
Bulletin of the Transilvania University of Braşov • Vol 10(59), No. 2 - 2017

Series III: Mathematics, Informatics, Physics, 143-154

IMPLEMENTING SMART APPLICATIONS USING
GENETIC ALGORITHMS

Alexandra BĂICOIANU 1

Abstract

The aim of this paper is to present the logic and implementation methods
of the solution in view of a number of interesting and practical applications
of genetic algorithms. It is beyond any doubt that the fields which allow the
application of genetic algorithms are widely varied, ranging from computer
gaming to automotive design or robotics. Nevertheless, in this paper we
focused our attention on the following list of subjects which involved the
use of genetic algorithms: the evolution of a given string, the creation of a
logic agent based on neural networks and genetic algorithms for the Pac-man
game and the evolution of genetic programming in the case of a target given
picture.

Once acquainted with the theory of evolution, the understanding of basic
principles of these algorithms is quite easy. When the theoretical mecha-
nisms which make it possible for such an algorithm to function have been
understood, passing from the application of the ”Hello, World!” type of the
evolutionary algorithms to the applications which were of most interest to
us was just a step away. Such evolutionary techniques might prove of great
use to specialists such as engineers and scientists who work in various fields
of knowledge and who might be at their first usage of genetic algorithms in
specific applications. At the same time, such applications may be of use to
many other individuals who are becoming increasingly acquainted with the
topic of genetic algorithms.

2000 Mathematics Subject Classification: 92D15, 91A22, 97R40, 68N19,
68U10, 68U15, 68T42.

Key words: genetic algorithms, optimization, evolution, Pac-man agent,
image reconstruction.

1 Introduction

Science is the direct product of human curiosity to understand the mecha-
nisms according to which the natural world works and to gain control over them.

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
a.baicoianu@unitbv.ro



144 Alexandra Băicoianu

The great diversity of the world as we now know it, with numerous species of
creatures, with different races of people who have adapted to their specific living
environment, characterized by particular forms of ecological balance, is the direct
result of an experiment which lasted three billion years, known under the name
of evolution. When taking a closer look at the natural world around, we notice
that the great complexity and ability to adapt of all creatures living on Earth is
the consequence of a process of continuous improvement and combination of the
genetic material, over an extended amount of time. Taken on the whole, genetic
algorithms act as evolution simulators, regardless of which kind. Nevertheless,
in the majority of cases, genetic algorithms are mere methods of probabilistic
optimization, based on the guiding principles of evolution.

The setback of the more traditional search and optimization methods is that
they are too slow at identifying solutions within a highly complex search area,
even when they are implemented in supercomputers. The genetic algorithm, on
the other hand, offers the benefit of being a powerful search method which only
needs little information in order to perform an effective search in a rather large
and complicated search space. In contrast to most search algorithms which take
a single focus point, the genetic search progresses through a mass of such focus
points.

The genetic algorithm has the particularity of coding parameters of the search
space as binary strings of finite length. It uses an entire population of strings
which are randomly initialized and which will evolve to the next generation by
means of selection, crossover and mutation, namely specific genetic operators. The
fitness function acts as an assessment technique for the quality of the string-coded
solutions. Selection makes it possible for strings with a higher degree of fitness
to achieve a higher degree of probability in the next generation. The function
of Crossover is to merge two parents by swapping various parts of their strings,
beginning at an arbitrary crossover point. This accounts for new solutions which
possess strong qualities from both parents. In order to make sure that the genetic
algorithm does not converge too soon, mutation exploits new regions of the search
space and flips single bits in a separate string. The genetic algorithm is inclined
to choose the fittest solution by focusing the search around the areas which allow
access to fitter structures, which finally translate into more accurate solutions to
problems proposed.

It is not easy to uncover an optimal parameter setting which works for a given
problem. It is of uppermost importance here to determine such factors as ro-
bust parameter settings for population size, encoding, criteria used in selection,
probabilities with genetic operator and the assessment or fitness techniques for
normalization. It was this precise criterion, of searching for a ”successful com-
bination of parameters” which prompted us to consider some practical issues in
order to find an intelligent solution which involves genetic algorithms.

