
Bulletin of the Transilvania University of Braşov • Vol 10(59), No. 2 - 2017
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Abstract

In this paper, the inverse spectral problem for Sturm-Liouville opera-
tor with eigenparameter dependent boundary conditions is studied and also
uniqueness theorems are proved.
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1 Introduction

The greatest success in spectral theory in general, in inverse spectral problems
has been achieved for the Sturm-Liouville operator Ly = −y′′ + q(x)y which is
also called the one dimensional Schrödinger operator. The first studies on the
spectral theory of such operators were performed (see Refs. [1− 5]) .

Fulton (see Refs. [10]) studied the Sturm-Liouville problem with common con-
ditions and got the eigenfunction expansion and asymptotic estimates of eigenval-
ues. Binding, Browne and Seddighi (see Refs. [7]) considered the Sturm-Liouville
operator l satisfying

ly ≡ −
(
py′
)′

+ qy = λry

with boundary conditions dependent on the spectral parameter. They ob-
tained oscillation and comparison results as well as the asymptotic estimates of
eigenvalues, which can be considered as an extension of Fulton’s results. Browne
and Sleeman (see Refs. [8]) searched the inverse nodal problem for the Sturm-
Liouville problem with common conditions and showed that a dense set of nodal
points of eigenfunctions for this problem is sufficient to determine the potential
q(x) and coefficient h of the boundary condition. Guliyev [12] discussed the reg-
ularized trace problem for the Sturm-Liouville equation with spectral parameter
in the boundary conditions and obtained the trace formulae. Recently, operators
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with boundary conditions dependent on the spectral parameter have been studied
by authors (see Refs. [6− 18]) .

Mochizuki and Trooshin (see Refs. [19, 20]) discussed the inverse problem for
interior spectral data of the Sturm-Liouville and Dirac operator and showed that
the potential function can be uniquely determined by a set of eigenvalues of
eigenfunctions at some internal point and one spectrum. Using Mochizuki and
Trooshin’s method, Yang (see Refs. [21− 24]) investigated the interior inverse
problem for the Sturm-Liouville operator with discontinuous conditions and with
eigenparameter-dependent boundary conditions, differential pencils and Dirac op-
erator with eigenparameter-dependent boundary conditions on the finite inter-
val [a, b] . However, we are motivated by interior inverse spectral problems for
Sturm Liouville operators with spectral parameter in boundary conditions. In-
terior inverse problems for operators have been studied recently by the authors
(see Refs. [25− 30]).

As far as we know, interior inverse spectral problems for Sturm Liouville op-
erators with spectral parameter in boundary conditions have not been considered
yet.

The main goal of the present work is to study the inverse problem of recon-
structing the Sturm-Liouville with eigenparameter dependent boundary condi-
tions on the basis of spectral data of a kind: one spectrum and some information
on eigenfunctions at the internal point. The techniques used here will be adopted
from ( see Refs. [19, 31, 32]) .

Consider the following Sturm-Liouville operator with eigenparameter depen-
dent boundary conditions L satisfying

Ly ≡ −y′′ + q(x)y = λy, x ∈ [0, 1] (1.1)

with boundary conditions,

y(0, λ) cosα+ y′(0, λ) sinα = 0, α 6= 0 (1.2)

(zλ+ e) y(1, λ)− (cλ+ d) y′(1, λ) = 0, (1.3)

where zd − ec > 0, c 6= 0, q(x) (potential function) is a real-valued function,
q(x) ∈ L2 (0, 1) and λ spectral parameter. The operator L is self adjoint on the
L2 (0, 1) and has a discrete spectrum {λn} .

Let us introduce the second perturbed Sturm-Liouville operator with eigen-
parameter dependent boundary conditions L̃ satisfying

L̃ỹ ≡ −ỹ′′ + q̃(x)ỹ = λỹ, x ∈ [0, 1] (1.4)

ỹ(0, λ) cos α̃+ ỹ′(0, λ) sin α̃ = 0, α̃ 6= 0 (1.5)

(z̃λ+ ẽ) y(1, λ)−
(
c̃λ+ d̃

)
y′(1, λ) = 0, (1.6)

where q̃(x) is a real-valued function and q̃(x) ∈ L2 (0, 1). The operator L̃ is self

adjoint on the L2 (0, 1) and has a discrete spectrum
{
λ̃n

}
.
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2 Main results

The spectrum of the (1.1)-(1.3) consist of eigenvalue λn, n ∈ N, and the
sequence {λn, n ∈ N} satisfies asymptotic formula (see Refs. [7, 32]) :

