13, 5, 4, 6]):
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Definition 1.2. A holomorphic Lie algebroid over M is a triple (E, [·, ·]E , ρE),
where E is a holomorphic vector bundle anchored over M , [·, ·]E is a Lie bracket
on Γ(E) and ρE : Γ(E) → Γ(T ′M) is the homomorphism of complex modules
induced by the anchor map ρ such that

[s1, fs2]E = f [s1, s2]E + ρE(s1)(f)s2 (1.2)

for all s1, s2 ∈ Γ(E) and all f ∈ H(M).

Note that (1.1) means that ρE : (Γ(E), [·, ·]E) → (Γ(T ′M), [·, ·]) is a complex
Lie algebra homomorphism.

Also, the Lie bracket [·, ·]E satisfies the Jacobi identity

[s1, [s2, s3]E ]E + [s2, [s3, s1]E ]E + [s3, [s1, s2]E ]E = 0. (1.3)

On a holomorphic Lie algebroid E, a differential dE : Γ(∧kE∗) → Γ(∧k+1E∗)
can be introduced in a classical manner, by

dEϕ(s0, . . . , sk) =
k∑
i=0

(−1)iρE(si)(ϕ(s0, . . . , ŝi, . . . , sk))+

+
∑
i<j

(−1)i+jϕ([si, sj ]E , s0, . . . , ŝi, . . . , ŝj , . . . , sk), (1.4)

where ϕ ∈ Γ(∧kE∗) and si ∈ Γ(E), i = 1, k.

2 Local expressions

If (zk)k=1,n is a local complex coordinate system on U ⊂M and {eα}α=1,m is

a local frame of sections of E on U , then (zk, uα) are local complex coordinates
on π−1(U) ⊂ E, where e = uαeα(z), e ∈ E.

Let gUV : U ∩V → GL(m,C) be the holomorphic transition functions of E. In
z ∈ U ∩V , gUV (z) is represented by the complex matrix of holomorphic functions(
Mα
β (z)

)
, such that, if (z̃k, ũα) are local coordinates on π−1(V ), then these change

by the rules
z̃k = z̃k(z), ũα = Mα

β (z)uβ. (2.1)

The Jacobi matrix of the transformation laws (2.1) is
∂z̃k

∂zh
0

∂Mα
β

∂zh
uβ Mα

β

 (2.2)

Let
(
W β
α

)
be the inverse matrix of

(
Mα
β

)
, and {eα} a base of sections on E,

that is, u = uαeα for any u ∈ Γ(E). Then these change by the rules

ẽα = W β
α eβ.
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The action of the holomorphic anchor map ρE can locally be described by

ρE(eα) = ρkα
∂

∂zk
, (2.3)

while the Lie bracket [·, ·]E is locally given by

[eα, eβ]E = C γ
αβeγ . (2.4)

The holomorphic functions ρkα = ρkα(z) and C γ
αβ = C γ

αβ(z) on M are called the
holomorphic structure functions of the Lie algebroid E. A change of local charts
on E implies

ρ̃kα = W β
α ρ

h
β

∂z̃k

∂zh
. (2.5)

Since E is a holomorphic vector bundle, it has the structure of a complex
manifold, and the natural complex structure acts on its sections by JE(eα) =
ieα and JE(ēα) = −iēα. Hence, the complexified bundle EC of E decomposes
into EC = E′ ⊕ E′′. The sections of EC are given as usual by Γ(E′) = {s −
iJEs | s ∈ Γ(E)} and Γ(E′′) = {s + iJEs | s ∈ Γ(E)}, respectively. The local
basis of sections of E′ is {eα}α=1,m, while for E′′, the basis is represented by their
conjugates {ēα := eᾱ}α=1,m. Since ρE : E → T ′M is a homomorphism of complex
modules, it extends naturally to the complexified bundle by ρ′(eα) = ρE(eα) and
ρ′′(eᾱ) = ρE(eᾱ). Thus, the anchor map can be decomposed into ρE = ρ′ ⊕ ρ′′
on the complexified bundle, and since E is holomorphic, the functions ρ(z) are

holomorphic, hence ρk̄α = ρkᾱ = 0 and ρk̄ᾱ = ρkα. Thus, the anchored bundles
(E′, ρ′, T ′M) and (E′′, ρ′′, T ′′M) are complex Lie algebroids ([4]). The Lie brackets
are defined as

[eα, eβ]′ = [eα, eβ]E = C γ
αβeγ ; [eᾱ, eβ̄]′′ = [eα, eβ]E = C γ̄

ᾱβ̄
eγ̄ ,

where C γ̄
ᾱβ̄

= Cγαβ. On the complexified bundle EC, we have to consider also the

Lie brackets

[eα, eβ̄] = Cγ
αβ̄
eγ + C γ̄

αβ̄
eγ̄ ; [eᾱ, eβ] = Cγᾱβeγ + C γ̄ᾱβsγ̄ .