Next, we will focus on explaining which issues concerned us, how we developed
the solution of genetic algorithms and which were the steps we took in developing
our applications. In the end, we will comment on the results obtained and will



Smart applications using genetic algorithms 145

also debate on the choice of meta-parameters.

2 Case 1: ”Hello, World!” - A simple evolutionary
algorithm

In this section, we intend to evolve any string from random garbage. This
first example serves as evidence that there is nothing which can prevent us from
using the technique provided by the genetic algorithms for absolutely classical
and basic problems. As it is well known by many, the ”Hello, World!” program
is traditionally used in order to introduce novice programmers to a programming
language. As a consequence, we will evolve even the ”Hello, World!” string.

First, we shall define our starting point and end goal. We have an input file
”Input.txt” where we have the target, first let us consider a random string: ”loerm
ipsum dolor sit amet loerm ipsum dolor sit amet loerm ipsum dolor sit amet”. Our
evolutionary algorithm is implemented in C/C++ like a usual Console Application
and it will start with all symbols (32 to 122 in ASCII code), which we can view
as the DNA of our ”organism”. We define this entity like a ”candidate” with the
structure:

struct candidate
{

double f i t n e s s ;
vec tor <bool> dna ;

} ;

It will then randomly mutate some of the DNA, and judge the new mutated
string’s fitness. The way we determine fitness is probably the most difficult part
of any evolutionary algorithm. We considered:

{
double f i t v a l = 0 ;

for ( int i = 0 ; i < source . s i z e ( ) ; i++)
{

if ( source [ i ] != ta rg e t [ i ] )
f i t v a l ++;

}
f i t v a l = 1 − ( f i t v a l / ( double ) source . s i z e ( ) ) ;
return f i t v a l ;

}

Fortunately, there is an accessible option for achieving this with strings. Thus,
it is necessary to record the value of each character in the mutated string and
compare it to the same character in the target string. This process is called the
distance between two characters. Next, all noticed differences will be added up,
leading to a single value which is the fitness of the string. 0 is the perfect fitness
and this value indicates that both strings are the same, whereas a fitness of 1
means that a character is off by one. For example, the strings ”Hfllo” or ”Hdllo”
have a fitness of 1. Thus, the greater the fitness value, the weaker the fit is.

All the classical stages of genetic algorithms were implemented as ”standard”
[1, 2], and for the sake of simplification, we will only present the selection stage,
which uses as parameter an initial population of 100 candidates, which is a rank
number of 30 (values are obtained by means of multiple tests performed on values



146 Alexandra Băicoianu

and calibrations). This method returns the index of the chosen parent in view of
the selection for the next generation.

int s e l e c t i o n ( candidate ∗populat ion )
{

int t = ( rank number ∗( rank number + 1) ) / 2 ;
int p = rand between (0 , t ) , s = 0 ;
for ( int i = 0 ; i < rank number ; i++)
{

s += populat ion [ i ] . f i t n e s s ;
if ( s >= p)
{

return i ;
}

}
return 0 ;

}

Other parameters used in developing the other stages of the algorithm are:
”stop percentage = 1” the ”perfection” percentage chosen, ”mutation rate =
0.005” the mutation quotient, ”total fitness = 0” the initial value of fitness,
”crossover rate = 0.85” the crossover quotient.

An intermediary stage for the application is presented in Figure 1. It can be
noticed that in the 40th generation we already have some ”inferred” letters from
the string we have proposed. The fitness is calculated for every specific generation
and it represents the ”quality” of the specific generation of chromosomes. The end

Figure 1: 40th generation - An intermediary stage

of the algorithm is presented in Figure 2. It can be noticed that the required string
was entirely generated, and the fitness was balanced at the final iterations close
to value 1. The final execution time is of around 90 seconds. If we are to consider
the classical string ”Hello, World!”, the last generations from the evolution are
depicted in Figure 3, the execution time being of approximately 2 seconds in this
case.

We add the fact that each source implementation has unit tests to go along
with the source code. For the sake of next comparisons, we also keep track of the
number of generations and of the elapsed time.



