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THERMOELASTICITY WITH FRACTIONAL ORDER
STRAIN FOR DIPOLAR MATERIALS WITH VOIDS
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Abstract

The goal of this article is to combine the theory based on fractional order
of strain with the theory of thermoelasticity of dipolar bodies with voids,
in order to obtain the basic thermoelasticity equations with fractional order
strain for dipolar materials with voids.
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1 Introduction

A theory of linear elastic materials with voids or vacuous pores was presented
by S.C.Cowin and J.W Nunziato in [4] , where they applied the theory to some
problems of technological interest.

In fact, this theory is a linearization of a theory described by them earlier in
[14], where they presented a nonlinear theory for the behaviour of porous solids.
They developed the first study on porous materials made by M.A.Goodman and
S.C.Cowin in [5].

The presence of small pores (or voids) in the conventional continuum model is
introduced by assigning an additional degree of freedom to each particle, namely
the fraction of elementary volume that is possibly found void of mater.

This additional degree of freedom is useful in order to develop the mechan-
ical behaviour of porous solids in which the matrix material is elastic and the
interstices are voids of material [11].

D. Ieşan has studied a linear theory of thermoelastic materials with voids in
[9], treating, on the one hand, some general theorems (uniqueness, reciprocal and
variational theorems) and, on the other hand, some problems of equilibrium.

The first results on dipolar bodies theory, which is a part of a multipolar struc-
tures theory, were published by R.D.Mindlin in [13], A.E.Green and R.S.Rivlin in
[6].
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In the theory of dipolar continua, each material point is constrained to deform
homogeneously. In that case, the degrees of freedom for each particle are three
translations and nine micro-deformations [12]. In [10] , M.Marin applied the gen-
eral results from the theory of elliptic equations, in order to obtain the existence
and uniqueness of the generalized solutions for the boundary value problems in
elasticity of dipolar materials with voids.

H.M.Youssef has derived in [17] a new theory based on fractional order of
strain (fraction order Duhamel-Neumann stress-strain relation). We combine this
theory with the theory of thermoelasticity of dipolar bodies with voids, in order
to obtain the basic equations of the thermoelasticity with fractional order strain
for dipolar materials with voids.

2 Notations and basic equations

Considering a thermoelastic, anisotropic dipolar material with voids, which
occupies a properly regular region Ω of the three - dimensional Euclidean space
R3, we suppose that Ω is bounded by a C1,1 boundary ∂Ω, and the closure of Ω
is noted by Ω.

The body’s movement is reported to a fixed system of rectangular Cartesian
axes Oxi (i = 1, 2, 3), and throughout this article we adopt the Cartesian tensor
notation.

The convention, according to which the material time derivative is represented
by a superposed dot stand, and a comma followed by a subscript representing
partial derivatives, is used in this paper.

At the same time, on repeated indices we use the Einstein summation, and
the time argument or the spatial argument of a function will be omitted when the
confusion is ruled out.

In Ω the points are denoted by xi or x. The variable t is the time and t ∈ [0, t0).

The thermoelastic dipolar body with voids has a behaviour characterized by
the following kinematic variables:

ui = ui(x, t), Φij = Φij(x, t), ν = ν(x, t), (x, t) ∈ Ω× [0, t0)

where u = (ui)i=1,3 is the displacement vector field, Φ = (Φij)1≤,j≤3 is the
dipolar tensor field and ν is the volume fraction field corresponding to voids.

We have the following fundamental equations:

– the equations of motion:

(tji + ηji),j + ρ0Fi = ρ0üi in Ω× (0,∞)

µijk,i + ηjk + ρ0Mjk = IksΦ̈js in Ω× (0,∞)
(1)

– the equation of energy:

ρ0T η̇ = ρ0Q+ qi,i (2)
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– the geometric equations:

2εij = ui,j + uj,i
γij = uj,i − Φij

χijk = Φjk,i

(3)

– the balance of equilibrated forces:

σi,i + ξ + ρ0L = ρ0kν̈ in Ω× (0,∞) (4)

– the initial conditions:

ui(x, 0) = u0
i (x)

u̇i(x, 0) = u1
i (x)

Φij(x, 0) = Φ0
ij(x)

Φ̇ij(x, 0) = Φ1
ij(x)

ν(x, 0) = ν0(x)
ν̇(x, 0) = ν1(x)
θ(x, 0) = θ0(x)

x ∈ Ω (5)

