
Bulletin of the Transilvania University of Braşov • Vol 10(59), No. 2 - 2017
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ALMOST CONFORMAL RICCI SOLITON AND η-RICCI
SOLITON ON 3-DIMENSIONAL (ε, δ) TRANS-SASAKIAN
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Abstract

In this paper we have shown that if a 3-dimensional (ε, δ) trans-Sasakian
manifold admits conformal Ricci soliton (g, V, λ) and the vector field V is
point wise collinear with the unit vector field ξ then V is a constant multiple
of ξ. Similarly, we have proved that under the same condition an almost con-
formal Ricci soliton becomes conformal Ricci soliton. We have also studied
η-Ricci soliton on (ε, δ) trans-Sasakian manifold. Finally, we have shown that
if a 3-dimensional (ε, δ) trans-Sasakian manifold admits conformal gradient
shrinking Ricci soliton then the manifold is an Einstein manifold.
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1 Introduction

Hamilton [12] introduced the concept of Ricci flow and proved its existence
in 1982. This concept was developed to answer Thurston’s geometric conjecture
which says that each closed three manifold admits a geometric decomposition.
The Ricci flow equation is given by

∂g

∂t
= −2S (1)
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on a compact Riemannian manifold M with Riemannian metric g and S is the
Ricci tensor of type (0, 2).

A self-similar solution to the Ricci flow [12], [21] is called a Ricci soliton [13]
if it moves by a one parameter family of diffeomorphism and scaling. The Ricci
soliton equation is given by

£Xg + 2S = 2λg, (2)

where X is a vector field, £X is the Lie derivative along X and λ is any scalar.
The Ricci soliton is said to be shrinking, steady or expanding accordingly as λ is
positive, zero or negative respectively.

A. E. Fischer developed the concept of conformal Ricci flow [10] in 2003-
04 which is a variation of the classical Ricci flow equation that modifies the unit
volume constraint of that equation to a scalar curvature constraint. The conformal
Ricci flow on a smooth closed connected manifold M is defined by the equation
[10] given below

∂g

∂t
+ 2(S +

g

n
) = −pg (3)

and r(g) = −1,
where p is a positive non-dynamical scalar field(only time dependent), r(g) is the
scalar curvature and n is the dimension of the manifold M .

The concept of conformal Ricci soliton was first studied by N. Basu and A.
Bhattacharyya [2] in 2015 and the equation is given by

£Xg + 2S = [2λ− (p+
2

n
)]g, (4)

where λ is constant.
The equation (1.4) is the generalization of the Ricci soliton equation and it also
satisfies the conformal Ricci flow equation.

S. Pigola, M. Rigoli, M. Rimoldi, A. G. Setti introduced the concept of almost
Ricci soliton in 2010 [18]. A. Barros, R. Batista, E. Ribeiro [1] have also worked
on it. According to them, a Riemannian manifold (Mn, g) admits an almost Ricci
soliton if there exists a complete vector field X and a smooth soliton function
λ : Mn → R satisfying

Rij +
1

2
(Xij +Xji) = λgij ,

where Rij and Xij +Xji stand for the Ricci tensor and the Lie derivative £Xg in
local coordinates respectively. It is said to be expanding, steady or shrinking if
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λ < 0, λ = 0 or λ > 0 respectively.

We have introduced the notion of almost conformal Ricci soliton and the
equation is given by

£Xg + 2S = [2λ− (p+
2

n
)]g. (5)

where λ : Mn → R is a smooth function.

A gradient Ricci soliton on a Riemannian manifold (Mn, gij) is defined by [8]

S +∇∇f = ρg, (6)

where ρ is any constant, f is a smooth function called potential function and ∇ is
the Levi-Civita connection on M . In particular a gradient shrinking Ricci soliton
satisfies the equation,

S +∇∇f − 1

2τ
g = 0,

where τ = T − t and T is the maximal time of the solution.

Again for conformal Ricci soliton if the vector field is the gradient of a function
f then it is called conformal gradient shrinking Ricci soliton [5] and the equation
is given by

S +∇∇f = (
1

2τ
− 2

n
− p)g, (7)

where τ = T − t and T is the maximal time of the solution and f is the Ricci
potential function.