It is obvious that [eα, eβ̄] = [eᾱ, eβ], hence C γ̄
αβ̄

= C γ̄
αβ̄

and Cγ
αβ̄

= C γ̄ᾱβ.

Proposition 2.1. The structure functions of the complexified Lie algebroid
(EC, [·, ·], ρE) satisfy the identities:

ρjα
∂ρiβ
∂zj
− ρjβ

∂ρiα
∂zj

= ρiγC
γ
αβ, ρiγC

γ

αβ̄
= −ρj̄

β̄

∂ρiα
∂z̄j

, ρīγ̄C
γ̄

αβ̄
= ρjα

∂ρī
β̄

∂zj
,

ρj̄ᾱ
∂ρīβ
∂z̄j
− ρj̄

β̄

∂ρīᾱ
∂z̄j

= ρīγ̄C
γ̄

ᾱβ̄
, ρīγ̄C

γ̄
ᾱβ = −ρjβ

∂ρīᾱ
∂zj

, ρiγC
γ
ᾱβ = ρj̄ᾱ

∂ρiβ
∂z̄j

.

Proof. The identities follow by direct computations using (1.1), (2.3) and (2.4).
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Next, we consider the dual algebroid E∗ and its complexification E∗C = E′∗ ⊕
E′′∗ according to the eigenvalues ±i of the dual complex structure defined by
J∗E(eα) = ieα and J∗E(eᾱ) = −ieᾱ, with the dual cobasis {eα, eᾱ}, that is, eα(eβ) =
δαβ , eα(eβ̄) = 0 and their conjugates. We have Γ(E′∗) = {ω − iJ∗Eω | ω ∈ Γ(E∗)}
and Γ(E′′∗) = {ω + iJ∗Eω | ω ∈ Γ(E∗)}. Then, the differential operator (1.4)
extends to the complexified forms ΩC(E) = Γ

(
Ωp,q(EC)

)
by dE = ∂′E +∂E + ∂̄E +

∂′′E , where

∂′E : Ωp,q(EC)→ Ωp+2,q−1(EC) ; ∂E : Ωp,q(EC)→ Ωp+1,q(EC);

∂̄E : Ωp,q(EC)→ Ωp,q+1(EC) ; ∂′′E : Ωp,q(EC)→ Ωp−1,q+2(EC).

The total space of the holomorphic Lie algebroid E has a structure of com-
plex manifold, since the transition functions Mα

β (z) are holomorphic. Consider
the complexified tangent bundle of E, TCE = T ′E ⊕ T ′′E, where T ′E is the
holomorphic tangent bundle and T ′′E = T ′E.

On T ′E, a natural frame of fields is

{
∂

∂zk
,
∂

∂uα

}
, which, due to the (2.2)

matrix, changes by the rules

∂

∂zh
=
∂z̃k

∂zh
∂

∂z̃k
+
∂Mα

β

∂zh
uβ

∂

∂ũα
, (2.6)

∂

∂uβ
= Mα

β

∂

∂ũα
.

Since E is a complex manifold, it follows that

{
∂

∂zk
,
∂

∂uα

}
is a local frame on

T ′′E = T ′E and its rules of change are deduced from (2.6) by conjugation.
As a mapping between manifolds, the holomorphic anchor ρ induced by ρE

maps (zk, uα) on E to (zk, ηk) on T ′M , where ηk = uαρkα(z). A change of local
charts implies that (z̃k, ũα) is mapped to (z′k, η′k), where

z′k = z̃k(z) = z′k(z)

and

η′k = ũαρ̃kα(z̃) = uγρhγ
∂z̃k

∂zh
= ηh

∂z̃k

∂zh
,

such that

z′k = z′k(z), η′k = uγρhγ
∂z′k

∂zh
(2.7)

are local coordinates in a new chart on T ′M .
The local expression of the differential operator ∂E for f ∈ H(M) is

∂Ef =
∂f

∂zk
ρkαe

α

and, for ω ∈ Γ(E′∗), ω = ωαe
α,

∂Eω =

(
∂ωβ
∂zi

ρiα −
1

2
ωγC

γ
αβ

)
eα ∧ eβ.
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In particular,

∂Ez
k = ρkαe

α, ∂Ee
α = −1

2
C α
βγe

β ∧ eγ .

