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SOME CHARACTERIZATIONS OF KENMOTSU
MANIFOLDS ADMITTING A QUARTER-SYMMETRIC
METRIC CONNECTION

Uday Chand DE!, Dhananjoy MANDAL? and Krishanu MANDAL?

Abstract

In this paper we study certain curvature properties of Kenmotsu mani-
folds with respect to the quarter-symmetric metric connection. First we in-
vestigate Weyl projective symmetric Kenmotsu manifolds with respect to the
quarter-symmetric metric connection. Next, we study Kenmotsu manifolds
satisfying the curvature condition P-S = 0, where P and S are the projective
curvature tensor and Ricci tensor respectively with respect to the quarter-
symmetric metric connection. Further, we discuss about pseudoprojectively
flat and ¢-projectively semisymmetric Kenmotsu manifolds with respect to
the quarter-symmetric metric connection. Finally, we give an example of
a 5-dimensional Kenmotsu manifold admitting a quarter-symmetric metric
connection for illustration.
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1 Introduction

In a Riemannian manifold M a linear connection V is called a quarter sym-
metric connection [8] if the torsion tensor 7' of the connection V

T(X,Y)=VxY —VyX — [X,Y] (1)

satisfies
T(X,Y) =n(Y)pX —n(X)eY, (2)
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where 7 is a 1-form and ¢ is a (1, 1) tensor field. Moreover, a linear connection v
is said to be a metric connection of M if

(Vxg)(Y,U) =0, (3)

where X,Y,U € x(M), where x(M) is the set of all differentiable vector fields
on M. A linear connection V satisfying both (2) and (3) is said to be a quarter-
symmetric metric connection [8]. If we change ¢X by X, then the connection
is known as semi-symmetric metric connection [29]. Thus the notion of quarter-
symmetric connection generalizes the notion of the semi-symmetric connection.
Semi-symmetric metric connections have been studied by several authors such
as Barman [1], De [5], Ozgiir and Sular [16], Ozen et al [17, 18], Prvanovic [20],
Prvanovic and Pusi¢ [21], Smaranda and Andonie [24], Singh and Pandey [25] and
many others.

Let M be an n-dimensional Riemannian manifold. If there exists a one-to-
one correspondence between each coordinate neighborhood of M and a domain in
Euclidean space such that any geodesic of the Riemannian manifold corresponds
to a straight line in the Euclidean space, then M is said to be locally projectively
flat. For n > 3, M is locally projectively flat if and only if the well-known
projective curvature tensor P vanishes. Here P is defined by [26]

P(X,Y)Z:R(X,Y)Z—ﬁ[S(Y,Z)X—S(X,Z)Y], (4)
forall X,Y,Z € x(M), where R is the curvature tensor and S is the Ricci tensor of
type (0,2). In fact, M is projectively flat if and only if it is of constant curvature.
Thus the projective curvature tensor is the measure of the failure of a Riemannian
manifold to be of constant curvature.

A Riemannian manifold (M, g) is called locally symmetric if its curvature
tensor R is parallel (that is, VR = 0). The notion of semisymmetric, a proper
generalization of locally symmetric manifold, is defined by R(X,Y)- R = 0, where
R(X,Y) acts on R as a derivation. A complete intrinsic classification of these
manifolds was given by Szabo in [28]. A Riemannian manifold is said to be Weyl
projective semisymmetric if the curvature tensor P satisfies R(X,Y) - P = 0,
where R(X,Y) acts on P as a derivation.

We define endomorphisms R(X,Y) and X A4 Y by

R(X,Y)Z =VxVyZ —VyVxZ —VixyZ,
(X AAY)Z =AY, 2)X — A(X, 2)Y,

respectively, where X, Y, Z € x(M), x(M), A is the symmetric (0,2)-tensor and
V is the Levi-Civita connection.

