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EXISTENCE OF SOLUTIONS FOR THREE-POINT
BOUNDARY VALUE PROBLEM FOR NONLINEAR

FRACTIONAL DIFFERENTIAL EQUATIONS

Slimane BENAICHA1 and Noureddine BOUTERAA2

Abstract

This paper deals with the existence and uniqueness of solutions for nonlin-
ear fractional differential equations supplemented with three-point boundary
conditions. Our results are based on some well-known tools of fixed point
theory such as Banach contraction principle and the Leray-Schauder nonlin-
ear alternative, and are illustrated with an example.
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1 Introduction

In this paper, we are interested in the existence of solutions for the nonlinear
fractional differential equation

cDαu (t) = f
(
t, u (t) , u′ (t)

)
, t ∈ [0, 1] , (1)

subject to three-point boundary conditions
βu (0) + γu (1) = u (η) ,

u (0) =
∫ η
0 u (s) ds,

βcDpu (0) + γcDpu (1) = cDpu (η) ,

(2)

where 2 < α ≤ 3, 1 < p ≤ 2, 0 < η < 1, β, γ ∈ R+, f ∈ C
(
[0, 1]× R2,R

)
and

cDα denotes the Caputo fractional derivative of order α.
The q-difference equations and operators have extensively been studied in the
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framework of quantum calculus (q-calculus). In fact, q-calculus has a rich his-
tory and the details of its basic notions, results and methods can be found in the
texts [2, 11] and papers [1, 2]. The concept of fractional calculus has played an
important role in improving the work based on integer-order (classical) calculus
in several diverse disciplines of science and engineering. The nonlocal nature of
a fractional order differential operator, which takes into account hereditary prop-
erties of various materials and processes, has help to improve the mathematical
modeling of many natural phenomena and physical processes, see for example
[12, 18]. The increasing interest in fractional differential equations and inclusions
is motivated by their applications in various fields of science such as physics chem-
istry, biology, economics, fluid mechanics, control theory, etc, we refer the reader
to [4, 5, 6, 8, 10, 13, 14, 15, 16, 19, 21] and the references therein.
In [3], Ahmad et al. studied the following nonlocal boundary value problems of
nonlinear fractional q-difference equations

(
cDα

q u
)

(t) = f (t, u (t)) , t ∈ [0, 1] , α ∈ (1, 2]

a1u (0)− b1 (Dqu) (0) = c1u (η1) ,

a2u (1) + b2 (Dqu) (1) = c2u (η2) ,

where cDα
q denotes the Caputo fractional q-derivative of order α and ai, bi, ci, ηi ∈

R (i = 1, 2).
In [7], the authors studied the existence of solutions for the nonlinear fractional
differential equation

cDαu (t) = f
(
t, u (t) , u′ (t)

)
, t ∈ [0, 1] ,

subject to three-point boundary conditions
βu (0) + γu (1) = u (η) ,

βu′ (0) + γu′ (1) = u′ (η) ,

βcDpu (0) + γcDpu (1) = cDpu (η) ,

where 2 < α ≤ 3, 1 < p ≤ 2, 0 < η < 1, β, γ ∈ R+, f ∈ C
(
[0, 1]× R2,R

)
and

cDα denotes the Caputo fractional derivative of order α.
Motivated greatly by the above mentioned works, we etablish the existence and
uniqueness of solutions for nonlocal boundary value problem (1) − (2) by using
some well-known tools of fixed point theory such as Banach contraction principle
and the Leray-Schauder nonlinear alternative (see [9, 21]). The paper is organized
as follows. In Section 2, we recall some preliminary facts that we need in the
sequel. Section 3, deals with main results and we give an example to illustrate
our results.

2 Preliminaries

In this section, we introduce some necessary definitions and lemmas of frac-
tional calculus to facilitate the analysis of the problem (1) − (2). These details
can be found in the recent literature; see [12, 19, 14] and the references therein.
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Definition 2.1. Let α > 0, n − 1 < α < n, n = [α] + 1 and u ∈ C ([0,∞) ,R).
The Caputo derivative of fractional order α for the function u is defined by

cDαu (t) =
1

Γ (n− α)

t∫
0

(t− s)n−α−1 u(n) (s) ds.

where Γ (·) is the Eleur Gamma function.