J.C. Cho and M. Kimura introduced the notion of η-Ricci soliton [9] which was
used by C. Călin and M. Crasmareanu on Hopf hypersurfaces in complex space
forms [7]. A Riemannian manifold (M, g) is called an η-Ricci soliton if there exists
a smooth vector field ξ such that the Ricci tensor satisfies the following equation

2S + £ξg + 2λg + 2µη ⊗ η = 0 (8)

for some constant λ, µ. £ξ is the Lie derivative operator along the vector field ξ
and S is the Ricci tensor. If µ = 0, then η-Ricci soliton becomes Ricci soliton.

The study of manifolds with indefinite metrics is of interest from the stand-
point of physics and relativity. Several authors have worked on it. In 1993, the
concept of (ε)-Sasakian manifold was first introduced by Bejancu and Duggal [4].
R. Kumar, R. Rani, R. K. Nagaich [14] studied the sectional curvature of this
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manifold. The existence of a new structure on indefinite metrics influences the
curvature. For further investigation, H.G. Nagaraja, R. C. Premalatha and G.
Somashekara [15] have studied (ε, δ) trans-Sasakian manifold which generalizes
(ε)-Sasakian manifold.

2 Preliminaries

Let (M, g) be a connected almost contact metric manifold with an almost
contact metric structure (φ, ξ, η, g) where φ is a (1, 1) tensor field, ξ is a vector
field, η is a 1-form and g is the compatible Riemannian metric satisfying

φ2(X) = −X + η(X)ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0. (9)

An almost contact metric manifold M is called an (ε)-almost contact metric man-
ifold if

g(ξ, ξ) = ε, (10)

εg(X, ξ) = η(X), (11)

g(φX, φY ) = g(X,Y )− εη(X)η(Y ), g(X,φY ) = −g(φX, Y ) (12)

for all vector fields X,Y ∈ χ(M), ε = g(ξ, ξ) = ±1. An (ε)-almost contact metric
manifold is called an (ε, δ) trans-Sasakian manifold if

(∇Xφ)Y = α[g(X,Y )ξ − εη(Y )X] + β[g(φX, Y )ξ − δη(Y )φX] (13)

for some smooth functions α, β on M , ε = ±1andδ = ±1. When α = 1 and β = 0
the (ε, δ) trans-Sasakian manifold reduces to an (ε)-Sasakian manifold and for
α = 0, β = 1 the manifold reduces to a (δ)-Kenmotsu manifold.

An almost contact metric structure (φ, ξ, η, g) on M is called a trans-Sasakian
structure [17], if (M ×R, J,G) belongs to the class W4 [11], where J is the almost
complex structure on M × R defined by J(X, f d

dt) = (φX − fξ, η(X) ddt) for all
vector field X on M and smooth function f on M × R. From the expression of
(2.5) we can write

∇Xξ = −εαφX − βδφ2(X), (14)

(∇Xη)Y = −αg(φX, Y ) + εδβg(φX, φY ). (15)

For a 3-dimensional (ε, δ) trans-Sasakian manifold the following relation holds:

2αβ + ξα = 0. (16)
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The Riemann curvature tensor R on a 3-dimensional (ε, δ) trans-Sasakian mani-
fold is given by [16]

R(X,Y )Z = (2(
r

2
− (α2 − β2))− r

2
)(g(Y,Z)X − g(X,Z)Y )

+ (3(α2 − β2)− εr
2

)(g(Y,Z)η(X)− g(X,Z)η(Y ))ξ

+ (3(α2 − β2)− εr
2

)η(Z)(η(Y )X − η(X)Y ). (17)

Putting Z = ξ in (2.9) we get

R(X,Y )ξ = ε[(α2 − β2) + (
2− ε

2
)r][η(Y )X − η(X)Y ]. (18)

Also the Ricci tensor S of type (0, 2) is given by

S(X,Y ) = (
r

2
− (α2 − β2))g(X,Y ) + (3(α2 − β2)− εr

2
)η(X)η(Y ), (19)

where εδ = 1 and r is the scalar curvature of the manifold M .
Also

S(X, ξ) = (
r

2
+ 2(α2 − β2)− εr

2
)η(X). (20)

Again,

(£ξg)(X,Y ) = (∇ξg)(X,Y )− εαg(φX, Y )− εαg(X,φY ) + 2βδg(X,Y )

− 2βδη(X)η(Y )

= 2βδ[g(X,Y )− η(X)η(Y )]. (21)

[∵ g(X,φY ) + g(φX, Y ) = 0].

