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Abstract

In this paper, the inverse spectral problem for Sturm-Liouville opera-
tor with eigenparameter dependent boundary conditions is studied and also
uniqueness theorems are proved.
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1 Introduction

The greatest success in spectral theory in general, in inverse spectral problems
has been achieved for the Sturm-Liouville operator Ly = —y” + ¢(x)y which is
also called the one dimensional Schrodinger operator. The first studies on the
spectral theory of such operators were performed (see Refs. [1 — 5]).

Fulton (see Refs. [10]) studied the Sturm-Liouville problem with common con-
ditions and got the eigenfunction expansion and asymptotic estimates of eigenval-
ues. Binding, Browne and Seddighi (see Refs. [7]) considered the Sturm-Liouville
operator [ satisfying

ly=— () +aqy = Ay

with boundary conditions dependent on the spectral parameter. They ob-
tained oscillation and comparison results as well as the asymptotic estimates of
eigenvalues, which can be considered as an extension of Fulton’s results. Browne
and Sleeman (see Refs. [8]) searched the inverse nodal problem for the Sturm-
Liouville problem with common conditions and showed that a dense set of nodal
points of eigenfunctions for this problem is sufficient to determine the potential
q(z) and coefficient h of the boundary condition. Guliyev [12] discussed the reg-
ularized trace problem for the Sturm-Liouville equation with spectral parameter
in the boundary conditions and obtained the trace formulae. Recently, operators

'Department of Mathematics, Faculty of Science and Art, Erzincan University, Erzincan,
24100, Turkey, e-mail: murat_sat24@hotmail.com



130 Murat Sat

with boundary conditions dependent on the spectral parameter have been studied
by authors (see Refs. [6 — 18]).

Mochizuki and Trooshin (see Refs. [19,20]) discussed the inverse problem for
interior spectral data of the Sturm-Liouville and Dirac operator and showed that
the potential function can be uniquely determined by a set of eigenvalues of
eigenfunctions at some internal point and one spectrum. Using Mochizuki and
Trooshin’s method, Yang (see Refs. [21 — 24]) investigated the interior inverse
problem for the Sturm-Liouville operator with discontinuous conditions and with
eigenparameter-dependent boundary conditions, differential pencils and Dirac op-
erator with eigenparameter-dependent boundary conditions on the finite inter-
val [a,b]. However, we are motivated by interior inverse spectral problems for
Sturm Liouville operators with spectral parameter in boundary conditions. In-
terior inverse problems for operators have been studied recently by the authors
(see Refs. [25 — 30]).

As far as we know, interior inverse spectral problems for Sturm Liouville op-
erators with spectral parameter in boundary conditions have not been considered
yet.

The main goal of the present work is to study the inverse problem of recon-
structing the Sturm-Liouville with eigenparameter dependent boundary condi-
tions on the basis of spectral data of a kind: one spectrum and some information
on eigenfunctions at the internal point. The techniques used here will be adopted
from ( see Refs. [19,31,32]).

Consider the following Sturm-Liouville operator with eigenparameter depen-
dent boundary conditions L satisfying

Ly=—y"+q(@)y =Xy, z€[0,1] (1.1)
with boundary conditions,
y(0,\) cosa + ¢/ (0, \)sina =0, a # 0 (1.2)

(A +e) y(1,A) — (A +d)y/'(1, ) =0, (1.3)

where zd —ec > 0, ¢ # 0, g(x) (potential function) is a real-valued function,
q(z) € L2(0,1) and A spectral parameter. The operator L is self adjoint on the
L5 (0,1) and has a discrete spectrum {\,} .

Let us introduce the second perturbed Sturm-Liouville operator with eigen-
parameter dependent boundary conditions L satisfying

Ly=—§"+q@)y=Xj, =€l0,1] (1.4)
7(0,\) cosa + 7' (0,\)sina =0, a #0 (1.5)
(A +8) y(1, ) — (a+§)y'(1,A) —0, (1.6)

where ¢(z) is a real-valued function and g(x) € Lo . The operator L is self

(0,1)
adjoint on the Lo (0,1) and has a discrete spectrum {Xn} .
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2 Main results

The spectrum of the (1.1)-(1.3) consist of eigenvalue \,, n € N, and the
sequence {A,,n € N} satisfies asymptotic formula (see Refs. [7, 32])

1
)\n:(n—l)27r2—22—2cota+/q d:c—i—o( ) (2.1)
C
0

Let y(z, A) be the solution of equation Ly = Ay satisfying the initial conditions
y(0,\) = sina and 4/(0, \) = — cos a, then

(x,\) =sina |cos (\f)\x> +/xK(3:,t) cos (ﬁt) dt| ,
0

where the kernel K (z,t) is the solution of the following equation
0’K (x,t)

B 0’K (z,1)
Ox?