λn = (n− 1)2 π2 − 2
z

c
− 2 cotα+

1∫
0

q(x)dx+ o

(
1

n

)
. (2.1)

Let y(x, λ) be the solution of equation Ly = λy satisfying the initial conditions
y(0, λ) = sinα and y′(0, λ) = − cosα, then

y (x, λ) = sinα

cos
(√

λx
)

+

x∫
0

K (x, t) cos
(√

λt
)
dt

 ,
where the kernel K (x, t) is the solution of the following equation

∂2K (x, t)

∂x2
− ∂2K (x, t)

∂t2
− q(x)K (x, t) = 0.

When b = 1
2 , we get the following uniqueness Theorem 2.1.

Theorem 2.1. If for every n ∈ N and e
c = ẽ

c̃ and d
c = d̃

c̃ , we have

λn = λ̃n and
y′n(12 , λn)

yn(12 , λn)
=
ỹ′n(12 , λ̃n)

ỹn(12 , λ̃n)
, (2.2)

then
q(x) = q̃(x) a.e on the interval x ∈ [0, 1] ,

and

α = α̃ and
z

c
=
z̃

c̃
.

In the case b 6= 1
2 , the uniqueness theorem of q(x) can be proved if we require

the knowledge of a part of the second spectrum.
Let {m(n)} be a sequence of natural numbers

m(n) =
n

σ
(1 + εn), 0 < σ ≤ 1, εn → 0. (2.3)

Lemma 2.1. (1) Let {m(n)} be a sequence of natural numbers satisfying (2.3)
and b ∈ (0, 12) are so chosen that σ > 2b. If for any n ∈ N and e

c = ẽ
c̃ ,

λm(n) = λ̃m(n),
y′m(n)(b, λm(n))

ym(n)(b, λm(n))
=
ỹ′m(n)(b, λ̃m(n))

ỹm(n)(b, λ̃m(n))
(2.4)

then
q(x) = q̃(x) a.e on the interval [0, b] ,

and
α = α̃.
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(2) Let {m(n)} be a sequence of natural numbers satisfying (2.3) and b ∈ (12 , 1)

are so chosen that σ > 2− 2b. If for any n ∈ N and d
c = d̃

c̃ ,

λm(n) = λ̃m(n),
y′m(n)(b, λm(n))

ym(n)(b, λm(n))
=
ỹ′m(n)(b, λ̃m(n))

ỹm(n)(b, λ̃m(n))
(2.5)

then

q(x) = q̃(x) a.e on the interval [b, 1] ,

and
z

c
=
z̃

c̃
.

Let {l(n)}n∈N and {r(n)}n∈N be a sequence of natural numbers such that

l(n) =
n

σ1
(1 + ε1,n), 0 < σ1 ≤ 1, ε1,n → 0, (2.6)

r(n) =
n

σ2
(1 + ε2,n), 0 < σ2 ≤ 1, ε2,n → 0, (2.7)

and let µn be the eigenvalues of the problem (1.1), (1.2) and (2.8) and µ̃n be the
eigenvalues of the problem (1.4), (1.5) and (2.8)

(a1λ+ e1) y(1, λ)− (c1λ+ d1) y
′(1, λ) = 0, (2.8)

where a1d1 − e1c1 > 0, c1 6= 0.

Using Mochizuki and Trooshin’s method from Theorem 2.1 and Lemma 2.1,
we will prove that the following Theorem 2.2 holds.

Theorem 2.2. Let {l(n)} and {r(n)} be a sequence of natural numbers satisfying
(2.6) and (2.7), and b ∈

(
1
2 , 1
)

are so chosen that σ1 > 2b− 1, σ2 > 2− 2b. If for

any n ∈ N,dc = d̃
c̃ and e

c = ẽ
c̃ , we have

λn = λ̃n, µl(n) = µ̃l(n) and
y′r(n)(b, λr(n))

yr(n)(b, λr(n))
=
ỹ′r(n)(b, λ̃r(n))

ỹr(n)(b, λ̃r(n))
, (2.9)

then

q(x) = q̃(x) a.e on the interval [0, 1]

and

α = α̃ and
z

c
=
z̃

c̃
.
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3 Proof of the main results

Let y (x, λ) be the solution to equation

−y′′(x) + q(x)y(x) = λy(x) (3.1)

with the initial conditions y(0, λ) = sinα and y′(0, λ) = − cosα, then we get (see
Refs. [32]),

y (x, λ) = sinα

cos
(√

λx
)

+

x∫
0

K (x, t) cos
(√

λt
)
dt


= sinα cos

(√
λx
)

+O

(
eτx√
λ

)
, (3.2)

where τ =
∣∣∣Im√λ∣∣∣ .