Definition 2.2. The Riemann-Liouville fractional integral of order α > 0 of a
function u : (0,∞)→ R is given by

Iαu (t) =
1

Γ (α)

t∫
0

(t− s)α−1 u (s) ds, t > 0,

where Γ (·) is the Eleur Gamma function, provided that the right side is pointwise
defined on (0,∞).

Lemma 2.1. ([19]). Let α, β ≥ 0 and u ∈ Lp (0, 1) , 0 ≤ p ≤ +∞. Then the next
formulas hold.
(i)
(
IβIαu

)
(t) = Iα+βu (t),

(ii)
(
DβIαu

)
(t) = Iα−βu (t),

(iii) (DαIαu) (t) = u (t).

Lemma 2.2. ([14]). Let α > 0, n− 1 < α < n and the function g : [0, T ]→ R be
continuous for each T > 0. Then, the general solution of the fractional differential
equation cDαg (t) = 0 is given by

g (t) = c0 + c1t+ · · ·+ cn−1t
n−1,

where c0, c1, ..., cn−1 are real constants and n = [α] + 1.

Lemma 2.3. ([12]). Assume that u ∈ C [0, 1]∩L1 (0, 1) with a Caputo fractional
derivative of order α > 0 that belongs to u ∈ Cn [0, 1], then

IαcDαu (t) = u (t) + c0 + c1t+ · · ·+ cn−1t
n−1,

where c0, c1, ..., cn−1 are real constants and n = [α] + 1.

3 Main results

Let X = {u : u, u′ ∈ C ([0, 1] ,R)} endowed with the norm defined by ‖u‖ =
sup
t∈[0,1]

|u (t)|+ sup
t∈[0,1]

|u′ (t)| such that ‖u‖ <∞. Then (X, ‖.‖) is a Banach space.
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Lemma 3.1. Let y ∈ C ([0, 1] ,R). Then the integral solution of the linear frac-
tional differential equation

cDαu (t) = y (t) t ∈ [0, 1] , α ∈ (2, 3] , (3)

subject to three-point boundary conditions

βu (0) + γu (1) = u (η) , β ≥ 0, γ ≥ 0, (4)

u (0) =

η∫
0

u (s) ds, η ∈ (0, 1) , (5)

βcDpu (0) + γcDpu (1) =c Dpu (η) p ∈ (1, 2] , (6)

is given by

u (t) =

t∫
0

(t− s)α−1

Γ (α)
y (s) ds+

1

1− η

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
y (τ) dτ

 ds

− Λ1 (t)

Q1 (1− η)

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
y (τ) dτ

 ds

− Λ2 (t)M1

6 (1− η)Q1

 η∫
0

(η − s)α−p−1

Γ (α− p)
y (s) ds− γ

1∫
0

(1− s)α−p−1

Γ (α− p)
y (s) ds


+

Λ1 (t)

Q1 (β + γ − 1)

 η∫
0

(η − s)α−1

Γ (α)
y (s) ds− γ

1∫
0

(1− s)α−1

Γ (α)
y (s) ds

 , (7)

where

Λ1 (t) = (β + γ − 1)
(
η2 + 2 (1− η) t

)
, M1 =

Γ (3− p)
γ − η2−p

Λ2 (t) =
(
η3 (β + γ − 1) + 3

(
γ − η2

)
(1− η)

) (
η2 + 2 (1− η) t

)
−Q1

(
η3 + 3 (1− η) t2

)
and

Q1 = 2 (1− η) (γ − η)+η2 (β + γ − 1) 6= 0.