Quarter-symmetric metric connection in a Riemannian manifold have been
studied by several authors such as Mandal and De [14], Rastogi [22, 23|, Yano and
Imai [30], Mukhopadhyay, Roy and Barua [15], Han et al [9], Biswas and De [3]
and many others. Recently, Sular, Ozgiir and De [27] studied quarter-symmetric
metric connection in a Kenmotsu manifold.
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Motivated by these circumstances in this paper we study some curvature con-
ditions in a Kenmotsu manifold admitting a quarter-symmetric metric connection.
The paper is organized as follows: In section 2, we present a brief account of Ken-
motsu manifolds. In section 3, we discuss the curvature tensor and the Ricci tensor
of a Kenmotsu manifold with respect to the quarter-symmetric metric connection.
In the next section we study Weyl projective symmetric Kenmotsu manifolds with
respect to the quarter-symmetric metric connection and prove that the manifold is
an Einstein manifold with respect to the Levi-Civita connecction. In section 5, we
prove that a Kenmotsu manifold satisfies the curvature condition P-S = 0, where
P and S are the projective curvature tensor and the Ricci tensor respectively with
respect to the quarter-symmetric metric connection, if and only if the manifold is
an Einstein manifold with respect to the quarter-symmetric metric connection. In
the next two sections we study pseudoprojectively flat Kenmotsu manifolds and
¢-projectively semisymmetric Kenmotsu manifolds with respect to the quarter-
symmetric metric connection, respectively and both the cases the manifold is an
Einstein manifold with respect to the Levi-Civita connection. Finally, we give an
example of a 5-dimensional Kenmotsu manifold admitting a quarter-symmetric
metric connection to verify some results.

2 Kenmotsu manifolds

Let M be an n (= 2m+ 1)-dimensional almost contact metric manifold carries
an almost contact metric structure (¢,&,n,g), where ¢ is a (1,1)-tensor field, £
associated vector field, n a 1-form and g the Riemannian metric satisfying the
following conditions [2]:

X = —X +n(X)E, n(€) =1, € =0, n(¢X) =0, (5)
9(¢X,¢Y) = g(X,Y) — n(X)n(Y), (6)
g(ngaY):*g(ngbY)v Q(Xaf):U(X), (7)

for all X,Y € x(M). If an almost contact metric manifold satisfies

(Vx9)Y = g(¢X,Y)E —n(Y)pX, (8)

where V denotes the Levi-Civita connection of g, then M is said to be a Kenmotsu
manifold [12]. In a Kenmotsu manifold the following relations hold [12, 27, 11]:

Vx{=X— TI(X)& (9)
(Vxn)Y =g(X,Y) = n(X)n(Y). (10)
R(X,Y)§ =n(X)Y —n(Y)X, (11)
R(&,X)Y =n(Y)X — g(X,Y)E, (12)
5(X,8) = —(n—1)n(X), (13)

10
11
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where R is the curvature tensor, S the Ricci tensor. From (9) we see that divg =
n — 1, for what a Kenmotsu manifold is not compact. It is well known [12] that a
Kenmotsu manifold M?™*! is locally a warped product I x N 2m where N2™ is a
Kahler manifold, I is an open interval with coordinate ¢ and the warping function
f, defined by f = ce! for some positive constant c.

A Kenmotsu manifold M is said to be an n-Einstein manifold if the Ricci tensor
S satisfies the following equation

S(X,Y) = ag(X,Y) + bn(X)n(Y),

where a and b are some scalars. For b = 0, the manifold M is an Einstein manifold.

Kenmotsu manifolds have been studied by several authors such as Calin [4],
De and Pathak [7], Jun, De and Pathak [11], Pitis [19], Kirichenko [13], Hong et
al [10] and many others.

3 Curvature tensor of a Kenmotsu manifold with re-
spect to the quarter-symmetric metric connection

In a Kenmotsu manifold the quarter-symmetric metric connection V and the
Levi-Civita connection V are related by [27]

VxY = VxY —n(X)eY, (14)

for all vector fields X,Y on M.

Let R and R be the Riemannian curvature tensor with respect to the quarter-
symmetric metric connection and Levi-Civita connection respectively of a Ken-
motsu manifold. Then R and R are related by [27]

R(X,Y)Z = R(X,Y)Z+n(X)g(eY,2) —n(Y)g(¢X, Z)¢
—n(X)n(2)Y +n(Y)n(Z)¢X. (15)

Contracting (15) we have [27]

S(Y,2) = S(Y, Z) + g(¢Y, Z), (16)

where S and S are the Ricci tensor with respect to the quarter-symmetric metric
connection and Levi-Civita connection, respectively. Moreover, for a Kenmotsu
manifold with respect to the quarter-symmetric metric connection the following
relations hold [27]:

R(X,Y)§=n(X)Y —n(Y)X —n(X)oY +n(Y)eX, (17)
R(X, &)Y = g(X,Y)¢ —n(Y)X — g(¢X, V)¢ +n(Y)oX, (18)
R(&,X)¢ = X —n(X)¢ — ¢X, (19)

S(X,6) = 8(X,&) = —(n — )n(X), (20)
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Further, it is noted that [27] the Ricci tensor S with respect to the quarter-
symmetric metric connection is not symmetric.
Applying (15) and (16) in (4) gives