– the boundary conditions:

ui(x, t) = ũi
Φij(x, t) = Φ̃ij

ν(x, t) = ν̃

θ(x, t) = θ̃

(x, t) ∈ ∂Ω× [0,∞) (6)

where u0
i , u

1
i ,Φ

0
ij ,Φ

1
ij , ν

0, ν1, θ0, ũi, Φ̃ij , ν̃ and θ̃ are prescribed functions.
We postulate the conservation of energy in the form:∫

Ω

(ρ0u̇iüi + IksΦ̇jkΦ̈js + ρ0kν̇ν̈)dV +
∫
Ω

ρ0ėdV =

=
∫
Ω

ρ0(Fiu̇i +MjkΦ̇jk + Lν̇ +Q)dV +
∫
∂Ω

(tiu̇i + µjkΦ̇jk + σν̇ + q)dA .
(7)

The following notations were used in the above equations:
– ρ0 is the constant reference density;
– tij , ηij , µijk are the components of stress tensors;
– Fi are the components of the body force per unit mass;
– Mjk are the components of the dipolar body force per unit mass;
– k is the coefficient of equilibrated inertia;
– L is the extrinsic equilibrated body force per unit mass associated to voids;
– Q is the heat supply per unit mass;
– ti are the components of the stress vector;
– µjk is the dipolar stress tensor;
– q is the heat flux vector;
– Iks are the coefficients of microinertia;
– σ is the equilibrated stress corresponding to ν.
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– θ is the temperature measured from the constant absolute temperature T0

of the body considered in the reference state.
Using the Green and Rivlin method, we consider a second motion, different

from the given motion only by a superposed constant rigid translation.
All characteristics of the body remain unchanged for the new motion.
The principle of conservation of energy and the other characteristics of the

body are still valid if we replace u̇ by u̇i + αi respectively Φ̇ij by Φ̇ij + βij , where
αi and βij are arbitrary constants.

Using the divergence theorem and considering the fact that constants αi and
βij are arbitrary, we obtain the relations:

ti := (tji + ηji)nj

µjk := µijkni

q := qini

σ := σini

on ∂Ω (8)

where ni are the components of the outward unit normal to the boundary surface.
In this article we use the heat conduction equations introduced by Cattaneo,

see [2],[15],[16] equations that take the next form:

qi + τ0q̇i = −KijT,j , i = 1, 2, 3; (9)

where Kij is the thermal conductvity tensor, and τ0 is the relaxation time [7],[8].
The fractional derivative with respect to time, introduced by Caputo [1] and

used in [15],[17], is defined as:

Dβ
t f(t) =

1

Γ(1− β)

t∫
0

f ′(τ)

(t− τ)β
dτ, 0 ≤ β ≤ 1 (10)

where Γ is the Gamma function.
Multiplying, following [3], the (1)1 relation by u̇i, we obtain:

(tji + ηji),j u̇i + ρ0Fiu̇i = ρ0üiu̇i, (11)

then, we have: ∫
Ω

ρ0u̇iüidV =

∫
Ω

(tji + ηji),j u̇idV +

∫
Ω

ρ0Fiu̇idV . (12)

Multiplying , the (1)2 relation by Φ̇jk, we get the relation:

µijk,iΦ̇jk + ηjkΦ̇jk + ρ0MjkΦ̇jk = IksΦ̈jsΦ̇jk . (13)

Naturally, we deduce:∫
Ω

IksΦ̈jsΦ̇jkdV =

∫
Ω

(µijk,iΦ̇jk + ηjkΦ̇jk + ρ0MjkΦ̇jk)dV . (14)
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Multiplying the (4) relation by ν̇ we obtain:

σi,iν̇ + ξν̇ + ρ0Lν̇ = ρ0kν̈ν̇ (15)

so, we can write: ∫
Ω

ρ0kν̇ν̈dV =

∫
Ω

(σi,iν̇ + ξν̇ + ρ0Lν̇)dV . (16)

Introducing the relations: (8),(12),(14),(16) into (7) we have the following
relations:

∫
Ω

(tji + ηji),j u̇idV +

∫
Ω

ρ0ėdV +

∫
Ω

µijk,iΦ̇jkdV +

∫
Ω

ηjkΦ̇jkdV+

+

∫
Ω

σi,iν̇dV +

∫
Ω

ξν̇dV =

∫
Ω

ρ0QdV +

∫
∂Ω

(tji + ηji)nj u̇idA+

+

∫
∂Ω

µijkΦ̇jknidA+

∫
∂Ω

σiν̇nidA+

∫
∂Ω

qinidA .