Proof. In view of Lemma 2.1 and Lemma 2.3, the solution of equation (3) can be
written as

u (t) = Iαy (t) + c0 + c1t+ c2t
2 =

t∫
0

(t− s)α−1

Γ (α)
y (s) ds+ c0 + c1t+ c2t

2, (8)



Boundary value problems for fractional differential equations 35

where c0, c1,c2 ∈ R are arbitrary constants.
Differentiating both sides of (8) and applying Definition 2.1, Lemma 2.1 and
Lemma 2.3, we obtain

cDpu (t) = Iα−py (t) + c2
2t2−p

Γ (3− p)
=

t∫
0

(t− s)α−p−1

Γ (α− p)
y (s) ds+

2t2−p

Γ (3− p)
c2, (9)

where α ∈ (2, 3] and p ∈ (1, 2].
Integrating both sides of (8), we obtain

η∫
0

u (t) dt =

η∫
0

 t∫
0

(t− s)α−1

Γ (α)
y (s) ds

 dt+ c0η +
1

2
c1η

2 +
1

3
c2η

3. (10)

By using the boundary condition (4) in (8), we obtain

c0 (β + γ − 1) + c1 (γ − η) + c2
(
γ − η2

)
=

η∫
0

(η − s)α−1

Γ (α)
y (s) ds

−γ
1∫

0

(1− s)α−1

Γ (α)
y (s) ds (11)

By using the boundary condition (5) in (8) and (10), we obtain

(1− η) c0 −
η∫

0

(η − s)α−1

Γ (α)
y (s) ds− 1

2
c1η

2 − 1

3
η3 = 0. (12)

By using the boundary condition (6) in (9), we obtain

c2 =
M1

2

 η∫
0

(η − s)α−p−1

Γ (α− p)
y (s) ds− γ

1∫
0

(1− s)α−p−1

Γ (α− p)
y (s) ds

 . (13)

Solving the above system of the equations (11), (12) and (13) for c0, c1, c2, we
get

c2 =
M1

2

(
Iα−py (η)− γIα−py (1)

)
,

=
M1

2

 η∫
0

(η − s)α−p−1

Γ (α− p)
y (s) ds− γ

1∫
0

(1− s)α−p−1

Γ (α− p)
y (s) ds

 ,

c0 = −2η2 (β + γ − 1)

2 (1− η)Q1

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
y (τ) dτ

 ds
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+
1

1− η

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
y (τ) dτ

 ds

−
(
η2
[
η3 (β + γ − 1) + 3

(
γ − η2

)
(1− η)

]
− η3Q1

)
M1

2 (1− η)Q1

[
Iα−py (η)− γIα−py (1)

]
+
η2

Q1

 η∫
0

(η − s)α−1

Γ (α)
y (s) ds− γ

1∫
0

(1− s)α−1

Γ (α)
y (s) ds

 ,
and

c1 =
−2 (β + γ − 1)

Q1

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
y (τ) dτ

 ds

−
(
η3 (β + γ − 1) + 3

(
γ − η2

)
(1− η)

)
M1

3Q1

[
Iα−py (η)− γIα−py (1)

]
+

2 (1− η)

Q1

 η∫
0

(η − s)α−1

Γ (α)
y (s) ds− γ

1∫
0

(1− s)α−1

Γ (α)
y (s) ds

 ,
where

Iα−py (η)− γIα−py (1) =

η∫
0

(η − s)α−p−1

Γ (α− p)
y (s) ds− γ

1∫
0

(1− s)α−p−1

Γ (α− p)
y (s) ds.

Substituting the values of constants c0, c1 and c2 in (8), we get (7). The proof is
complete.

Throughout the paper, we let

M =
Γ (3− p)
|γ − η2−p|

6= 0, |β + γ − 1| 6= 0,
∣∣γ − η2∣∣ 6= 0,

Q =
∣∣2 (1− η) (γ − η) + η2 |β + γ − 1|

∣∣ 6= 0,

A (t) = |β + γ − 1|
(
η2 + 2 (1− η) t

)
,

and

B (t) =
(
η3 |β + γ − 1|+ 3

∣∣γ − η2∣∣ (1− η)
) (
η2 + 2 (1− η) t

)
−Q

(
η3 + 3 (1− η) t2

)
.