P(X,Y)Z = R(X,Y)Z+n(X)g(oY,Z2)§ —n(Y)g(¢X, Z)¢
—n(X)n(Z2)oY +n(Y)n(Z)pX

—ﬁ[S(Y, )X +g(0Y, Z)X — S(X,2)Y — g(¢X, Z)Y]21)

Making use of (11)-(13) in (21), we obtain

PEY)Z = g(oY,2)E — g(Y,2)E — n(Z)¢Y

L [S(Y, 2)6 + g(0Y, 2)6), (22)
P(X,Y)¢ =n(Y)$X —n(X)sY, (23)
P(&,Y)§ = —¢Y. (24)
It should be note that
P(X,Y)Z = -P(Y,X)Z, (25)

for all X, Y and Z € x(M).

4 Weyl projective symmetric Kenmotsu manifolds with
respect to the quarter-symmetric metric connection

In this section we study Weyl projective symmetric Kenmotsu manifolds with
respect to the quarter-symmetric metric connection V. At first we prove the
following:

Theorem 1. Let M be an n(= 2m + 1)-dimensional Kenmotsu manifold. If M
is Weyl projective symmetric Kenmotsu manifolds with respect to the quarter-
symmetric metric connection, then M is an Finstein manifold with respect to the
Levi-Civita connection.

Proof. Assume that M is an n(= 2m+ 1)-dimensional Weyl projective symmetric
Kenmotsu manifolds with respect to the quarter-symmetric metric connection.
Therefore we have (R(X,Y)-P)(U,V) =0 for all X,Y,U and V € x(M). This is
equivalent to

R(X,Y)P(U V)W — P(R(X,Y)U,V)W
—P(U,R(X,Y)V)W — P(U,V)R(X,Y)W =0, (26)

where X, Y, U, V,W € x(M).

Substituting X = U = £ in the above equation gives
R(&,Y)P(E V)W — P(R(E,Y)E V)W
—P(§R(EY)VIW = P(EV)R(E Y)W = 0. (27)



44 U. C. De, D. Mandal and K. Mandal

Making use of (18) and (19) in (27) we have

n(PEVIW)Y = g(Y, P& VIW)E = n(PEV)W)oY
+9(8Y. P(6,VIW)E = PY, V)W +5(Y)P(, V)W

+P(@Y, VIW —n(V)P(E Y)W + (V)P ¢Y)W
—n(W)P(¢, V)Y+9(Y W)P(E,V)E+n(W)P(E, V)Y
—g(8Y, W)P(&, V)¢ = (28)

Using (21), (22) and (24) in (28) and then taking inner product with arbitrary
vector field Z, we obtain

9oV, W)g(Y, Z) — g(V,W)g(Y, Z) — g(¢V, W)n(Y)n(Z)
+g(V, Y )n(W)n(Z) — g(oV, W)g(¢Y, Z) + g(V,W)g(8Y, Z)
—g(RY, V)W, Z) — g(oY, W)n(V)n(Z) + g(V, Y )n(W)n(Z)

+9(oV, Z)n(W)n(Y) + g(R(¢Y, V)W, Z) + g(Y, W)n(V)n(Z)

+g(¢>Y W)g(@V, Z) — g(Y,W)g(¢V, Z)

+m{5(¢Y,W)g(V,Z)—S(Y W)g(V, Z) — g(¢Y,W)g(V, Z)
—g(Y,W)g(V, Z) + g(V, Z)n(Y )n(W) + S(Y, W)n(V)n(Z)

g(oY, W)n(V)n(Z) — S(¢Y, W)n(V)n(Z) + g(Y, W)n(V)n(Z)

SV Y )nWn(Z) + g(oV. Y )In(W)n(Z) — S(V,8Y )In(W)n(2)

V,Y)n(W)n(Z)} = 0. (29)

Substituting V =W = ¢; in (29), where {e;}(1 <1i < n) is an orthonormal basis
of the tangent space at any point of the manifold M", we have