Moreover, we have

y′ (x, λ) = sinα

−√λ sin
√
λx+K (x, x) cos

(√
λx
)

+

x∫
0

K ′ (x, t) cos
(√

λt
)
dt


=

(
−
√
λ sinα

)
sin
(√

λx
)

+O (eτx) .

Simple calculations show that the characteristics equation of problem (1.1) can
be reduced to ϕ (λ) = (zλ+ e) y(1, λ)− (cλ+ d) y′(1, λ) = 0, where

ϕ (λ) = c sin zλ
√
λ sin

√
λ+O (λeτ ) . (3.3)

Similarly, for the solution ỹ (x, λ) of equation

−ỹ′′(x) + q̃(x)ỹ(x) = λỹ(x) (3.4)

with the initial conditions ỹ(0, λ) = sin α̃ and ỹ′(0, λ) = − cos α̃, we have the
following analogous results:

ỹ (x, λ) = sin α̃

cos
(√

λx
)

+

x∫
0

K̃ (x, t) cos
(√

λt
)
dt

 ,
= sin α̃ cos

(√
λx
)

+O

(
eτx√
λ

)
, (3.5)

and
ỹ′ (x, λ) =

(
−
√
λ sin α̃

)
sin
(√

λx
)

+O (eτx) .

The characteristic equation of problem (1.4)-(1.6) can be reduced ϕ̃ (λ) =

(z̃λ+ ẽ) ỹ(1, λ)−
(
c̃λ+ d̃

)
ỹ′(1, λ) = 0, where

ϕ̃ (λ) = c̃ sin z̃λ
√
λ sin

√
λ+O (λeτ ) .
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The eigenvalue set {λn, n ∈ N} of L coincides with zeros of ϕ (λ) .
Next, using equations (3.2) and (3.5), we obtain that

y (x, λ) ỹ (x, λ) =
sinα sin α̃

2

1 + cos
(

2
√
λx
)

+

x∫
0

K̂ (x, τ) cos
(

2
√
λτ
)
dτ


(3.6)

where

1

2
K̂ (x, τ) = K (x, x− 2τ) + K̃ (x, x− 2τ)

+

x∫
−x+2τ

K (x, s) K̃ (x, s− 2τ) ds

+

x−2τ∫
−x

K (x, s) K̃ (x, s+ 2τ) ds.

Proof of Theorem 2.1 If we multiply (3.1) by ỹ (x, λ) and (3.4) by y (x, λ)
respectively, then subtract them and after integrating on

[
0, 12
]
, we obtain

[
ỹ(x, λ)y′(x, λ)− y(x, λ)ỹ′(x, λ)

]
|
1
2
0 +

1
2∫

0

[q̃ (x)− q (x)] y (x, λ) ỹ(x, λ)dx = 0.

(3.7)
Together with the initial conditions at 0, then it yields[

ỹ(
1

2
, λ)y′(

1

2
, λ)− y(

1

2
, λ)ỹ′(

1

2
, λ)

]
+ sin (α̃− α)

+

1
2∫

0

[q̃ (x)− q (x)] y (x, λ) ỹ(x, λ)dx = 0. (3.8)

Denote
Q (x) = q̃ (x)− q (x) . (3.9)

For λ = λn, by given assumption it follows that[
ỹn(

1

2
, λ̃n)y′n(

1

2
, λn)− yn(

1

2
, λn)ỹ′n(

1

2
, λ̃n)

]
= 0.

If we substitute (3.6) into (3.8), then we have

0 = −2 (cot α̃− cotα) +

1
2∫

0

Q (x) dx+

1
2∫

0

Q (x) cos
(

2
√
λx
)
dx

+

1
2∫

0

Q (x)

 x∫
0

K̂ (x, τ) cos
(

2
√
λτ
)
dτ

 dx. (3.10)



Interior inverse problem for Sturm-Liouville operator 135

Before we continue the proof of this theorem, we should write the following
Lemma.