3 Linear connections on E

Definition 3.1. A linear connection on the holomorphic Lie algebroid (E, ρE , [., .]E)
is a map ∇ : Γ(E)× Γ(E)→ Γ(E) such that

1) ∇ is R-bilinear;

2) ∇fuv = f ∇uv for all f ∈ C∞(M) and u, v ∈ Γ(E);

3) ∇ufv = (ρE(u)f) v + f∇uv for all f ∈ C∞(M) and u, v ∈ Γ(E);

4) ∇uv = ∇ūv̄.

A linear connection can be interpreted as a linear mapping ∇ : Γ(E)→ A1(E)
given by ∇ : s 7→ ∇s, ∇s(u) = ∇su satisfying 3) and 4). As on any holomorphic
bundle, with respect to the holomorphic field of frames {sα} we can consider the

connection 1-forms θβα : Γ(E)→ C on (E, ρE , [., .]E) given by

∇seα = θβα(s)eβ, α = 1,m. (3.1)

By denoting ∇eαeβ = Γ γ
αβeγ , then θγβ(eα) = Γ γ

αβeγ . For s = sαeα and u =

uβeβ, the action of the linear connection on Γ(E) is

∇su = sα
{
ρkα
∂uγ

∂zk
+ Γ γ

αβu
β

}
eγ , (3.2)

which yields the expression of the 1-form u 7→ ∇u, ∇u(s) = ∇su as

∇u =
(
ρ ◦ dEuγ + θγβ ◦ u

β
)
eγ . (3.3)

By considering the natural complex structure on E, we obtain by C−linearity
a linear connection on (EC, ρE , [., .]E) acting on Γ(E′) and Γ(E′′) as follows:

∇eαeβ = Γγαβeγ + Γγ̄αβeγ̄ ; ∇eαeβ̄ = Γγ
αβ̄
eγ + Γγ̄

αβ̄
eγ̄ ; (3.4)

∇eᾱeβ = Γγᾱβeγ + Γγ̄ᾱβeγ̄ ; ∇eᾱeβ̄ = Γγ
ᾱβ̄
eγ + Γγ̄

ᾱβ̄
eγ̄ .

The connection ∇ satisfies 4), hence Γγαβ = Γγ̄
ᾱβ̄

, Γγ̄αβ = Γγ
ᾱβ̄

etc.

The connection forms θβα extended to EC are called of (1, 0)-type if θβα(s) = 0
for all s ∈ Γ(E′′), that is, ∇eαeβ̄ = ∇eᾱeβ = 0.

Moreover, we assume that ∇ is a complex connection ([4]) with respect to JE ,
i.e. (∇uJE)(v) = JE(∇uv). Then, Γγ̄αβ = Γγ

αβ̄
= Γγ̄ᾱβ = Γγ

ᾱβ̄
= 0 in (3.4), hence ∇

preserves the distributions Γ(E′) and Γ(E′′), respectively.
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Consider on (E, ρE , [., .]E) a Hermitian scalar product g : Γ(E) × Γ(E) → C,
which means that besides the linearity of the first term we have g(u, v) = g(v, u).
The connection ∇ is called metric with respect to g if ∇g = 0, where

(∇sg)(u, v) = ρ(s) (g(u, v))− g (∇su, v)− g(u,∇sv), ∀s, u, v ∈ Γ(E). (3.5)

As in the case of Hermitian bundles, there is a unique linear connection, metric
with respect to g, of (1, 0)-type. Indeed, from

0 = (∇eαg)(eβ, eγ) = ρ(eα) (g(eβ, eγ))− g (∇eαeβ, eγ)− g(eβ,∇eαeγ),

by denoting g(eβ, eγ̄) = gβγ̄ , we get ρkα
∂gβγ̄
∂zk

= θδβ(eα)gδγ̄ + θδγ(eα)gβδ̄. Since the

connection is of (1, 0)-type, we have θδγ(eα) = θδγ(eᾱ) = 0, hence

θδβ(eα) = gγ̄δρkα
∂gβγ̄
∂zk

. (3.6)