(17)

Using the theorem of divergence, the previous relation becomes:∫
ηjkΦ̇jkdV +

∫
Ω

ξν̇dV +
∫
Ω

ρ0ėdV =∫
Ω

ρ0QdV +
∫
Ω

(tji + ηji)u̇i,jdV +
∫
Ω

µijkΦ̇jk,idV +
∫
Ω

σiν̇,idV +
∫
Ω

qi,idV .
(18)

Rewriting the above relation, we get:

∫
Ω

[ρ0ė+ ηjkΦ̇jk + ξν̇ − ρ0Q− (tji + ηji)u̇i,j − µijkΦ̇jk,i − σiν̇,i− qi,i]dV = 0. (19)

Considering that Ω is an arbitrary domain, we deduce from (19) the following
equality:

ρ0ė = (tji + ηji)u̇i,j + µijkΦ̇jk,i − ηjkφ̇jk + qi,i + ρ0Q− ξν̇ + σiν̇,i (20)

The Helmholtz free energy Φ = e− Tη

Φ = Φ(ε̃ij , γij , χijk, T, T,i, ν, ν,i)

e = e(ε̃ij , γij , χijk, T, T,i, ν, ν,i)

η = η(ε̃ij , γij , χijk, T, T,i, ν, ν,i)

q = q(ε̃ij , γij , χijk, T, T,i, ν, ν,i) .

(21)

were ε̃ij =
(

1 + τβDβ
t

)
εij and τ is the mechanical relaxation parameter.
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Replacing ė = Φ̇ + Ṫ η + T η̇ and u̇i,j by ˙̃εij into relation (20) we have:

ρ0Φ̇+ρ0Ṫ η+ρ0T η̇ = (tji+ηji) ˙̃εij+µijkΦ̇jk,i−ηjkΦ̇jk+qi,i+ρ0Q−ξν̇+σiν̇,i. (22)

Using χ̇ijk = Φ̇jk,i; γ̇ij = u̇j,i − Φ̇ij the relation (22) becomes:

ρ0Φ̇ = tij ˙̃εij + ηij γ̇ij + µijkχ̇ijk + qi,i + ρ0Q− ξν̇ + σiν̇,i − ρ0Ṫ η − ρ0T η̇. (23)

From relation (21) , we get:

ρ0Φ̇ =ρ0
∂Φ

∂ε̃ij
˙̃εij + ρ0

∂Φ

∂γij
γ̇ij + ρ0

∂Φ

∂χijk
χ̇ijk + ρ0

∂Φ

∂T
Ṫ+

+ ρ0
∂Φ

∂T,i
Ṫ,i + ρ0

∂Φ

∂ν
ν̇ + ρ0

∂Φ

∂ν,i
ν̇,i .

(24)

Comparing relations (23) and (24), we obtain

tij = ρ0
∂Φ

∂ε̃ij

ηij = ρ0
∂Φ

∂γij

µijk = ρ0
∂Φ

∂χijk

η = −∂Φ

∂T

ξ = −ρ0
∂Φ

∂ν

σi = ρ0
∂Φ

∂ν,i

∂Φ

∂T,i
= 0

(25)

and

qi,i + ρ0Q = ρ0T η̇ (26)

which is the energy equation in our case.
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The free energy is given by the relation below:

ρ0Φ(ε̃ij , γij , χijk, θ, ν, ν,i) =
1

2
Cijmnε̃ij ε̃mn +Gmnij ε̃mnγij+

+
1

2
Bijmnγijγmn + Fmnrij ε̃ijχmnr +Dmnijkγmnχijk+

+
1

2
Aijkmnrχijkχmnr + dijmε̃ijν,m + eijmγijν,m + fijkmχijkν,m+

+
1

2
gimν,iν,m + aij ε̃ijν + bijγijν + cijkχijkν + diν,iν +

1

2
ων2−

− αij ε̃ijθ − βijγijθ − γijkχijkθ −
1

2
aθ2 − aiν,iθ − bνθ .

(27)

The free energy expression has the constitutive coefficients as functions in
C1(Ω) and they satisfy the following symmetry relations:

Cijmn = Cmnij = Cjimn,
Bijmn = Bmnij ,
Gijmn = Gijnm,
Fijkmn = Fjikmn,
Aijkmnr = Amnrijk,

aij = aji,
gim = gmi,
αij = αji .