Smart applications using genetic algorithms 147

Figure 2: The final iteration, generation 140

Figure 3: ”Hello, World!” string evolution, generation 19



148 Alexandra Băicoianu

3 Case 2: Genetic programming evolution of a target
given picture

The fact of having the basic structure of a genetic algorithm was a step forward
toward an even more challenging application: when receiving a ”target” image,
the algorithm should generate rectangles of different sizes, colors and degrees of
transparency, so that when overlapped they form an image which resembles as
much as possible the image received as input [4]. The first functional version
of the program was immediately generated, but it is quite obvious that this was
inefficient and poorly adjusted. When speaking about adjustment we mean both
the various constants specific to genetic algorithms, such as: PopulationSize, Mu-
tationRate, MutationSize, CrossoverRate and others, and to mutation methods,
crossover and calculation function of the fitness. The DNA of a given individual
(which is practically an image) from the entire population of a specific genera-
tion includes information about various coordinates, the color and transparency of
each rectangle which forms the specific individual, leading the starting image (the
1st generation) to look like in Figure 4. After 1000 generations (evolution which

Figure 4: Starting images - 1st generation

occurs after 10-12 seconds), the best individual from the entire population (of 200
individuals) looks like this (left) and holds as a target image (right), Figure 5. In

Figure 5: Images at 1000-nd generation

a left to right sequence : 20, 200, 1000, 10000, etc., see Figure 6.
The selection technique used (the best match for this algorithm) is called the

Roulette Wheel Selection Method [1, 5]. The DNA crossover in the two parents



Smart applications using genetic algorithms 149

Figure 6: Different stages

selected is accomplished by means of the Uniform Crossover method, which led
to the best results and converged much faster than the One-point or Multi-point
Crossover methods. For mutation we have chosen the easiest method, by means
of which each DNA rectangle was randomly moved, based on the MutationSize
and the MutationRate factors, independently from other rectangles (see ”mutate”
method implementation). For the fitness function, we have calculated the nor-
malized sum of the Euclidean distances between the color of every pixel form the
image generated and the color of the corresponding pixel from the target image
(see ”fitness” method implementation). Here, the most appropriate color space
proved to be not RGB but Lab [6], where the difference between the 2 colors
should represent the best the perception of the human eye.

vector<dreptunghi> mutate ( vector<dreptunghi> source )
{

double p = 0 ;
int cu l = 255 ∗ mutat ion s i ze , a l f a = mutat ion s i ze , coord x = w∗ mutat ion s i ze

, coord y = h∗ mutat i on s i z e ;
for ( int i = 0 ; i < source . s i z e ( ) ; i++)
{

p = ( double ) rand between (0 , 1000) ;
if ( mutat ion rate ∗ 1000.0 >= p)
{

dreptunghi drept = source [ i ] ;
drept . r = rand between (max( ( int ) drept . r − cul , 0) , min ( ( int )

drept . r + cul , 255) ) ;
/*
* the same for g, b

*/
drept . a = rand between ( ( int )max( drept . a − a l f a , 0 . 2 ) , ( int )min (

drept . b + a l f a , 1 . 0 ) ) ;
drept . pt1 . x = rand between (max( ( int ) drept . pt1 . x − coord x , 0) ,

min ( ( int ) drept . pt1 . x + coord x , w − 1) ) ;
drept . pt1 . y = rand between (max( ( int ) drept . pt1 . y − coord y , 0) ,

min ( ( int ) drept . pt1 . y + coord y , h − 1) ) ;
/*
* the same for drept.pt2.x, drept.pt2.y

*/
source [ i ] = drept ;

}
}
return source ;

}

double f i t n e s s ( vector<dreptunghi> source )
{

double f i t v a l = 0 ;
r ep r e s en t ( source ) ;
double dr , dg , db , d i s t ;
for ( int y = 0 ; y < h ; y++)
{

for ( int x = 0 ; x < w; x++)
{

imagine pxs = im [ y ] [ x ] , pxt = ta rg e t [ y ] [ x ] ;
dr = pxs . red − pxt . red ;
dg = pxs . green − pxt . green ;
db = pxs . blue − pxt . blue ;
d i s t = sq r t ( dr∗dr + db∗db + dg∗dg ) ;



150 Alexandra Băicoianu

f i t v a l += d i s t ;
}

}
f i t v a l = 1 .0 − ( f i t v a l / (442 . 0∗ ( double )w∗( double )h) ) ;
return f i t v a l ;

}

We add the fact that each source implementation has unit tests to go along
with the source code. All the calibrations of the parameters belong to the author,
the same for all the implementations. For genetic algorithms, finding a ”suit-
able” combination of parameters is making the all difference between a very good
solution and a moderate one. We used ”opencv-3.2.0-vc14” for the complete im-
plementation, the one with the representations of the images. The results that
we had on the pictures we named are really closed to the original pictures, thing
that can validate the meta-parameters we elect.