The torsion of a complex linear connection ∇ on E is defined as usual by
T (u, v) = ∇uv −∇vu− [u, v]E . Its extension to Γ(EC) has the local components
T γ
αβeγ := T (eα, eβ), etc. given by

T γ
αβ = Γ γ

αβ − Γ γ
βα − C

γ
αβ

T γ

αβ̄
= Γ γ

αβ̄
− C γ

αβ̄
(3.7)

T γ̄

αβ̄
= Γ γ̄

αβ̄
− C γ̄

αβ̄

and their conjugates.
Again in a classical manner, the curvature of the complex linear connec-

tion ∇ is R(u, v)s = ∇u∇vs − ∇v∇us − ∇[u,v]Es, where u, v, s ∈ Γ(E). On

the complexified bundle EC, its local components are R(eα, eβ)eγ = R δ
γαβeδ,

R(eα, eβ)eγ̄ = R δ̄
γ̄αβeδ̄, etc., where

R δ
γαβ = Γ σ

βγΓ δ
ασ − Γ σ

αγΓ δ
βσ − C σ

αβΓ δ
σγ + ρkα

∂Γ δ
βγ

∂zk
− ρkβ

∂Γ δ
αγ

∂zk

R δ̄
γ̄αβ = Γ σ̄

βγ̄Γ δ̄
ασ̄ − Γ σ̄

αγ̄Γ δ̄
βσ̄ − C σ

αβΓ δ̄
σγ̄ + ρkα

∂Γ δ̄
βγ̄

∂zk
− ρkβ

∂Γ δ̄
αγ̄

∂zk
(3.8)

R δ
γαβ̄ = Γ σ

β̄γΓ δ
ασ − Γ σ

αγΓ δ
β̄σ − C

σ
αβ̄Γ δ

σγ − C σ̄
αβ̄Γ δ

σ̄γ + ρkα
∂Γ δ

β̄γ

∂zk
− ρk̄β̄

∂Γ δ
αγ

∂zk̄

R δ̄
γ̄αβ̄ = Γ σ̄

β̄γ̄Γ δ̄
ασ̄ − Γ σ̄

αγ̄Γ δ̄
β̄σ̄ − C

σ
αβ̄Γ δ̄

σγ̄ − C σ̄
αβ̄Γ δ̄

σ̄γ̄ + ρkα
∂Γ δ̄

β̄γ

∂zk
− ρk̄β̄

∂Γ δ̄
αγ̄

∂zk̄

and R δ
γᾱβ̄

= R δ̄
γ̄αβ, etc.

By writing the curvature of ∇ as R = ∇◦∇, then the structure equations can
be written in terms of the curvature 2-form Rαβ of ∇, that is,

Rαβ = dθαβ + θαγ ∧ θ
γ
β,
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such that

dER
α
β = Rαγ ∧ θ

γ
β − θ

α
γ ∧R

γ
β

are the Bianchi identities.

The linear connection ∇ on E decomposes into ([8])

∇ = ∇′ +∇′′,

where ∇′ : Ωp,q(EC) → Ωp+1,q(EC) and ∇′′ : Ωp,q(EC) → Ωp,q+1(EC). The
decomposition of the curvature is

R = ∇′ ◦ ∇′ +∇′ ◦ ∇′′ +∇′′ ◦ ∇′ +∇′′ ◦ ∇′′,

such that the connection and curvature forms can be written as

θ = θ1,0 + θ0,1, R = R2,0 +R1,1 +R0,2.

For u ∈ Γ(EC) and f ∈ H(M), the identity (3.3) yields

∇′(fu) = ρ(u)∂Ef + f∇′u, ∇′′(fu) = ρ(u)∂̄Ef + f∇′′u,

such that, if the connection form θ is of (1, 0)-type, that is, θ(0,1) = 0, then ∇ is
of (1, 0)-type and ∇′′ = ∂̄E . The converse holds as well.