_|_
+

-9

—ng(Y, Z) + ng(¢Y, 2) = S(Y, 2) + S(¢Y, Z) — g(¢Y, Z)
g, 2) + 0V )n(Z) + = {S(8Y. 2) + n(¥)n(2)
~g¥.2) ~ S(Y,2) - g(6Y, 2)} = 0. (30)
Replacing Y by #Y in (30) yields
~ng(6Y, 2) ~ ng(Y, Z) ~ S(6Y, 2) ~ S(Y, 2) ~ n(¥ }n(2)
(Y, 2) ~ 9(0Y, ) + (Y, Z) ~ S(6Y, 2) (Y )n(2)
~S(Y,2) - g(6Y. 2)} = 0. (31)
Adding (30) and (31), it follows that
S(Y, 2) + 9(6, 2) = ~(n — 1)g(Y. 2). (32)
Interchanging Y and Z in (32) gives

S(Z,)Y)+g(¢Z,Y)=—(n—1)g9(Z,Y). (33)
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Adding (32) and (33) and then applying (7) we get
S(Y7 Z) = _(n - 1)9(Y7 Z))

which shows that the manifold is an Einstein manifold with respect to the Levi-
Civita connection. Thus our theorem is proved. ]

5 Kenmotsu manifolds satisfying the curvature condi-
tion P-S =0

In this section we consider a Kenmotsu manifold satisfying the curvature con-
dition

(P(X,Y)-S)(U,V) =0,
which is equivalent to
S(P(X,Y)U,V)+8(U,(P(X,Y)V) = 0. (34)
Substituting X = U = ¢ in the above equation we have
S(P(&,Y)E, V) + 8(&, (P Y)V) =0. (35)
Using (24) and (20) in (35) we obtain
S(¢Y, V) + (n— 1)n(P(£,Y)V) =0. (36)
Making use of (16) and (22) in (36) it follows that

S@Y, V) +n(Y)n(V) —ng(Y,V)
+(n —1)g(aY, V) = S(Y,V) — g(¢Y, V) = 0. (37)

Putting Y = ¢Y in the above equation yields

—S(Y,V) = ng(¢Y,V) — (n—1)g(Y,V)
=S(oY, V) +g(Y,V) = n(Y)n(V) = 0. (38)

Adding (37) and (38) we get
S, V) +9(@Y, V) + (n—1)g(Y,V) =0. (39)

Applying (16) in (39) gives

S(K V) - _(n - l)g(Y, V>7 (40)

from which it follows that the manifold is an Einstein manifold with respect to
the quarter-symmetric metric connection.

Conversely, if the manifold is an Einstein manifold of the form (40), then it is
obvious that S(P(X,Y)U,V)+ S(U, (P(X,Y)V) =0, for any X,Y,U,V € x(M),
that is, P.-S=0. By the above discussions we have the following:
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Theorem 2. An n(= 2m + 1)-dimensional Kenmotsu manifold satisfies the cur-
vature condition P-S = 0 if and only if the manifold is an Einstein manifold with
respect to the quarter-symmetric metric connection.

Again interchanging Y and V in (39) we obtain
SV, Y)+g(@V,Y)+ (n—1)g(V,Y)=0. (41)
Adding (39) and (41) and also using (7) we have
S, V)= —(n-1)g(Y,V),

that is, the manifold is an Einstein manifold with respect to the Levi-Civita
connection. Hence, we can state the following:

Corollary 1. If an n(= 2m + 1)-dimensional Kenmotsu manifold satisfies the
curvature condition P - S = 0, then the manifold is an Finstein manifold with
respect to the Levi-Civita connection.

6 Pseudoprojectively flat Kenmotsu manifolds with
respect to the quarter-symmetric metric connection

This section is devoted to study pseudoprojectively flat Kenmotsu manifolds
with respect to the quarter-symmetric metric connection.

A Kenmotsu manifold is said to be pseudoprojectively flat [6] if the following
condition holds

9(P(¢X,Y)Z,¢W) =0, (42)

for all X,Y,Z and W € x(M).
Therefore we have

9(P(6X.Y)Z, W) = 0. (43)
Making use of (21) and (43) we obtain

GRGX,Y)Z,0W) = —[S(Y, Z)g(0X, oW) + g(6Y, Z)g(0X, oW)
~S(6X, Z)g(Y, 6W) + (X, Z)g(¥, 61V

—n(X)n(2)g(Y, oW)] + n(Y)n(Z)g(X,oW).  (44)
Replacing X by ¢X and W by ¢W in (44) implies

SRGXY)Z,EW) = L[SV, 2)g(6X,8°W) + (67, 2)g(6*X, )

—S(¢*X, Z)g(Y,*W) + g(¢ X, Z)g(Y, $*W)]
+n(Y)n(2)g(¢X,o*W). (45)
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Making use of (5) we get
9(R(¢*X,Y)Z,*W)
9(R(X,Y)Z,W) —n(W)g(R(X,Y)Z,§)
—n(X)g(R(&,Y)Z, W) +n(X)n(W)g(R(,Y)Z,¢). (46)