4 Case 3: A logic agent based on neural networks and
genetic algorithm for Pac-man game

Pac-man is a very convoluted game even if at first sight it does not seem so.
One of the reasons why the game was so popular is that it has many strategies
that can be used in order to maximize the score. In this section we attempt to
evolve a logic agent that uses a neural network provided with a beginner-level
set of information, such as distances to the nearest ghosts and food. A genetic
algorithm is used to balance the network’s weights. Our idea came from [3] where
we had the following entities:

• artificial neural network: 6 (input) - 10 (hidden layer) 1 (output/”decision
factor”);

• inputs: *the distance to the closest food instance, *the distance to the
closest special food, *the distance to the closest ghost, *the state of the
closest ghost {1,-1}, *the second closest ghost, *the ghost’s status - {1,-1};

• activation function : tanh;

• the weights of the artificial neural network are calculated with genetic algo-
rithms: *100 chromosomes, *50 generations, *mutation rate 0.1, *life span
10 (each entity is taking the control of the game 10 times), *death rate 20
(the number of the entity replaced each time at a new generation), *fitness
: average of the scores of the entity.

Our proposed method is with the following characteristics:

• artificial neural network: 4-8-1 (at each step we calculate the decision factor
for each of the 4 possible moves);

• inputs: * the distance to the closest food instance, * the distance to the
closest special food, * the state of the closest ghost, *the second closest ghost
(the distance to the ghosts are multiplied by (-1) if they were ”afraid”);



Smart applications using genetic algorithms 151

• activation function : tanh (here we tried with exponential function, but it
did not work well because the negative values are really important);

• the weights of the artificial neural network are calculated with genetic algo-
rithms: *200 chromosomes, *50 generations, *mutation rate 0.03, *crossover
rate 0.8 (80%), *fitness : (the score of one entity) , *we used elitism (we
kept the best entity from each generation), *for the selection of chromo-
somes that are chosen in the new generation, we used the Roulette Wheel
selection method [2, 1].

The implementation is in C/C++ language and it is a regular Console Ap-
plication project. The entities that are finishing the game during the learning
session are saved in a text file. The artificial neural network is distinguish throw
a function (output) that takes two parameters, the forts contains the inputs and
the second contains the weights. The activation function is tanh.

double output ( double ∗ i n t r a r i , double∗ponderi , const int ∗arh )
{

double ∗c ;
c=new double [ arh [ 1 ] ] ;
int p=0;
for ( int i =0; i<arh [ 1 ] ; i++){

double s =0.0;
for ( int k=0;k<arh [ 0 ] ; k++,p++)
{

s+=i n t r a r i [ k ]∗ ponder i [ i+k∗arh [ 1 ] ] ;
}
c [ i ]=tanh ( s /4) ;

}

double s =0.0;
for ( int i =0; i<arh [ 1 ] ; i++,p++)

s+=c [ i ]∗ ponder i [ p ] ;

return tanh ( s /4) ;
}

The entities are represented like the lines of a matrix and in the crossover
method the proper weights of an input are changed between the two chromosomes,
only if the cross over probability is corresponding. In the ”pacmanAlone” method,
we choose the right position for Pac-man (we compare the output for all possible
moves: up, down, left, right).

void pacmanAlone ( double ∗&c , const int ∗arh )
{

double sus=−2,dr=−2, j o s=−2, s t=−2;
if (mat [ pacman . poz l i n −1] [ pacman . poz co l ]>=300)
{

int l i n=pacman . poz l i n −1;
int co l=pacman . poz co l ;
sus=f c t c a l c u l ( c , l i n , co l , arh ) ;

}
/*
* the same for the other possible moves

*/
double max=sus ;
if ( dr>max) max=dr ;
if ( jos>max) max=jo s ;
if ( st>max) max=st ;

if (max==sus && sus !=−2)
{

pacman . poz l i n −=1;
pacman . g r a f 1=’V’ ;
pacman . g r a f 2 =179;

}
else

if (max==dr && dr !=−2)
{



152 Alexandra Băicoianu

pacman . poz co l+=1;
pacman . g r a f 1 =60;
pacman . g r a f 2 =45;
}

else
/*
* ...