4 Vertical and complete lifts

Since all the objects considered are holomorphic, the construction from this
section is similar to the real case (see, for instance, [6, 10]). Let f be a holomorphic
function on M . Its vertical lift fv on E is defined by fv(e) = f(π(e)), e ∈ E. The
vertical lift of a section Z ∈ Γhol(E), Z = Zαsα, is a vector field on E given by

Zv(z, u) = Zα(z)
∂

∂uα
. (4.1)

In particular, svα =
∂

∂uα
.

Some basic properties of the vertical lift are given in the following

Lemma 4.1. If Z, W are holomorphic sections of E and f is a holomorphic
function on M , then

(Z +W )v = Zv +W v, (fZ)v = fvZv, Zvfv = 0.

The complete lift of a holomorphic function f on M is the holomorphic func-
tion f c on E given by f c(e) = ∂Ef(e) = ρE(e)f . Its local expression is

f c(e) = uαρkα
∂f

∂zk
. (4.2)
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Lemma 4.2. If Z is a holomorphic section on E and f, g are holomorphic func-
tions on M , then

(f + g)c = f c + gc, (fg)c = f cgv + fvgc, Zvf c = (ρE(Z)f)v.

The complete lift Zc of a section Z ∈ Γhol(E) is a vector field on E defined by

Zc(z, u) = Zαρkα
∂

∂zk
+

(
ρkβ
∂Zα

∂zk
− ZγC α

γβ

)
uβ

∂

∂uα
. (4.3)

In particular, scα = ρkα
∂

∂zk
− C γ

αβu
β ∂

∂uγ
.

Lemma 4.3. If Z is a holomorphic section on E and f is a holomorphic function
on M , then

Zcf c = (ρE(Z)f)c, Zcfv = (ρE(Z)f)v.

Proof. The first property is proven by a straightforward computation using (4.1),
(4.3) and Proposition 2.1.

The second property is a consequence of the first. Indeed, using also Lemma
4.2

1

2
Zc(f2)c = Zc(f cfv) = (Zcf c)fv + f c(Zcfv) = (ρE(Z)f)cfv + f c(Zcfv).

But the first identity gives, on the other hand,

1

2
Zc(f2)c =

1

2
(ρE(Z)f2)c = (fρE(Z)f)c = f c(ρE(Z)f)v + fv(ρE(Z)f)c

and these lead to Zcfv = (ρE(Z)f)v.

The Lie brackets of the complete and vertical lifts on E are given in the
following

Lemma 4.4. If Z and W are holomorphic sections on E, then

[Zc,W c] = [Z,W ]cE , [Zc,W v] = [Z,W ]vE , [Zv,W v] = 0.

5 Semisprays and sprays for holomorphic anchored
vector bundles

Following the steps from the real case ([2, 3]), semisprays can also be intro-
duced on a holomorphic anchored vector bundle (E, π,M). Let ρE denote the
anchor map, π∗, the tangent map of the projection π and τE : T ′E → E, the
holomorphic tangent bundle of E.

Definition 5.1. A holomorphic section S : E → T ′E is called semispray if

i) τE ◦ S = IdE,
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ii) π∗ ◦ S = ρE.

Let c : I → M, I ⊂ R be a complex curve on M , c̃ : I → E a complex curve
on E such that π ◦ c̃ = c and denote by ˙̃c the tangent vector field to curve c̃.

Definition 5.2. The vector field ˙̃c is called admissible if

π∗(˙̃c) = ρ(c̃). (5.1)

Locally, c(t) = (zk(t)), c̃ = (zk(t), uα(t)) and ˙̃c =
dzk

dt

∂

∂zk
+
duα

dt

∂

∂uα
, t ∈ I.

Then, curve ˙̃c is admissible if and only if

dzk

dt
(t) = ρkα(z(t))uα(t), ∀t ∈ I.

If S = Zk
∂

∂zk
+ Uα

∂

∂uα
, then, using the definition, it follows that S is a

semispray if and only if
Zk(z, u) = ρkα(z)uα. (5.2)

The coefficients Uα(z, u) are not determined, thus, for easier computations, let
Uα = −2Gα, such that

S = ρkαu
α ∂

∂zk
− 2Gα(z, u)

∂

∂uα
. (5.3)

The rules of change for the coordinates of S are obtained using the (2.2)
matrix:

Z̃k =
∂z̃k

∂zh
Zh (5.4)

and

G̃α = Mα
βG

β − 1

2

∂Mα
β

∂zk
uβρkγu

γ . (5.5)

Moreover, due to (2.5), the coefficients Zk(z, u) given by (5.2) verify the (5.4)
laws of change, which leads to the following result.