52 q(z)K (z,t) = 0.

When b = 1, w

e get the following uniqueness Theorem 2.1
Theorem 2.1. If for every n € N and ¢

=< and ¢ =2, we have
C (& (&

N (3 An v (5 Xn
An = A\ and yn(? ) = fyvn(f’~ ), (2.2)
yn(ﬁ’)‘”) yn(§’)\n)
then
q(z) = q(x) a.e on the interval z € [0,1]
and

~ z z
a=oaand — = =

c c
In the case b # %, i

the uniqueness theorem of ¢(z) can be proved if we require
the knowledge of a part of the second spectrum

Let {m(n)} be a sequence of natural numbers

m(n) = —(1+¢en), 0 <o <1len =0 (2.3)
o
Lemma 2.1.

(1) Let {m(n)} be a sequence of natural numbers satisfying (2.3)
and b € (0, %) are so chosen that o > 2b. If for any n € N and & = &,

Yn() (b Am()) 7 A

Yrn(m) (05 A
then
q(x) = q(z) a.e on the interval [0, D]
and
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(2) Let {m(n)} be a sequence of natural numbers satisfying (2.3) and b € (3, 1)
—d

c?

d
are so chosen that o > 2 —2b. If for any n € N and

then

and

Q{\ ™Y

Let {l(n)}, ey and {r(n)}, cy be a sequence of natural numbers such that

i(n) = (1 +ein), 0<o1<len—0, (2.6)
01

r(n) = i (1 + 52,11)7 0<og < 1,62@ — 0, (27)
02

and let y, be the eigenvalues of the problem (1.1), (1.2) and (2.8) and i, be the
eigenvalues of the problem (1.4), (1.5) and (2.8)

(A +e1)y(1,\) — (et +d1) v/ (1,\) =0, (2.8)

where ai1d; —ejc; >0, ¢1 # 0.
Using Mochizuki and Trooshin’s method from Theorem 2.1 and Lemma 2.1,
we will prove that the following Theorem 2.2 holds.

Theorem 2.2. Let {l(n)} and {r(n)} be a sequence of natural numbers satisfying
(2.6) and (2.7), and b € (3,1) are so chosen that oy > 2b— 1,05 > 2 — 2b. If for

—d
—c

any n € N,g and £ = £, we have

- Vi 0 X)) Ty (B Ao
An = Any Hhi(n) = Hi(n) and ( )(b 5 ) = N( 1 o )), (2.9)
yr(n)( ’ r(n)) yr(n)(b7 )\r(n))

then
q(z) = q(z) a.e on the interval [0,1]

and

Ok.\ )

- z
a=aoa and — =
c



Interior inverse problem for Sturm-Liouville operator 133

3 Proof of the main results

Let y (z, A) be the solution to equation

=y (z) + q(z)y(z) = Ay(z) (3.1)

with the initial conditions y(0,\) = sina and y'(0, A) = — cos a, then we get (see
Refs. [32]),

y(x,\) = sina {cos (ﬁx) + /xK (x,t) cos (\F)\t) dt]
0

— sinacos (ﬁx) +0 (f;;) , (3.2)

where 7 = ’Imﬁ’ .
Moreover, we have

xT

Y (z,\) = sina |—VAsinV Az + K (z,z) cos (ﬁm) + /K' (z,t) cos (\ﬂt) dt
0

= (—ﬁsin a) sin (\5@) +0 (™).

Simple calculations show that the characteristics equation of problem (1.1) can
be reduced to ¢ (A\) = (zA +€) y(1,A) — (cA+d)y'(1,A) = 0, where

@ (A) = csin z2AVAsin VA + O (Ae™) . (3.3)
Similarly, for the solution y (x, A) of equation
—7"(2) + q(2)y(x) = Aj() (3.4)
with the initial conditions y(0,\) = sina and §'(0,\) = —cosa, we have the
following analogous results:

y(z,\) = sina |cos (\53&) —i—/zf((m,t) cos (\[\t) dt| ,
0

= sindcos (VAz) +0 (f&) , (3.5)

and

7 (2, ) = (—\asin 62) sin (\f)@) + 0O (e™).