The following inequalities hold:

|A (t)| ≤ |β + γ − 1|
(
η2 + 2 (1− η)

)
= A1,
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|B (t)| ≤
∣∣∣ (η3 |β + γ − 1|+ 3

∣∣γ − η2∣∣ (1− η)
) (
η2 + 2 (1− η)

)
−Q

(
η3 + 3 (1− η)

) ∣∣∣ = B1,∣∣A′ (t)∣∣ ≤ 2 |β + γ − 1| (1− η) = A
′
1,

and∣∣B′ (t)∣∣ ≤ 2 (1− η)
∣∣(η3 |β + γ − 1|+ 3

∣∣γ − η2∣∣ (1− η)
)
− 3Q

∣∣ = B
′
1.

To simplify the proofs in the forthcoming theorems, we etablish the bounds for
the integrals arising in the sequel.

Lemma 3.2. For y ∈ C ([0, 1] ,R), we have∣∣∣∣∣∣
η∫

0

 s∫
0

(s− τ)α−1

Γ (α)
y (τ) dτ

 ds

∣∣∣∣∣∣ ≤ ηα+1

Γ (α+ 2)
‖y‖ .

Proof. Obviously,

s∫
0

(s− τ)α−1

Γ (α)
dτ =

[
−(s− τ)α

Γ (α)

]s
0

=
sα

αΓ (α)
=

sα

Γ (α+ 1)
.

Hence∣∣∣∣∣∣
η∫

0

 s∫
0

(s− τ)α−1

Γ (α)
y (τ) dτ

 ds

∣∣∣∣∣∣ ≤ ‖y‖
η∫

0

sα

Γ (α+ 1)
ds =

ηα+1

Γ (α+ 2)
‖y‖ .

For the sake of brevity, we set

41 =
ηα+1

(1− η) Γ (α+ 2)
+

A1η
α+1

Q (1− η) Γ (α+ 2)
+

MB1 (ηα−p + γ)

(1− η)QΓ (α− p+ 1)

+
A1 (ηα + γ)

Q |β + γ − 1|Γ (α+ 1)
+

1

Γ (α+ 1)
, (14)

and

42 =
A
′
1η
α+1

Q (1− η) Γ (α+ 2)
+

MB
′
1 (ηα−p + γ)

(1− η)QΓ (α− p+ 1)

+
A
′
1 (ηα + γ)

Q |β + γ − 1|Γ (α+ 1)
+

1

Γ (α)
. (15)

In view of Lemma 3, we define the operator F : X → X by

(Fu) (t) =

t∫
0

(t− s)α−1

Γ (α)
y (s) ds+

1

1− η

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
y (τ) dτ

 ds
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− B (t)M

6 (1− η)Q

 η∫
0

(η − s)α−p−1

Γ (α− p)
y (s) ds− γ

1∫
0

(1− s)α−p−1

Γ (α− p)
y (s) ds



+
A (t)

Q |β + γ − 1|

 η∫
0

(η − s)α−1

Γ (α)
y (s) ds− γ

1∫
0

(1− s)α−1

Γ (α)
y (s) ds.



− A (t)

Q (1− η)

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
y (τ) dτ

 ds. (16)

Observe that the boundary value problem (1) − (2) has solutions if the operator
equation u = Fu has fixed points, where F is given by (16).
Now we are in the position to present the first main results of this paper. The
existence result is based on Leray-Schauder nonlinear alternative.

Theorem 3.1. ([13]) (Nonlinear alternative for single valued maps). Let E be a
Banach space, C a closed, convex subset of E and U an open subset of C with
0 ∈ U . Suppose that F : U → C is a continuous and compact (that is F

(
U
)

a
relatively compact subset of C) map. Then either
(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF (u).