Now for conformal Ricci soliton we have

S =
1

2
[2λ− (p+

2

n
)]g − 1

2
£xg.

Using (2.13) in the above expression and taking n = 3 we get

S(X,Y ) =
1

2
[2λ− (p+

2

3
)]g(X,Y )− βδ[g(X,Y )− η(X)η(Y )]

= Ag(X,Y )− βδ[g(X,Y )− η(X)η(Y )], (22)

where A = 1
2 [2λ− (p+ 2

3)].

Hence the manifold is η-Einstein manifold satisfying conformal Ricci soliton.
So we can state the following proposition.

Proposition 2.1 : If a 3-dimensional (ε, δ) trans-Sasakian manifold admits con-
formal Ricci soliton (g, ξ, λ) then the manifold becomes an η-Einstein manifold.
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Also,

QX = AX − βδ[X − η(X)ξ]. (23)

S(X, ξ) =
1

2
[2λ− (p+

2

3
)]η(X). (24)

Again for almost conformal Ricci soliton

S(X,Y ) = λg(X,Y )− 1

2
(p+

2

3
)g(X,Y )− βδg(X,Y ) + βδη(X)η(Y )

= (λ− βδ)g(X,Y )− 1

2
(p+

2

3
)g(X,Y ) + βδη(X)η(Y ),

where λ is a smooth function.

Thus we can state the following proposition.

Proposition 2.2 : A 3-dimensional (ε, δ) trans-Sasakian manifold admitting al-
most conformal Ricci soliton (g, ξ, λ) is an η-Einstein manifold.

Example of a 3-dimensional (ε, δ) trans-Sasakian manifold:

In this section we construct an example of a 3-dimensional (ε, δ) trans-Sasakian
manifold. To construct this, we consider a three dimensional manifold M =
{(x, y, z) ∈ R3 : z 6= 0} where (x, y, z) are the standard coordinates in R3. The
vector fields

e1 = e−z(
∂

∂x
− y ∂

∂z
), e2 = e−z

∂

∂y
, e3 = (ε+ δ)

∂

∂z

are linearly independent at each point of M. Let g be the Riemannian metric
defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1,

g(e1, e2) = g(e2, e3) = g(e3, e1) = 0.

Let η be the 1-form which satisfies the relation

η(e3) = 1.

Let φ be the (1, 1) tensor field defined by φ(e1) = −e1, φ(e2) = −e2, φ(e3) = 0.
Then we have

φ2(Z) = −Z + η(Z)e3
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for any Z,W ∈ χ(M3). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact met-
ric structure on M. Now, after calculating we have

[e1, e3] = (ε+ δ)e1, [e1, e2] = ye−ze2 +
e−2z

(ε+ δ)
e3, [e2, e3] = (ε+ δ)e2.

By Koszul’s formula we get

∇e1e1 = −(ε+δ)e3,∇e2e1 = −ye−ze2−
1

2(ε+ δ)
e−2ze3,∇e3e1 = − 1

2(ε+ δ)
e−2ze2,

∇e1e2 =
1

2(ε+ δ)
e−2ze3,∇e2e2 = ye−ze1 − (ε+ δ)e3,∇e3e2 =

1

2(ε+ δ)
e−2ze1,

∇e1e3 = (ε+ δ)e1−
1

2(ε+ δ)
e−2ze2,∇e2e3 =

1

2(ε+ δ)
e−2ze1 +(ε+ δ)e2,∇e3e3 = 0.

From the above we have found that α = (ε + δ), β = 0 and we can see that
M3(φ, ξ, η, g) is a (ε, δ) trans-Sasakian manifold.

3 Some results of conformal Ricci soliton and almost
conformal Ricci soliton on 3-dimensional (ε, δ) trans-
Sasakian manifold

In this section we shall prove two important theorems:

Theorem 1. If a 3-dimensional (ε, δ) trans-Sasakian manifold admits almost
conformal Ricci soliton and if V is point-wise collinear with ξ, then V is a constant
multiple of ξ and λ becomes a constant function i.e. almost conformal Ricci soliton
becomes conformal Ricci soliton. Also the manifold is an η-Einstein manifold and
the value of λ = 1

2p+ 2
3βγδ, provided β is constant.