Applying (5) and the above equation in (45) gives

G(R(X, Y)Z,W) — (W)g(R(X,Y)Z,)

~(X)g(R(EY)2,) + n(X)n(W)g(RE ¥)Z.€)

= L[SV, 2)g(X, W) — S(Y, 2)(X)n(W) + g(6Y, 2)g(X, W)
—g(6Y, (X)) = S(X, 2)g(Y, W) + S(X, Z)(¥ }n(W)

—(n = Dg(¥, W)n(X)n(Z) + (n = Da(X (Y ya(Z) (W)

—9(¢X, Z)g(Y, W) + g(¢X, Z)n(Y)n(W)] + 9(X, 9Z)n(Y)n(Z). ~ (47)

Putting X = W = ¢; in (47), where {e;}(1 < i < n) is an orthonormal basis of
the tangent space at any point of the manifold M™, we get

S(Y,2) — (R Y)Z,6) = =2 [S(Y, 2) + g(6, 2)] - n(V)n(2). (49
Using (12) and (48) we obtain
S(Y.2) = (n— 2)9(6Y. 2) ~ (n — (¥, 2). (19)

Interchanging Y and Z in (49) yields
S(Z,Y) = (n—-2)9(¢2,Y) — (n—1)g(Z,Y). (50)

Adding (49) and (50), we have S(Y,Z) = —(n — 1)g(Y, Z), for all Y, Z € x(M).
Thus we see that the manifold is an Einstein manifold with respect to the Levi-
Civita connection. This leads to the following:

Theorem 3. An n(= 2m+1)-dimensional pseudoprojectively flat Kenmotsu man-
ifold with respect to the quarter-symmetric metric connection is an Finstein man-
ifold with respect to the Levi-Civita connection.

7 ¢-projectively semisymmetric Kenmotsu manifolds
with respect to the quarter-symmetric metric con-
nection

A Kenmotsu manifold is said to be ¢-projectively semisymmetric if P(X,Y) -
¢ = 0 holds on M, for any X,Y € x(M). In this section we consider M be an
n(= 2m + 1)-dimensional ¢-projectively semisymmetric Kenmotsu manifold with
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respect to the quarter-symmetric metric connection. Therefore ]5(X Y)-0=0
implies B B B
(P(X,Y)-$)Z = P(X,Y)$Z — $P(X,Y)Z =0, (51)

for any X, Y and Z € x(M).
Substituting X = ¢ in (51) we have

(P(£,Y) - ¢)Z = P(£,Y)pZ — ¢P(€,Y)Z = 0. (52)

Applying (22) in (52) we obtain
oY, 2)6 ~ g(¥,62)6 ~ = S(V,62)¢

gV 20+ (Y (Z)E — n(Z)Y =0, (53)

n—1
Taking inner product of (53) with ¢ yields
(n—=2)9(Y,Z) - (n = 1)g(Y,0Z) = S(Y,¢Z) — (n = 2)n(Y)n(Z) =0.  (54)
Setting Z = ¢Z in (54) gives
S(Y,Z) + (n—2)g(Y,¢Z) + (n - 1)g(Y, Z) = 0. (55)
Interchanging ¥ and Z in (55) we obtain
S(Z,Y) + (n—2)g(Z,¢Y) + (n— 1)g(Z,Y) = 0. (56)

Adding (55) and (56), we have S(Y,Z) = —(n — 1)g(Y, Z), which implies that
the manifold is an Einstein manifold with respect to the Levi-Civita connection.
Therefore we can state the following:

Theorem 4. An n(= 2m + 1)-dimensional ¢-projectively semisymmetric Ken-
motsu, manifold with respect to the quarter-symmetric metric connection is an
Einstein manifold with respect to the Levi-Civita connection.

8 Example of a 5-dimensional Kenmotsu manifold ad-
mitting a quarter-symmetric metric connection

We consider the 5-dimensional manifold M = {(z,y, z,u,v) € R}, where
(x,y, z,u,v) are the standard coordinates in R®.
We choose the vector fields
9
ox’

9
oy’

9
0z’

—v

e1=c¢e v

€9 =

—v

€3 = eg =€ "2-, e =,

which are linearly independent at each point of M.
Let g be the Riemannian metric defined by

g(ei,ej):(), Z#]v i?j:1a2537475
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and
gler,e1) = g(ez, e2) = g(es, e3) = gles,eq) = g(es, e5) = 1.