Theorem 3.2. Assume that f : [0, 1]×R2 → R is a continuous function. Further,
it is assumed that the following conditions hold,
(H1) there exists a function φ ∈ C ([0, 1] ,R+) and a nondecreasing function ψ :
R+ → R+such that |f (t, u, u′)| ≤ φ (t)ψ (‖u‖), for all (t, u) ∈ [0, 1]× R,
(H2) there exists a constant N > 0 such that

N

‖φ‖ψ (N) (41 +42)
> 1, (17)

where 41 and 42 are given by (14) and (15) respectively. Then the boundary
value problem (1)− (2) has at least one solution on [0, 1].

Proof. It is clear that F is a continuous operator where F is defined by (16). Now,
we show that F maps bounded sets into bounded subsets of X. For a positive
number r, let Br = {u ∈ X : ‖u‖ ≤ r} be a bounded set in X. Then, by (14)
and by (15) we have

|(Fu) (t)| ≤
t∫

0

(t− s)α−1

Γ (α)
[φ (s)ψ (‖u‖)] ds

+
1

1− η

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
[φ (τ)ψ (‖u‖)] dτ

 ds
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+
MB1

6 (1− η)Q

[ η∫
0

(η − s)α−p−1

Γ (α− p)
[φ (s)ψ (‖u‖)] ds

+γ

1∫
0

(1− s)α−p−1

Γ (α− p)
[φ (s)ψ (‖u‖)]ds

]

+
A1

Q |β + γ − 1|

[ η∫
0

(η − s)α−1

Γ (α)
[φ (s)ψ (‖u‖)] ds

+γ

1∫
0

(1− s)α−1

Γ (α)
[φ (s)ψ (‖u‖)] ds

]

+
A1

Q (1− η)

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
[φ (τ)ψ (‖u‖)] dτ

 ds,

≤ ‖φ‖ψ (r)


t∫

0

(t− s)α−1

Γ (α)
ds+

1

1− η

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
dτ

 ds

+
A1

Q (1− η)

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
dτ

 ds

+
MB1

6 (1− η)Q

 η∫
0

(η − s)α−p−1

Γ (α− p)
ds+ γ

1∫
0

(1− s)α−p−1

Γ (α− p)
ds


+

A1

Q |β + γ − 1|

 η∫
0

(η − s)α−1

Γ (α)
ds+ γ

1∫
0

(1− s)α−1

Γ (α)
ds


= ‖φ‖ψ (r)41.

Also,

∣∣(F ′u) (t)
∣∣ ≤ t∫

0

(t− s)α−2

Γ (α)
[φ (s)ψ (‖u‖)] ds

+
A
′
1

Q (1− η)

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
[φ (τ)ψ (‖u‖)] dτ

 ds

+
MB

′
1

6 (1− η)Q

[ η∫
0

(η − s)α−p−1

Γ (α− p)
[φ (s)ψ (‖u‖)] ds
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+γ

1∫
0

(1− s)α−p−1

Γ (α− p)
[φ (s)ψ (‖u‖)] ds

]

+
MB

′
1

6 (1− η)Q

[ η∫
0

(η − s)α−p−1

Γ (α− p)
[φ (s)ψ (‖u‖)] ds

+γ

1∫
0

(1− s)α−p−1

Γ (α− p)
[φ (s)ψ (‖u‖)] ds

]

+
A
′
1

Q |β + γ − 1|

[ η∫
0

(η − s)α−1

Γ (α)
[φ (s)ψ (‖u‖)] ds

+γ

1∫
0

(1− s)α−1

Γ (α)
[φ (s)ψ (‖u‖)] ds

∣∣∣∣∣
≤ ‖φ‖ψ (r)


t∫

0

(t− s)α−2

Γ (α)
ds+

A
′
1

Q (1− η)

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
dτ

 ds

+
MB

′
1

6 (1− η)Q

 η∫
0

(η − s)α−p−1

Γ (α− p)
ds+ γ

1∫
0

(1− s)α−p−1

Γ (α− p)
ds



+
A
′
1

Q |β + γ − 1|

 η∫
0

(η − s)α−1

Γ (α)
ds+ γ

1∫
0

(1− s)α−1

Γ (α)
ds


= ‖φ‖ψ (r)42.