Proof. A conformal Ricci soliton equation on a Riemannian manifold M of di-
mension 3 is defined by

£V g + 2S = [2λ− (p+
2

3
)]g,

where V is a vector field.

Let V be pointwise collinear with ξ (i.e. the direction of V is along ξ) i.e. V = γξ
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where γ is a function on 3-dimensional (ε, δ) trans-Sasakian manifold. Then

(£V g + 2S − [2λ− (p+
2

3
)]g)(X,Y ) = 0,

which implies

(£γξg)(X,Y ) + 2S(X,Y )− [2λ− (p+
2

3
)]g(X,Y ) = 0.

Applying the property of Lie derivative and Levi-Civita connection we have

γg(∇Xξ, Y ) + (Xγ)g(ξ, Y ) + (Y γ)g(ξ,X) + γg(∇Y ξ,X) + 2S(X,Y )

−[2λ− (p+
2

3
)]g(X,Y ) = 0.

Using (2.6) in the above equation we obtain

2βδγg(X,Y )− 2γβδη(X)η(Y ) + (Xγ)η(Y ) + (Y γ)η(X)

+2S(X,Y )− [2λ− (p+
2

3
)]g(X,Y ) = 0. (25)

Replacing Y by ξ in (3.1) we get

Xγ + (ξγ)η(X) + 2S(X, ξ)− [2λ− (p+
2

3
)]g(X,Y ) = 0. (26)

Again putting X = ξ in (3.2) we have

2ξγ + 2S(ξ, ξ)− [2λ− (p+
2

3
)] = 0. (27)

Using (2.12) in (3.3) we get

ξγ =
1

2
[2λ− (p+

2

3
)]− [

r

2
+ 2(α2 − β2)− εr

2
]. (28)

Using the value of ξγ from (3.4) in (3.2) we have

Xγ+(
1

2
[2λ− (p+

2

3
)]−2(

r

2
+2(α2−β2)− εr

2
))η(X)+2(

r

2
+2(α2−β2)− εr

2
)η(X)

−[2λ− (p+
2

3
)]η(X) = 0,

which implies

Xγ =
1

2
[2λ− (p+

2

3
)]η(X)− 2(

r

2
+ 2(α2 − β2)− εr

2
)η(X), (29)

or it can be written as

dγ = [
1

2
[2λ− (p+

2

3
)]− 2(

r

2
+ 2(α2 − β2)− εr

2
)]η, (30)
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where we put ∇X = d. Applying exterior differentiation in (3.6) and considering
λ as constant we have

[λ− 1

2
(p+

2

3
)− r

2
− 2(α2 − β2) +

εr

2
]dη = 0. (31)

Since dη 6= 0, so we have

[λ− 1

2
(p+

2

3
)− r

2
− 2(α2 − β2) +

εr

2
] = 0. (32)

Using (3.8) in (3.6) we have

dγ = 0

implies γ is constant.

Hence from (3.1) we have

2βγδg(X,Y )− 2γβδη(X)η(Y ) + 2S(X,Y )− [2λ− (p+
2

3
)]g(X,Y ) = 0,

i.e.

S(X,Y ) =
1

2
[2λ− (p+

2

3
)]g(X,Y )− βγδg(X,Y ) + γβδη(X)η(Y ).

So the manifold is an η-Einstein manifold. Putting X = Y = ei where {ei} is the
orthonormal basis of the tangent space TM where TM is a tangent bundle of M
and summing over i we get,

r =
3

2
[2λ− (p+

2

3
)]− 2. (33)

Now for conformal Ricci soliton r = −1, so using this value in the above equation
we get

λ =
1

2
p+

2

3
βγδ. (34)

Again for almost conformal Ricci soliton we consider that λ is a smooth function.
Then applying the exterior derivative in (3.6) we get

[λ− 1

2
(p+

2

3
)− r

2
− 2(α2 − β2) +

εr

2
]dη + (dλ)η = 0,

which gives

[λ− 1

2
(p+

2

3
)− r

2
− 2(α2 − β2) +

εr

2
] = 0

and
dλ = 0. (35)

So λ is a constant function and from (3.6) and (3.11) we get γ is constant.
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Theorem 2. A 3-dimensional (ε, δ) trans-Sasakian manifold admitting a confor-
mal Ricci soliton (g, ξ, λ) satisfies the following relations:
1. For α > β, the conformal Ricci soliton is shrinking.
2. For α < −β and p

2 + 1
3 > 2(α2 − β2) the conformal Ricci soliton becomes

shrinking.
3. For α < −β and p

2 + 1
3 < 2(α2 − β2) the conformal Ricci soliton becomes

expanding.
4. For 2(α2 − β2) = −(p2 + 1

3) the conformal Ricci soliton becomes steady.