Lemma 3.1. Let (a, b) be a finite interval and f(x) ∈ L (a, b) . Then

lim
|λ|→∞

b∫
a

f(x) cosλxdx = 0.

This Lemma is well known and are usually called the Riemann-Lebesgue Lemmas.
(see Refs. [34]).

By using of the Riemann-Lebesque Lemma letting λ = λn → +∞ in the
equation (3.10), then we obtain

−2 (cot α̃− cotα) +

1
2∫

0

Q (x) dx = 0. (3.11)

Denote

H (λ) =

1
2∫

0

Q (x) cos
(

2
√
λx
)
dx+

1
2∫

0

Q (x)

 x∫
0

K̂ (x, τ) cos
(

2
√
λτ
)
dτ

 dx.
(3.12)

By given assumption, (3.10) and (3.11) we have

H (λn) = 0.

From (3.12), we have for all complex λ

|H (λ)| ≤ C1e
τ , (3.13)

for some positive constant C1. Define

Φ (λ) =
H (λ)

ϕ (λ)
, (3.14)

which is the entire function from the above arguments and it follows from (3.3)
and (3.13) that

Φ (λ) = O (1)

for |λ| large enough. Thus, by Liouville’s theorem, we obtain for all λ

Φ (λ) = C.

where C is constant.
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Let us show that the constant C = 0. We can write the equation H (λ) =
Cϕ (λ) in the form

1
2∫

0

Q (x) cos
(

2
√
λx
)
dx+

1
2∫

0

Q (x)

 x∫
0

K̂ (x, τ) cos
(

2
√
λτ
)
dτ

 dx
= C

[
c sinαλ

√
λ sin

√
λ+O (λeτ )

]
that is

1

c sinαλ
√
λ


1
2∫

0

Q (x) cos
(

2
√
λx
)
dx

+

1
2∫

0

Q (x)

 x∫
0

K̂ (x, τ) cos
(

2
√
λτ
)
dτ

 dx


= C

[
sin
√
λ+O

(
1√
λ
eτ
)]

Since the limit of the left side of the above equality is zero as real λ → ∞, we
obtain that C = 0. Thus

H (λ) = 0 for all λ.

Using the change of variables, after some reordering, it can be written as

1
2∫

0

cos
(

2
√
λτ
)Q(τ) +

1
2∫
τ

Q(x)K̂ (x, τ) dτ

 dx = 0 (3.15)

which implies that from the completeness of the functions cos
(

2
√
λτ
)

, λ ∈ R in

L2

(
0, 12
)

Q(τ) +

1
2∫
τ

Q(x)K̂ (x, τ) dx = 0, 0 < τ <
1

2
. (3.16)

But this equation is a homogeneous Volterra integral equation and has only the
zero solution. Thus Q (x) = 0 for almost everywhere on 0 < x < 1

2 , that is
q (x) = q̃ (x) for almost everywhere x ∈

[
0, 12
]
.

From (3.11) and Q (x) = 0, the equality α = α̃.

We can prove q (x) = q̃ (x) almost everywhere on
[
1
2 , 1
]

similarly. Then we

obtain q (x) = q̃ (x) almost everywhere on
[
1
2 , 1
]

and z
c = z̃

c̃ .

Therefore, Theorem 2.1 is proved.

Next, we show that Lemma 2.1 holds.
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Proof of Lemma 2.1. (1) Let y (x, λ) be the solution to

−y′′(x) + q(x)y(x) = λy(x) (3.17)

with the initial conditions y(0, λ) = sinα and y′(0, λ) = − cosα. Similarly let
ỹ (x, λ) be the solution of

−ỹ′′(x) + q̃(x)ỹ(x) = λỹ(x) (3.18)

with the initial conditions ỹ(0, λ) = sin α̃ and ỹ′(0, λ) = − cos α̃.

If we multiply (3.17) by ỹ (x, λ) and (3.18) by y (x, λ) , and subtract after
integrating on [0, b] , we obtain

G(λ) =

b∫
0

[q̃ (x)− q (x)] y (x, λ) ỹ(x, λ)dx+ sin (α̃− α)

=
[
y(x, λ)ỹ′(x, λ)− ỹ(x, λ)y′(x, λ)

]
|x=b (3.19)

From the assumption

y′m(n)(b, λm(n))

ym(n)(b, λm(n))
=
ỹ′m(n)(b, λm(n))

ỹm(n)(b, λm(n))
,

it follows that,

G(λm(n)) = 0, n ∈ N.