The characteristic equation of problem (1.4)-(1.6) can be reduced ¢ (\) =
GA+) (1, \) — ('5A + Ef) 7(1,)) = 0, where

@ (\) = EsinZ2AVAsin VA + O (Ae”).
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The eigenvalue set {\,,n € N} of L coincides with zeros of ¢ ().
Next, using equations (3.2) and (3.5), we obtain that

y(z, Ny (z,\) = w 1+ cos (2\5@) + /IA( (x,7) cos (2\57) dr
0
(3.6)

where
K(z,7) = K(z,2—27)+K (z,2 — 27)
+ / K (z,5) K (z,5 — 27) ds
—x+27

x—2T

+ / K (z,5) K (z,5+ 27) ds.

Proof of Theorem 2.1 If we multiply (3.1) by y (x,\) and (3.4) by y (z, \)

respectively, then subtract them and after integrating on [O, %] , we obtain

N

[?7(‘/5’ )‘)y/(xv >‘) - y(q:, )‘)g/(xv A)] |§ +/ [67(55) - q (x)} Yy (x7 )‘) g(x, )\)dx =0.

0
(3.7)
Together with the initial conditions at 0, then it yields
1,1 1. 1 s
(G (5 2) = 45 V7 (5 0] +sin @ -
1
2
+ [ @) - 0@y @0 Tl Ndo =0 (38)
0
Denote
Q(z)=q(x) —q(x). (3.9)

For A = \,,, by given assumption it follows that

1 ~ 1 1 1 ~
~n a5 )\n (= )\n — Yn *aAn T4 *a>\n = U
7 R M) = 1 AT ) | =0

If we substitute (3.6) into (3.8), then we have

-

1

2

0 = 2(cot&cota)+/2Q(x)dx+/Q(m)cos <2\f)\x> dx
0

0

1
2

—|—/Q(:c) O/I/(\'(x,T) cos (2\&7) dr | dz. (3.10)

0
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Before we continue the proof of this theorem, we should write the following
Lemma.

Lemma 3.1. Let (a,b) be a finite interval and f(z) € L (a,b). Then

lim /f(w) cos \zdz = 0.

[A| =00

This Lemma is well known and are usually called the Riemann-Lebesque Lemmoas.

(see Refs. [34]).

By using of the Riemann-Lebesque Lemma letting A = A\, — +o0o0 in the
equation (3.10), then we obtain

1

2

—2 (cot v — cot o) + /Q () dz = 0. (3.11)
0

Denote

H(\) = /QQ({L‘) cos (2\[\3:) dw—i—/ / (x,7) cos 2\fT> dx.
0

’ (3.12)
By given assumption, (3.10) and (3.11) we have
H (\,) =0.
From (3.12), we have for all complex A
|H (N)| < Cie™, (3.13)
for some positive constant C. Define
() = I;[(:)), (3.14)

which is the entire function from the above arguments and it follows from (3.3)
and (3.13) that
o (N)=0(1)

for |A| large enough. Thus, by Liouville’s theorem, we obtain for all A
o (N =C.

where C' is constant.
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Let us show that the constant C' = 0. We can write the equation H (\) =
Cy (A) in the form

2Q(CE)COS 2V Az ) dx + 2Q (z,7) cos 2[7' dr| dz
Ty
= C [csin aMAsin VA + O (/\eT)}

that is

csin a)\\f /Q cos Q\fa:)

+/2Q(:c) 7K(x,7)cos (2vAr) dr | de
0 0

1
= ClsinvVA+0 (eTﬂ
[ VA
Since the limit of the left side of the above equality is zero as real A\ — oo, we

obtain that C = 0. Thus
H (\) =0 for all .

Using the change of variables, after some reordering, it can be written as

1

/cos (2f7 Qr /Q (z,7)dr| dz =0 (3.15)

0

which implies that from the completeness of the functions cos (2\57’), A€ Rin
L2(0.3)

1
/Q K (z,7)dz =0, 0<’7’<§ (3.16)

But this equation is a homogeneous Volterra integral equation and has only the

zero solution. Thus @ (z) = 0 for almost everywhere on 0 < z < %, that is

q(z) = ¢ (z) for almost everywhere z € [0,1] .
From (3.11) and @ (z) = 0, the equality a = a.
We can prove ¢ (z) = ¢ (z) almost everywhere on [£,1] similarly. Then we
obtain ¢ (z) = ¢ (z) almost everywhere on [3,1] and Z = %
Therefore, Theorem 2.1 is proved.