Proof. Now, from conformal Ricci soliton equation we have

(£ξg)(X,Y ) = 2βδ[g(X,Y )− η(X)η(Y )].

Using conformal Ricci soliton equation and (2.11) in the above equation we have

2βδ[g(X,Y )−η(X)η(Y )]+2[(
r

2
−(α2−β2))g(X,Y )+(3(α2−β2)− rε

2
)η(X)η(Y )]

−[2λ− (p+
2

3
)]g(X,Y ) = 0. (36)

For conformal Ricci soliton we have r = −1, so the above equation becomes

[2βδ − 1− 2(α2 − β2)− 2λ+ p+
2

3
]g(X,Y )

+[6(α2 − β2)− 2βδ + ε]η(X)η(Y ) = 0. (37)

Now taking X = Y = ξ in (3.13) and using the notion g(ξ, ξ) = ε we get

2βδε− 2βδ − 2ε(α2 − β2) + 6(α2 − β2)− 2λε+ pε+
2

3
ε = 0.

Now two cases may arise for two different values of ε. Here we consider that ε = 1.
Then λ = 2(α2 − β2) + p

2 + 1
3 . Since α2 6= β2 so

(1) Suppose α2 ≥ β2, then (α + β)(α − β) > 0 which implies α always greater
than β. Then λ > 0 and the conformal Ricci soliton is shrinking.
(2) Suppose α2 < β2 and p

2 + 1
3 > 2(α2 − β2), then (α + β)(α − β) < 0 which

implies α always less than −β. Then λ > 0 and the conformal Ricci soliton
becomes shrinking.
(3) Suppose α2 < β2 and p

2 + 1
3 < 2(α2 − β2), then (α + β)(α − β) < 0 which

implies α always less than −β. Then λ < 0 and the conformal Ricci soliton
becomes expanding.
(4) Suppose 2(α2 − β2) = −(p2 + 1

3), then λ = 0 and the conformal Ricci soliton
becomes steady.
For ε = −1, similar conditions of λ will arise depending on δ which the reader
may work out.
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4 η Ricci soliton on 3-dimensional (ε, δ) trans-Sasakian
manifold

An η-Ricci soliton equation on a Riemannian manifold M of dimension 3 is
defined by

£V g + 2S + 2λg + 2µη ⊗ η = 0,

where V is a vector field.

In this section we shall prove a theorem of η Ricci soliton on 3-dimensional (ε, δ)
trans-Sasakian manifold.

Theorem 3. In a 3-dimensional (ε, δ) trans-Sasakian manifold admitting η-Ricci
soliton if V is point-wise collinear with ξ, then V is a constant multiple of ξ and
the manifold is η-Einstein manifold.

Proof. Let V be pointwise collinear with ξ (i.e. the direction of V is along ξ)
i.e. V = bξ where b is a smooth function on 3-dimensional (ε, δ) trans-Sasakian
manifold. Then

(£bξg + 2S + 2λg)(X,Y ) + 2µη(X)η(Y ) = 0. (38)

Applying the property of Lie derivative and Levi-Civita connection we have

bg(∇Xξ, Y ) + (Xb)g(ξ, Y ) + (Y b)g(ξ,X) + bg(∇Y ξ,X) + 2S(X,Y )

+2λg(X,Y ) + 2µη(X)η(Y ) = 0. (39)

Using (2.6) in (4.2) we get

2βδbg(X,Y )− 2bβδη(X)η(Y ) + (Xb)η(Y ) + (Y b)η(X)

+2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0. (40)

Putting Y = ξ in (4.3) we get

Xb+ (ξb)η(X) + 2S(X, ξ) + 2λη(X) + 2µη(X) = 0. (41)

Again putting X = ξ in (4.4) we have

bξ + S(ξ, ξ) + λ+ µ = 0. (42)

Using (2.12) in (4.5) we get

bξ = −λ− µ− [
r

2
+ 2(α2 − β2)− εr

2
]. (43)
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Using the value of bξ in (4.3) we have

Xb = (
εr

2
− r

2
− λ− µ− 2(α2 − β2))η(X). (44)

Or
db = (

εr

2
− r

2
− λ− µ− 2(α2 − β2))η. (45)

where we put ∇X = d.
Applying exterior differentiation in (4.8) we have

(
εr

2
− r

2
− λ− µ− 2(α2 − β2))dη = 0. (46)

As dη 6= 0, we have

εr

2
− r

2
− λ− µ− 2(α2 − β2) = 0. (47)

Hence from (4.8) it can be easily seen that b is constant.