Let n be the 1-form defined by
n(Z) = g(Z, es),

for any Z € x(M).
Let ¢ be the (1, 1)-tensor field defined by

per = e3, Pey = es, pez = —e1, ¢eq = —ez, ges = 0.

Using the linearity of ¢ and g, we have

n(es) =1,
0*(2) = -Z+n(Z)es

and
9(Z,¢U) = g(2,U) —n(Z)n(U),

for any U, Z € x(M). Thus, for e5 = &, M(¢,&,n,g) defines an almost contact
metric manifold. The 1-form 7 is closed.
We have

o o, o 0

0 o, o
Q(%a @) = 9(%45&) = 9(%7 _c’Tx) =€ .

Hence, we obtain Q = —e?’dx A dz. Thus, dQ = —2e*dv A dx A dz = 2n A Q.
Therefore, M(¢,&,n,g) is an almost Kenmotsu manifold. It can be seen that
M(¢,&,m,g) is normal. So, it is a Kenmotsu manifold.

Then we have
le1,e2] = [e1, e3] = [e1, ea] = [ea,e3] =0, [e1, e5] = e,

leq, e5] = €4, [e2, 4] = [e3,e4] = 0, [e2, e5] = €2, [e3, €5] = e3.

The Levi-Civita connection V of the metric tensor g is given by Koszul’s
formula which is given by

29(VxY,2) = Xg(Y,2)+Yg(X,Z) - Zg(X,Y)
_Q(X7 [Y7 Z]) - g(Y, [X7 Z]) +g(Z7 [Xv Y])

Taking e5 = £ and using the above formula we obtain the following:
velel = —é€s, v€162 = 07 vele?) = 05 v€1€4 = O) v€165 = €1,

vegel - 07 vegeQ = —é€s, vege?) = 07 v62€4 - 07 v6265 = €2,

V63€1 = 07 vegeQ = Oa V6363 = —¢€5, V6364 = 07 V6365 = €3,
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v6461 =0, v6462 =0, V6463 =0, V64e4 = —¢€5, v6465 = €4,
Vese1 =0, Veea =0, Veges =0, Veea =0, Vees =0.

Further we obtain the following:

velel = —é€x5, veleQ =Y, vele?) - 07 V6154 - 07 v6165 = €1,

V62€1 — 07 V6262 — _657 V6263 — 0) V6264 - 07 v6265 — 627

v6361 = 07 v€3€2 = O) veges = —€s, v6364 = 07 v6365 = €3,

v8461 - 07 v64€2 = 07 v6463 = 07 v8464 = —é€x5, v6465 = €4,

Vese1 = —e3, Vesea = —eq, Veez =e1, Veeq =ea, Vees =0.

By the above results, we can easily obtain the non-vanishing components of
the curvature tensors as follows:

R(e1,e2)ea = R(er,e3)es = R(e1,eq)es = R(ey, e5)es = —eq,

R(e1,e2)e; = ea, R(e1,e3)e; = R(es, e3)es = R(ea, e3)ex = e3,
R(eg,e3)es = R(ea,eq)es = R(eg, e5)es = —ea, R(es, eq)eq = —es,
R(ez, es5)e2 = R(e1,e5)er = R(eq, e5)eq = R(es, es)es = es,
R(e1,eq)e1 = R(ea,eq)ea = R(es,eq)es = R(es, eq)es = ey

and

R(er, e2)es = R(ex, e3)es = Rler, e)es = —e,

R(e1,ex)er = ez, R(er,e3)e; = R(ea, e3)ex = e3,

R(e2,e3)es = R(eg,eq)es = —ez, R(ea, e5)es = eq — e2,

R(es,eq)eq = —es, R(ey, es)ea = R(er, es)er = R(ea, e5)eq = es,

R(es,e5)e3 = es5, R(e1,eq)e1 = R(eg, eq)ea = R(es, eq)es = ey,

R(ei,es)es = e3 —e1, R(es, e5)es = —e1 — e3, R(eq, e5)es = —eg — eq.

Making use of the above results we obtain the Ricci tensors as follows:
5(61, 61) - 5(627 62) - 5(637 63) = 5(647 64) == 5(657 65) =—4

and

S(er,e1) = S(ez,e2) = S(es,e3) = S(es,eq) = S(es, e5) = —4.

It can be easily verified that the manifold is an Einstein manifold with respect to
the quarter-symmetric metric connection. Therefore Theorem 2 is verified.
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