Next, we show that Lemma 2.1 holds.
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Proof of Lemma 2.1. (1) Let y (x, A) be the solution to

—y"(2) + q(a)y(x) = Ny(z) (3.17)
with the initial conditions y(0,\) = sina and 3'(0,\) = —cosa. Similarly let
¥ (x,A) be the solution of

(@) + @) () = M) (318

with the initial conditions y(0,\) = sin& and y'(0,\) = — cos a.
If we multiply (3.17) by ¥ (z,A) and (3.18) by y(x,\), and subtract after
integrating on [0, b] , we obtain

GO = /
0

b
3 (2) - g (@)]y (2, ) Gla, Ndz + sin (@ — a)
= [yl@ VT (@) — 5@, Ny (@, N)] ooy (3.19)

From the assumption

y;n(n) (0, Am(n)) %(n) (b Ama(n))

it follows that,
G()‘m(n)) =0, neN.

Next, we will show that G(\) = 0 on the whole complex plane.
From (3.19) we see that the entire function G(A) is a function of exponential
type < 2b. One has
|G (\)] < Cye?brisind (3.20)

for some positive constant Cs.
Let us define the indicator of function G(\) by the formula

In |G (ret
h(8) = li_>m SupM. (3.21)
Since [ImA| = r|sinf|, § = arg A from (3.20) and (3.21) it follows that
h(0) < 2blsind)|. (3.22)

According to a known property (see Refs. [33]) the set of zeros of every entire
function of the exponential type, not identically zero, satisfies the inequality:

27
.. .n(r) 1
< )
Jiminf " < L / h(0)do (3.23)
0
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where n(r) is the number of zeros of G(A) in the disk |A| < r. From (3.22), one
gets

27 27
1 b 4b
— < — i = —. .
27r/h(0)d9 < 7T/|sm9]d0 - (3.24)
0 0

From the assumption (2.3) and the known asymptotic expression (2.1) of the
eigenvalues v/\,, we obtain;

n(r) > 2 > 1= %m’(l +0(1)), r — 0. (3.25)
T o (5)]<r

For the case o > 2b,

21 27
2 4b 1
lim M) 5 25540 Qb/ 1sin 0] df > /h(e)de. (3.26)
r—oo T T T 2w
0 0

The inequalities (3.23) and (3.26) imply that G(A) = 0 on the whole A plane. As
we already mentioned, if G(\) = 0, then the conclusion of Lemma 2.1 is true.
We can prove ¢ (z) = g (z) almost everywhere on [b, 1] similarly.
This completes the proof of Lemma 2.1.
Now we prove that Theorem 2.2 is valid.
Proof of Theorem 2.2. Since

~

y;(n) (ba )‘r(n)) _ yr(n) (bv )‘r(n))
Yr(n) (ba )‘r(n)) gr(n) (bv )‘r(n))

)‘T(n) = )\T(n) )

where {r(n)} satisfies (2.7) and o2 > 2 — 2b, by Lemma 2.1, we obtain that

q(x) =q(z) a.e. on [b,1] and £ = Z.
Thus, we only need to prove that

q
Similar to (3.19), in the case b € (3

GO = /
0

b
[q(z) —q
= [y(@, N7 (2, ) = 5z, Ny (@, N)] |e=b (3.27)

() =q(x) a.e. on [0,b] and a = a.
,1) , we have

()] y (x,\) y(z, \)dz + sin (& — «)

Let us show that G(A) = 0 on the whole A plane.
Eigenfunctions y,(x) and y,(z) satisfy the same boundary condition at 1 and
q(z) = q(z) for almost everywhere on [b, 1]. This means that

Yn () = &ntn () (3.28)

on [b,1] for any n € N where &, are constants.
Let p, = VA, and s, = /i, . From (3.27) and (3.28) we obtain

G(pn) =0, neN
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and in the same way that
G(Sln) =0, n€N.

Note that eigenvalues p,, and s, possess the asymptotic expression (2.1). We
can count the number of p,, and s,, located inside radius r, we get 1—1—%7“ [1 + O(%)]
of \,,’s and 1 + %7’01 [1 + O(%)] of up’s. Thus, the total number of p,’s and s,’s

2 1
n(r) =2+ — |r(c1 +1)+ O(—)
T n
and 5
im ) = 26y 4 1),
r—ooo 71 T

Repeating the last part in the proof of Lemma 2.1, we can show that G(\) = 0
on the whole A-plane. This implies that ¢ (z) = ¢ (x) a.e. on [0,b] consequently
q(z) =¢q(x) a.e. on [0,7] and o = a.

Hence the proof of Theorem 2.2 is completed.
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