Consequently,

‖Fu‖ ≤ ‖φ‖ψ (r) (41 +42) . (18)

Now, we show that F maps bounded sets into equicontinuous sets of X. Let
t1, t2 ∈ [0, 1] with t1 < t2 and u ∈ Br is a bounded set of X. Then

|(Fu) (t2)− (Fu) (t1)| ≤
t1∫
0

(t2 − s)α−1 − (t1 − s)α−1

Γ (α)
[φ (s)ψ (‖u‖)] ds

+

t2∫
t1

(t2 − s)α−1

Γ (α)
[φ (s)ψ (‖u‖)] ds
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+
|A (t2)−A (t1)|

Q (1− η)

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
[φ (τ)ψ (‖u‖)] dτ

 ds

+
A (t2)−A (t1)

Q |β + γ − 1|

[ η∫
0

(η − s)α−1

Γ (α)
[φ (s)ψ (‖u‖)] ds

−γ
1∫

0

(1− s)α−1

Γ (α)
[φ (s)ψ (‖u‖)] ds

]

+
(B (t2)−B (t1))M

6 (1− η)Q

[ η∫
0

(η − s)α−p−1

Γ (α− p)
[φ (s)ψ (‖u‖)] ds

+γ

1∫
0

(1− s)α−p−1

Γ (α− p)
[φ (s)ψ (‖u‖)] ds

]
.

Obviously, the right-hand side of the above inequality tends to zero as t2 → t1.
Similarly, we have

∣∣(F ′u) (t2)−
(
F ′u

)
(t1)
∣∣ ≤ t1∫

0

(t2 − s)α−2 − (t1 − s)α−2

Γ (α− 1)

∣∣f (s, u (s) , u′ (s)
)∣∣ ds

+
|A′ (t2)−A′ (t1)|

Q (1− η)

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
[φ (τ)ψ (‖u‖)] dτ

 ds

+
(B′ (t2)−B′ (t1))M

6 (1− η)Q

[ η∫
0

(η − s)α−p−1

Γ (α− p)
[φ (s)ψ (‖u‖)] ds

+γ

1∫
0

(1− s)α−p−1

Γ (α− p)
[φ (s)ψ (‖u‖)] ds

]

+
A′ (t2)−A′ (t1)
Q |β + γ − 1|

[ η∫
0

(η − s)α−1

Γ (α)
[φ (s)ψ (‖u‖)] ds

−γ
1∫

0

(1− s)α−1

Γ (α)
[φ (s)ψ (‖u‖)] ds

]
.
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Again, it is seen that the right-hand side of the above inequality tends to zero
as t2 → t1. Thus, ‖(Fu) (t2)− (Fu) (t1)‖ → 0, as t2 → t1. This shows that the
operator F is completely continuous, by the Ascoli-Arzela theorem. Thus, the
operator F satisfies all the conditions of Theorem 3.1, and hence by its conclusion,
either condition (i) or condition (ii) holds. We show that the condition (ii) is not
possible. Let U = {u ∈ X : ‖u‖ < N} with N given by (17). In view of condition
(H2) and by (18), we have

‖Fu‖ ≤ ‖φ‖ψ (r) (41 +42) < N,

where we have used (17).

Now, suppose there exists u ∈ ∂U and λ ∈ (0, 1) such that u = λFu. Then for
such a choice of u and the constant λ, we have

N = ‖u‖ = λ ‖Fu‖ < ‖φ‖ψ (‖u‖) [41 +42] = ‖φ‖ψ (N) [41 +42] < N,

which is a contradiction. Consequently, by the Leray-Schauder, alternative, we
deduce that F has a fixed point u ∈ U which is a solution of the boundary value
problem (1)− (2). The proof is completed.

Now, we are in a position to present the second main result of this paper.