* the same for the other possible moves (right , left , down)

*/
}

In first generation the agent does not seem to follow a certain pattern, it often
gets stuck in a position, either in a corner or even in the middle of the maze.
This error of movement happens because an input influence is too big. From the
fifth generation the neural network starts to balance and the agent is now fluently
moving, even if he still does not know how to maximize the score. These are the
steps that can be observed and which the agent is trying to follow:

• First he is learning how to eat the energizer. At this point he is targeting
the special food one after another, but unfortunately he will die after there
are no more energizers.

• The second step he learns is how to avoid the ghosts that are in chase mode.
The combination between targeting special food and running from ghosts
gives the agent a medium score of 200 points. Still not enough to finish the
game.

• In the end he will learn how to look for simple food and how to eat frightened
ghosts if they are nearby. At this point Pac-man will rather sacrifice a life
in order to get more points than run away to survive.

Optimal parameters for the genetic algorithm are a population of 50 individuals
and a evolution process over 50 generations (minimum). At the 20-th generation,
the medium score is approximately 250 points, and it will continue to rise to
about 370 points at the 50-th generation. Because of the non-deterministic way
the frightened ghosts run (they run to a random tile), an individual that managed
to finish a game in the evolution process, may not finish the game a second time.

Each source implementation has unit tests to go along with the source code.
The game has several options like: ”play”, ”play best”, ”learning session” (a stage
from ”learning session” in Figure 7). The ”play best” variant is the one that is
reading all the chromosomes that finished the game, and the ”play” variant is the
one that is finishing after the first one, ”learning session” is the one for learning
for the agent.

5 Conclusions

Using all the information above, we can conclude that genetic algorithms are
systems based on the supposed functioning mechanisms of life. They are very
different from other classical optimization algorithms, because they use e encoding
of parameters, instead of parameters themselves, they use fitness functions for
optimization and probabilistic transactions functions instead of deterministic ones.



Smart applications using genetic algorithms 153

Figure 7: Pac-man in learning session

It is essential, though, to know that the operation of similar algorithms does
not guarantee success. Nevertheless, such algorithms have proved to be of great
efficiency and are being currently used in areas of interest such as the stock market,
the organization of production or the programming process of assembly robots
used in the automotive industry.

Since the topic of genetic algorithms can be applied in so many actual and
diverse fields of knowledge, our aim is that the applications proposed in this article
be integrated in a common framework which should deal with the intelligent
resolution of a set of selected problems. Here, we mainly think about Rubik
puzzle, 2D or 3D cutting/packing problems, single and multi-parameter problems,
single and multi-objective problems, as well as some new problems of the resource
constraint project scheduling type or the generation of a school timetable, based
on genetic algorithms.

Characteristics such as the capacity of the algorithm to explore and exploit
synchronously an increasing amount of theoretical rationale as well as the suc-
cessful application to problems encountered in the real world strengthens the
conclusion the genetic algorithms represents a powerful optimization technique.

References

[1] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Pro-
grams, Springer-Verlag, 1998.

[2] Mitchell, M., An Introduction to Genetic Algorithms (Complex Adaptive Sys-
tems) Reprint Edition, The MIT Press, 1998.



154 Alexandra Băicoianu

[3] Nicolescu, D., Evolving a Minimum Input Neural Network Based Controller
for the Pac-Man Agent, Annals of the University of Craiova, Mathematics
and Computer Science Series, Volume 37(1), 2010, Pages 76-85, ISSN: 1223-
6934.

[4] Johansson, R., available at ***, https://rogerjohansson.blog/
2008/12/07/genetic-programming-evolution-of-mona-lisa.

[5] Russel, S., Norvig, P., Artificial Intelligence. A Modern Approach, Prentice
Hall, 3rd edition, 2010.

[6] ***, https://en.wikipedia.org/wiki/Lab_color_space