So from (4.3) we have

2bβδg(X,Y )− 2bβδη(X)η(Y ) + 2S(X,Y ) + 2λg(X,Y ) + 2µη(X)η(Y ) = 0.

Therefore
S(X,Y ) = (βδb− µ)η(X)η(Y )− (λ+ bβδ)g(X,Y ). (48)

So the manifold is an η-Einstein manifold.

5 Conformal gradient shrinking Ricci soliton on 3-
dimensional (ε, δ) trans-Sasakian manifold

Theorem 4. If a 3-dimensional (ε, δ) trans-Sasakian manifold admits conformal
gradient shrinking Ricci soliton, then the manifold is an Einstein manifold.

Proof. The conformal gradient shrinking Ricci soliton equation is given by

S +∇∇f = (
1

2τ
− 2

3
− p)g, (49)

which can be reduced to the following equation

∇YDf +QY = (
1

2τ
− 2

3
− p)Y, (50)

where D is the gradient operator of g.
From (5.2) we have

∇X∇YDf +∇XQY = (
1

2τ
− 2

3
− p)∇XY.
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Now

R(X,Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X,Y ]Df

= (
1

2τ
− 2

3
− p)[∇XY −∇YX − [X,Y ]]−∇X(QY ) +∇Y (QX) +Q[X,Y ],

where R is the curvature tensor.

As ∇ is Levi-Civita connection, from the above equation we get

R(X,Y )Df = −∇X(QY ) +∇Y (QX) +Q[X,Y ] = (∇YQ)X − (∇XQ)Y. (51)

Again from (2.14) we have

QX = (
r

2
− (α2 − β2))X + (3(α2 − β2)− εr

2
)η(X)ξ.

Differentiating the above equation with respect to W and then putting W = ξ we
get

(∇ξQ)X =
dr(ξ)

2
X − εdr(ξ)

2
η(X)ξ.

Then

g((∇ξQ)X − (∇XQ)ξ, ξ) = g(
dr(ξ)

2
(X − η(X)ξ), ξ) = 0. (52)

Using (5.4) in (5.3) we get

g(R(ξ,X)Df, ξ) = 0. (53)

Now from (2.10) we obtain

g(R(ξ,X)Df, ξ) = ε[(α2 − β2) + (
2− ε

2
)r](g(X,Df)− η(X)η(Df)). (54)

From (5.5) and (5.6) we have

ε[(α2 − β2) + (
2− ε

2
)r](g(X,Df)− η(X)η(Df)) = 0.

Now since α2 6= β2 and ε = ±1, we have

g(X,Df) = η(X)g(Df, ξ), (55)

which implies

Df = (ξf)ξ. (56)

Now from (5.2) we have

g(∇YDf,X) + g(QY,X) = (
1

2τ
− 2

3
− p)g(Y,X).
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Using (5.8) and (2.6) we have

S(X,Y )− (
1

2τ
− 2

3
− p)g(Y,X) = −g(∇Y (ξf)ξ,X)

= εα(ξf)g(φY,X) + βδ(ξf)η(Y )η(X)

− Y (ξf)η(X)− βδ(ξf)g(X,Y ). (57)

Putting X = ξ in (5.9) we get

S(Y, ξ)− (
1

2τ
− 2

3
− p)η(Y ) = −Y (ξf).