Theorem 3.3. Assume that f : [0, 1]×R2 → R be a jointly continuous satisfying
the condition
(H3) |f (t, u1, u2)− f (t, v1, v2)| ≤ L (|u1 − v1|+ |u2 − v2|) , for t ∈ [0, 1] , ui, vi ∈
R, i = 1, 2,
where L > 0 is a constant. Then the boundary value problem (1) − (2) has a
unique solution on [0, 1] provided

(41 +42)L < 1, (19)

where 41 and 41 are given by (14) and (15) respectively.

Proof. Let us set sup
t∈[0,1]

|f (t, 0, 0)| = N <∞. For u ∈ X we observe that

|f (t, u (t) , v (t))| ≤ |f (t, u (t) , v (t))− f (t, 0, 0)|+ |f (t, 0, 0)| ≤ L ‖u‖+N.

Then for u ∈ X, we have

‖(Fu) (t)‖ ≤ 1

1− η

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
[L ‖u‖+N ] dτ

 ds

+
|A (t)|

Q (1− η)

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
[L ‖u‖+N ] dτ

 ds+

t∫
0

(t− s)α−1

Γ (α)
[L ‖u‖+N ] ds
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+
M |B (t)|

6 (1− η)Q

 η∫
0

(η − s)α−p−1

Γ (α− p)
[L ‖u‖+N ] ds+ γ

1∫
0

(1− s)α−p−1

Γ (α− p)
[L ‖u‖+N ] ds


+

|A (t)|
Q |β + γ − 1|

 η∫
0

(η − s)α−1

Γ (α)
[L ‖u‖+N ] ds+ γ

1∫
0

(1− s)α−1

Γ (α)
[L ‖u‖+N ] ds

 ,
≤ (L ‖u‖+N)

 1

1− η

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
dτ

 ds

+
A1

Q (1− η)

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
dτ

 ds+

t∫
0

(t− s)α−1

Γ (α)
ds

+
MB1

6 (1− η)Q

 η∫
0

(η − s)α−p−1

Γ (α− p)
ds+ γ

1∫
0

(1− s)α−p−1

Γ (α− p)
ds


+

A1

Q |β + γ − 1|

 η∫
0

(η − s)α−1

Γ (α)
ds+ γ

1∫
0

(1− s)α−1

Γ (α)
ds

 ,

≤ (L ‖u‖+N)41 <∞.

Also,

∥∥(F ′u) (t)
∥∥ ≤ |A′ (t)|

Q (1− η)

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
[L ‖u‖+N ] dτ

 ds

+

t∫
0

(t− s)α−2

Γ (α− 1)
[L ‖u‖+N ] ds

+
M |B′ (t)|
6 (1− η)Q

 η∫
0

(η − s)α−p−1

Γ (α− p)
[L ‖u‖+N ] ds+ γ

1∫
0

(1− s)α−p−1

Γ (α− p)
[L ‖u‖+N ] ds


+

|A′ (t)|
Q |β + γ − 1|

 η∫
0

(η − s)α−1

Γ (α)
[L ‖u‖+N ] ds+ γ

1∫
0

(1− s)α−1

Γ (α)
[L ‖u‖+N ] ds

 ,
≤ (L ‖u‖+N)

 A
′
1

Q (1− η)

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
dτ

 ds+

t∫
0

(t− s)α−2

Γ (α− 1)
ds

+
MB

′
1

6 (1− η)Q

 η∫
0

(η − s)α−p−1

Γ (α− p)
ds+ γ

1∫
0

(1− s)α−p−1

Γ (α− p)
ds


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+
A
′
1

Q |β + γ − 1|

 η∫
0

(η − s)α−1

Γ (α)
ds+ γ

1∫
0

(1− s)α−1

Γ (α)
ds

 ,

≤ (L ‖u‖+N)42 <∞,

which implies that ‖Fu‖ ≤ (L ‖u‖+N) (41 +42) <∞.
For u, v ∈ X and for each t ∈ [0, 1], it follows from assumption (H3) that

‖(Fu)− (Fv)‖ = sup
t∈[0,1]

|(Fu) (t)− (Fv) (t)| ,

≤ L ‖u− v‖


t∫

0

(t− s)α−1

Γ (α)
+
|A (t)|

Q (1− η)

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
dτ

 ds

+
|B (t)|M

6 (1− η)Q

 η∫
0

(η − s)α−p−1

Γ (α− p)
ds+ γ

1∫
0

(1− s)α−p−1

Γ (α− p)
ds


+

|A (t)|
Q |β + γ − 1|

 η∫
0

(η − s)α−1

Γ (α)
ds− γ

1∫
0

(1− s)α−1

Γ (α)
ds

 ,

≤ L41 ‖u− v‖ .