Proposition 5.1. A vector field S = ρkαu
α ∂

∂zk
−2Gα

∂

∂uα
∈ Γ(T ′E) is a semispray

if and only if the coefficients Gα verify the (5.5) rules of transformation.

A curve c : t 7→ (zi(t), uα(t)) on E is an integral curve of the semispray S if it
satisfies the system of differential equations

dzi

dt
= ρkα(t)uα,

duα

dt
+ 2Gα(z, u) = 0. (5.6)

A semispray can then be characterized also by

Proposition 5.2. A vector field on E is a semispray if and only if all its integral
curves are admissible.
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Another result similar to the real case is

Proposition 5.3. Any two semisprays on E differ by a vertical vector field on
E.

Now, if hλ : E → E is the complex homothety hλ : e 7→ λe, λ ∈ C, e ∈ E,
then a semispray S on E is called spray if

S ◦ hλ = λhλ,∗ ◦ S. (5.7)

Since the action of hλ is locally described by hλ : (zk, uα) 7→ (zk, λuα), condition
(5.7) becomes, equivalently,

Gα(z, λu) = λ2Gα(z, u), (5.8)

that is, the functions Gα are complex homogeneous of degree 2 in u.

Let L = uα
∂

∂uα
be the complex Liouville vector field on E. Then, an even sim-

pler formulation for the condition of spray can be obtained using Euler’s theorem
for homogeneous functions:

[L, S]E = S. (5.9)

We now try to obtain a complex spray from the variational problem. The first
step is to express the Euler-Lagrange equations on the holomorphic Lie algebroid
E. Since

d

dt
=
dzk

dt

∂

∂zk
+
dz̄k

dt

∂

∂z̄k
+
duα

dt

∂

∂uα
+
dūα

dt

∂

∂ūα
,

from (5.6) it follows that

d

dt

(
∂L

∂uβ

)
= ρkαu

α ∂2L

∂zk∂uβ
+ ρk̄ᾱū

α ∂2L

∂z̄k∂uβ
− 2Gα

∂2L

∂uα∂uβ
− 2Ḡα

∂2L

∂ūα∂uβ

or

d

dt

(
∂L

∂uβ

)
= ρkαu

α ∂2L

∂zk∂uβ
+ ρk̄ᾱū

α ∂2L

∂z̄k∂uβ
− 2Gαgαβ − 2Ḡαgβᾱ. (5.10)

Following the ideas of Weinstein ([13]), the Euler-Lagrange equations on E
are

d

dt

(
∂L

∂uβ

)
= ρkβ

∂L

∂zk
+ ρk̄β

∂L

∂z̄k
+Qαβ

∂L

∂uα
+Qᾱβ

∂L

∂ūα
, (5.11)

where ρk̄β = 0 since E is holomorphic and Qαβ and Qᾱβ must be determined.
From (5.10) and (5.11) we obtain(
ρkαu

α ∂2L

∂zk∂uβ
− ρkβ

∂L

∂zk
−Qαβ

∂L

∂uα
− 2Gαgαβ

)
+

(
ρk̄ᾱū

α ∂2L

∂z̄k∂uβ
− 2Ḡαgβᾱ −Qᾱβ

∂L

∂ūα

)
= 0,
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which leads to

2Ḡαgβᾱ =

(
ρk̄ᾱū

α ∂2L

∂z̄k∂uβ
−Qᾱβ

∂L

∂ūα

)
+

(
ρkαu

α ∂2L

∂zk∂uβ
− ρkβ

∂L

∂zk
−Qαβ

∂L

∂uα
− 2Gαgαβ

)
. (5.12)

If we denote by −Eβ the second paranthesis in (5.12), then

Gα =
1

2
gβ̄α

(
ρkγu

γ ∂2L

∂zk∂ūβ
−Qγ

β̄

∂L

∂uγ

)
− 1

2
gβ̄αEβ̄

or

Gα =
1

2
gβ̄α

(
ρkγu

γ ∂2L

∂zk∂ūβ
−Qγ

β̄

∂L

∂uγ

)
−Rα, (5.13)

where Rα =
1

2
gβ̄αEβ̄. From the arbitrariness of Qαβ , we can assume that Rα is a

variable amount to be determined in the following.
Thus, we have to determine next Qγ