So

(
r

2
+ 2(α2 − β2)− εr

2
)η(Y )− (

1

2τ
− 2

3
− p)η(Y ) = −Y (ξf). (58)

Now from (5.9) and interchanging X and Y we obtain

S(X,Y )− (
1

2τ
− 2

3
− p)g(Y,X) = εα(ξf)g(φX, Y )− βδ(ξf)g(X,Y )

+ βδ(ξf)η(Y )η(X)−X(ξf)η(Y ). (59)

Adding (5.9) and (5.11) we get

2S(X,Y )− 2(
1

2τ
− 2

3
− p)g(Y,X) = −2β(ξf)δg(X,Y ) + 2βδ(ξf)η(Y )η(X)

− (ξf)(Y η(X) +Xη(Y )). (60)

Putting the value of Y (ξf) from (5.10) in (5.12) we get

QY − (
1

2τ
− 2

3
− p)Y = −βδ(ξf)Y + βδ(ξf)η(Y )ξ

−r
2
η(Y )ξ − 2(α2 − β2)η(Y )ξ + (

1

2τ
− 2

3
− p)η(Y )ξ +

εr

2
η(Y )ξ (61)

From (5.2) we can write

∇YDf = βδ(ξf)[Y−η(Y )ξ]+[2(α2−β2)−(
1

2τ
−2

3
−p)]η(Y )ξ+(

r

2
−εr

2
)η(Y )ξ (62)

Now,

R(X,Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X,Y ]Df

= ∇X [βδ(ξf)(Y − η(Y )ξ) + [2(α2 − β2)− (
1

2τ
− 2

3
− p)

+(
r

2
− εr

2
)]η(Y )ξ)]−∇Y [βδ(ξf)(X − η(X)ξ) + [2(α2 − β2)

−(
1

2τ
− 2

3
− p) + (

r

2
− εr

2
)]η(X)ξ]−∇[X,Y ]Df
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= βδ(ξf)[X,Y ]− βδ(ξf)[η(Y )∇Xξ − η(X)∇Y ξ]
+2(α2 − β2)[η(Y )∇Xξ − η(X)∇Y ξ]

+(
r

2
− εr

2
)[η(Y )∇Xξ − η(X)∇Y ξ]

−(
1

2τ
− 2

3
− p)[η(Y )∇Xξ − η(X)∇Y ξ]−∇[X,Y ]Df. (63)

Also

∇[X,Y ]Df = βδ(ξf)([X,Y ]− η([X,Y ])ξ) + (2(α2 − β2)

−(
1

2τ
− 2

3
− p))η([X,Y ])ξ + (

r

2
− εr

2
)η([X,Y ])ξ

= βδ(ξf)[X,Y ]− βδ(ξf)∇Xη(Y )ξ

+βδ(ξf)ξ(∇Xη)Y + βδ(ξf)∇Y η(X)ξ

−βδ(ξf)ξ(∇Y η)X + [2(α2 − β2)− (
1

2τ
− 2

3
− p)]∇Xη(Y )ξ

−[2(α2 − β2)− (
1

2τ
− 2

3
− p)]ξ(∇Xη)Y

−[2(α2 − β2)− (
1

2τ
− 2

3
− p)]∇Y η(X)ξ + (

r

2
− εr

2
)∇Xη(Y )ξ

+[2(α2 − β2)− (
1

2τ
− 2

3
− p)]ξ(∇Y η)X − (

r

2
− εr

2
)ξ(∇Xη)Y

+(
r

2
− εr

2
)ξ(∇Y η)X − (

r

2
− εr

2
)∇Y η(X)ξ. (64)

Putting (5.15) in (5.12) and taking inner product with ξ we have

2(α2 − β2)− (
1

2τ
− 2

3
− p)− β(ξf) + (

r

2
− εr

2
) = 0, (65)

since ε 6= 0.
From (5.10) we obtain

βδ(ξf)η(Y ) = −Y (ξf). (66)

Putting the value of (5.17) in (5.11) we have

S(X,Y )− (
1

2τ
− 2

3
− p)g(X,Y ) = β(ξf)g(X,Y ). (67)

After contraction (5.18) reduces to

(ξf) =
−1

3β
− 1

β
(

1

2τ
− 2

3
− p) = C, (68)

where C is a constant.

So from (5.8) we get

Df = (ξf)ξ = Cξ. (69)
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Therefore

g(Df,X) = g(Cξ,X)

which implies

df(X) = Cη(X).

Taking exterior differentiation we get
Cdη = 0 as d2f(X) = 0.

So from (5.20) we have found that f is constant.

Also from (5.1) we get

S(X,Y ) = (
1

2τ
− 2

3
− p)g(X,Y ). (70)

Hence M is an Einstein manifold.

Acknowledgement: Authors are thankful to the honorable referee for valu-
able suggestions to improve the paper.
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