Next, we will show that G(λ) = 0 on the whole complex plane.

From (3.19) we see that the entire function G(λ) is a function of exponential
type ≤ 2b. One has

|G (λ)| ≤ C2e
2br|sin θ| (3.20)

for some positive constant C2.

Let us define the indicator of function G(λ) by the formula

h(θ) = lim
r→∞

sup
ln
∣∣G(reiθ)

∣∣
r

. (3.21)

Since |Imλ| = r |sin θ| , θ = arg λ from (3.20) and (3.21) it follows that

h(θ) ≤ 2b |sin θ| . (3.22)

According to a known property (see Refs. [33]) the set of zeros of every entire
function of the exponential type, not identically zero, satisfies the inequality:

lim
r→∞

inf
n(r)

r
≤ 1

2π

2π∫
0

h(θ)dθ (3.23)
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where n(r) is the number of zeros of G(λ) in the disk |λ| ≤ r. From (3.22), one
gets

1

2π

2π∫
0

h(θ)dθ ≤ b

π

2π∫
0

|sin θ| dθ =
4b

π
. (3.24)

From the assumption (2.3) and the known asymptotic expression (2.1) of the
eigenvalues

√
λn we obtain;

n(r) ≥ 2
∑

π(n−1)
σ [1+O( 1

n)]<r

1 =
2

π
σr(1 + o (1)), r →∞. (3.25)

For the case σ > 2b,

lim
r→∞

n(r)

r
≥ 2

π
σ >

4b

π
= 2b

2π∫
0

|sin θ| dθ ≥ 1

2π

2π∫
0

h(θ)dθ. (3.26)

The inequalities (3.23) and (3.26) imply that G(λ) = 0 on the whole λ plane. As
we already mentioned, if G(λ) = 0, then the conclusion of Lemma 2.1 is true.

We can prove q (x) = q̃ (x) almost everywhere on [b, 1] similarly.
This completes the proof of Lemma 2.1.
Now we prove that Theorem 2.2 is valid.
Proof of Theorem 2.2. Since

λr(n) = λ̃r(n),
y′r(n)(b, λr(n))

yr(n)(b, λr(n))
=
ỹ′r(n)(b, λr(n))

ỹr(n)(b, λr(n))

where {r(n)} satisfies (2.7) and σ2 > 2 − 2b, by Lemma 2.1, we obtain that
q (x) = q̃ (x) a.e. on [b, 1] and z

c = z̃
c̃ .

Thus, we only need to prove that q (x) = q̃ (x) a.e. on [0, b] and α = α̃.
Similar to (3.19), in the case b ∈

(
1
2 , 1
)
, we have

G(λ) =

b∫
0

[q̃ (x)− q (x)] y (x, λ) ỹ(x, λ)dx+ sin (α̃− α)

=
[
y(x, λ)ỹ′(x, λ)− ỹ(x, λ)y′(x, λ)

]
|x=b (3.27)

Let us show that G(λ) = 0 on the whole λ plane.
Eigenfunctions yn(x) and ỹn(x) satisfy the same boundary condition at 1 and

q (x) = q̃ (x) for almost everywhere on [b, 1] . This means that

yn(x) = ξnỹn(x) (3.28)

on [b, 1] for any n ∈ N where ξn are constants.
Let ρn =

√
λn and sn =

√
µn . From (3.27) and (3.28) we obtain

G(ρn) = 0, n ∈ N
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and in the same way that
G(sln) = 0, n ∈ N.

Note that eigenvalues ρn and sn possess the asymptotic expression (2.1). We
can count the number of ρn and sn located inside radius r, we get 1+ 2

π r
[
1 +O( 1

n)
]

of λn’s and 1 + 2
π rσ1

[
1 +O( 1

n)
]

of µn’s. Thus, the total number of ρn’s and sn’s

n(r) = 2 +
2

π

[
r(σ1 + 1) +O(

1

n
)

]
and

lim
r→∞

n(r)

r
=

2

π
(σ1 + 1).

Repeating the last part in the proof of Lemma 2.1, we can show that G(λ) = 0
on the whole λ-plane. This implies that q (x) = q̃ (x) a.e. on [0, b] consequently
q (x) = q̃ (x) a.e. on [0, π] and α = α̃.

Hence the proof of Theorem 2.2 is completed.
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