β̄
and Rα such that Gα be the coefficients

of the spray satisfying (5.5). We have

G̃α =
1

2
gδ̄εM β̄

δ̄
Mα
ε

{
ρ̃kγM

γ
σu

σ ∂

∂z̃k

(
W θ̄
β̄

∂L

∂ūθ

)
− Q̃γ

β̄
W θ
γ

∂L

∂uθ

}
− R̃α

=
1

2
gδ̄εM β̄

δ̄
Mα
ε

{
ρhγu

γ ∂z̃
k

∂zh
∂

∂z̃k

(
W θ̄
β̄

∂L

∂ūθ

)
− Q̃γ

β̄
W θ
γ

∂L

∂uθ

}
− R̃α

=
1

2
gδ̄εM β̄

δ̄
Mα
ε

{
ρhγu

γW θ̄
β̄

∂2L

∂zk∂ūθ
− Q̃γ

β̄
W θ
γ

∂L

∂uθ

}
− R̃α

or

G̃α =
1

2
gδ̄εMα

ε ρ
h
γu

γ ∂2L

∂zk∂ūδ
− 1

2
g̃β̄αQ̃γ

β̄
W θ
γ

∂L

∂uθ
− R̃α (5.14)

In order for G̃α to verify (5.5), we write

G̃α = Mα
ε

(
1

2
gδ̄ε
{
ρhγu

γ ∂2L

∂zk∂ūδ
−Qγ

β̄

∂L

∂uγ

}
−Rε

)
− 1

2

∂Mα
β

∂zh
uβρhγu

γ

−
(

1

2
g̃β̄αQ̃γ

β̄
W θ
γ

∂L

∂uθ
− 1

2
Mα
ε g

δ̄εQγ
δ̄

∂L

∂uγ

)
−
(
R̃α −Mα

ε R
ε − 1

2

∂Mα
β

∂zh
uβρhγu

γ

)
.

(5.15)

Comparing this with (5.5) it yields that the second row must vanish. Forcing
things a bit, we ask that both brackets in this row be cancelled, which means that
Qγ
δ̄

and Rε must satisfy

g̃β̄αQ̃γ
β̄
W θ
γ

∂L

∂uθ
= gδ̄εQγ

δ̄
Mα
ε

∂L

∂uγ
(5.16)

R̃α −Mα
ε R

ε =
1

2

∂Mα
β

∂zh
uβρhγu

γ (5.17)
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A simple computation shows that any (distinguished) tensor Qγ
δ̄

on E verifies
(5.16), so it would be best to choose Qγ

δ̄
= 0, and the spray will look like the

canonical spray from Lagrange spaces ([8]). Following an idea from [2], another
choice of d-tensor could be Qγ

β̄
= Cγ

αβ̄
uα.

By taking

Mα
ε R

ε = −1

4

∂Mα
β

∂zk
uβρkγu

γ ,

which means

Rε = −1

4
W ε
α

∂Mα
β

∂zk
uβρkγu

γ , (5.18)

we have

R̃α = −1

4
Mα
ε

∂W ε
β

∂z̃k
ũβ ρ̃kγ ũ

γ

= −1

4
Mα
ε

∂W ε
β

∂z̃k
Mβ
σ u

σW δ
γ ρ

h
δ

∂z̃k

∂zh
Mγ
θ u

θ

= −1

4
Mα
ε

∂W ε
β

∂z̃k
Mβ
σ u

σρhδ
∂z̃k

∂zh
uδ

=
1

4
W ε
β

∂Mα
ε

∂zh
Mβ
σ u

σρhδu
δ

=
1

4

∂Mα
σ

∂zh
uσρhδu

δ.

Hence Rε from (5.18) satisfies (5.17).

Theorem 5.1. On a holomorphic Lie algebroid E endowed with a regular La-
grangian L(z, u) and a Hermitian metric tensor gᾱβ with det(gᾱβ) 6= 0, a complex
canonical spray is given by

Gα =
1

2

(
gβ̄α

∂2L

∂zk∂ūβ
+

1

2
Wα
ε

∂M ε
β

∂zk
uβ
)
ρkγu

γ (5.19)

Remark 5.1. If the Lagrangian on E is complex homogeneous, then the spray is
complex homogeneous of degree 2 in u.
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