Also, ∥∥(F ′u)− (F ′v)∥∥ = sup
t∈[0,1]

∣∣(F ′u) (t)−
(
F ′v
)

(t)
∣∣

≤ L ‖u− v‖


t∫

0

(t− s)α−1

Γ (α)
+

A
′
1 (t)

Q (1− η)

η∫
0

 s∫
0

(s− τ)α−1

Γ (α)
dτ

 ds

+
B
′
1 (t)M

6 (1− η)Q

 η∫
0

(η − s)α−p−1

Γ (α− p)
ds+ γ

1∫
0

(1− s)α−p−1

Γ (α− p)
ds


+

A
′
1 (t)

Q |β + γ − 1|

 η∫
0

(η − s)α−1

Γ (α)
ds− γ

1∫
0

(1− s)α−1

Γ (α)
ds

 ,

≤ L42 ‖u− v‖ .

Thus ‖(Fu)− (Fv)‖ ≤ L (41 +42) ‖u− v‖. Since L (41 +42) < 1, thus F is a
contraction. Hence it follows by Banach’s contraction principle that the boundary
value problem (1)− (2) has a unique solution on [0, 1].
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We construct an example to illustrate the applicability of the results presented.

Example 3.1. Consider the following fractional differential equation

cD3u (t) =
t

8

(
(cost) sin

(
|u (t)|+ |u′ (t)|

2

))
+
e−(u(t)+u

′(t))2

1 + t2
, t ∈ [0, 1] , (20)

subject to the three-point boundary conditions
1

100u (0) + 1
10u (1) = u

(
1
2

)
,

u (0) =
∫ 0,5
0 u (s) ds,

1
100

c
D

3
2u (0) + 1

10

c
D

3
2u (1) =c D

3
2u
(
1
2

)
,

(21)

where f (t, u, u′) = t
8

(
(cost) sin

(
|u|+|u′|

2

))
+ e−(u+u′)2

1+t2
, t ∈ [0, 1] , η = 0, 5, β =

0, 01, γ = 0, 1 and p = 1, 5.
It can be easily found that M = 1, 4597546147 and Q = 249

400 .

For every ui, vi ∈ R, i = 1, 2, we have

|f (t, u1, u2)− f (t, v1, v2)| ≤
1

16
(|u1 − v1|+ |u2 − v2|) ,

where L = 1
16 . On the other hand, we have

|f (t, u (t) , v (t))| ≤ t

16
ψ (|u (t)|+ |v (t)|) , t ∈ [0, 1] .

Put ψ (t) = t and φ (t) = t
16 . Clearly, ‖φ‖ = 1

16 and the function ψ is nondecreas-
ing and continuous on [0, 1]. It can be easily found that ∆1

∼= 0, 4141664514 and
∆2
∼= 0, 9758011659.

Finally. Firstly, since ‖L‖ (41 +42) ∼= 0, 0868729761 < 1, thus all assumptions
and conditions of Theorem 3.3 are satisfied. Hence, Theorem 3.3 implies that the
three-point boundary value problem (20)− (21) has a unique solution on [0, 1].
Secondly, we check the conditions of Theorem 3.2. Clearly, assumption (H1) holds
with ‖φ‖ = 1

16 , ψ (‖u‖) = ‖u‖ .i.e ψ (N) = N and by assumption (H2) we found
that there exists N > 0. Thus the conclusion of Theorem 3.2 applies, and hence
the problem (20)− (21) has at least one solution on [0, 1].
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