Taking into account (25), we deduce the following constitutive equations of the
linear theory of thermoelasticity of dipolar bodies with voids using fractional order
strain:

tij = Cijmnε̃mn +Gijmnγmn + Fmnrijχmnr + dijmν,m + aijν − αijθ =

= Cijmn(1 + τβDβ
t )εmn +Gijmnγmn + Fmnrijχmnr + dijmν,m + aijν − αijθ

ηij = Bijmnγmn +Dijmnrχmnr +Gijmnε̃mn + eijmν,m + bijν − βijθ =

= Bijmnγmn +Dijmnrχmnr +Gijmn(1 + τβDβ
t )εmn + eijmν,m + bijν − βijθ

µijk = Aijkmnrχmnr +Dmnijkγmn + Fijkmnε̃mn + fijkmν,m + cijkν − γijkθ =

= Aijkmnrχmnr +Dmnijkγmn + Fijkmn(1 + τβDβ
t )εmn + fijkmν,m + cijkν − γijkθ

ρ0η = αij ε̃ij + βijγij + γijkχijk + aθ + aiν,i + bν =

= αij(1 + τβDβ
t )εij + βijγij + γijkχijk + aθ + aiν,i + bν

ξ = −aij ε̃ij − bijγij − cijkχijk − diν,i − ων + bθ =

= −aij(1 + τβDβ
t )εij − bijγij − cijkχijk − diν,i − ων + bθ

σi = dmniε̃mn + emniγmn + fmnriχmnr + gimν,m + diν − aiθ =

= dmni(1 + τβDβ
t )εmn + emniγmn + fmnriχmnr + gimν,m + diν − aiθ.

(28)

Using relation (25)4 into (26), we have:
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qi,i =− ρ0Q+ ρ0T

(
− ∂2Φ

∂ε̃ij∂T
·

˙
ε̃ij −

∂2Φ

∂γij∂T
·γ̇ij −

∂2Φ

∂χijk∂T
· χ̇ijk−

−∂
2Φ

∂T 2
· Ṫ − ∂2Φ

∂ν∂T
· ν̇ − ∂2Φ

∂ν,i∂T
· ν̇,i
)
.

(29)

The relation (29) can be rewritten as:

qi,i =− ρ0Q− T
[
∂

∂T

(
ρ0
∂Φ

∂ε̃ij

)
· ˙̃εij +

∂

∂T

(
ρ0
∂Φ

∂γij

)
· γ̇ij+

+
∂

∂T

(
ρ0

∂Φ

∂χijk

)
· χ̇ijk − ρ0

∂

∂T

(
−∂Φ

∂T

)
· Ṫ−

− ∂

∂T

(
−ρ0

∂Φ

∂ν

)
· ν̇ +

∂

∂T

(
ρ0
∂Φ

∂ν,i

)
· ν̇,i
]
.

(30)

Replacing relations (25) into (30), the last one takes the following form:

qi,i =− ρ0Q− T
(
∂tij
∂T
· ε̃ij +

∂ηij
∂T
· γ̇ij +

∂µijk
∂T

· χ̇ijk−

−ρ0
∂η

∂T
· Ṫ − ∂ξ

∂T
· ν̇ +

∂σi
∂T
· ν̇,i
)
.

(31)

Using the constitutive equations (28), the relation (31) becomes:

qi,i = −ρ0Q+ αijT ˙̃εij + βijT γ̇ij + γijkT χ̇ijk + aT Ṫ + bT ν̇ + aiT ν̇,i . (32)

Let T ≈ T0 for linearity, so:

qi,i = −ρ0Q+αijT0(1 + τβDβ
t )ε̇ij + βijT0γ̇ij + γijkT0χ̇ijk + aT0Ṫ + bT0ν̇ + aiT0ν̇,i. (33)

Using (6), the relations of Cattaneo, we can deduce:

qi,i + τ0q̇i,i = (−KijT,j),i i, j = 1, 2, 3 (34)

so:

(−KijT,j),i =− ρ0Q+ αijT0(1 + τβDβ
t )ε̇ij + βijT0γ̇ij + γijkT0χ̇ijk+

+ aT0Ṫ + bT0ν̇ + aiT0ν̇,i − τ0
[
ρ0Q̇− αijT0(1 + τβDβ

t )ε̈ij−

−βijT0γ̈ij − γijkT0χ̈ijk − aT0T̈ − bT0ν̈ − aiT0ν̈,i
]
.

(35)
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