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ON A CHLODOVSKY VARIANT OF α– BERNSTEIN
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Abstract

In this paper, we introduce the Chlodovsky variant of α Bernstein opera-
tors which are generalizations of α Bernstein operators. We investigate some
elementary properties of this operator and then we study its approximation
properties, including a Voronovskaja type asymptotic estimate formula for
the operators.
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1 Introduction

In 1912, S. N. Bernstein [2] introduced the following sequence of Operators
Bn : C[0, 1]→ C[0, 1] defined for any n ∈ N and f ∈ C[0, 1]

Bn(f ;x) =
n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
, x ∈ [0, 1] (1)

In the last years we have several generalizations of this classical Bernstein Poly-
nomials. It is a powerful tool for numerical analysis, solutions of differential equa-
tions and computer aided geometric design. These operators are the prototype
of all the positive linear operators used in approximation and a great number of
generalizations of these operators was given. We mention a recent generalization
was given in [4], named α Bernstein operators.
In this paper we are especially interested in a Chlodovsky variant of it. This new
variant will be presented in the next section. In 1932, Chlodowsky [9] introduced a
generalization of Bernstein polynomials on an unbounded set, known as Bernstein
- Chlodovsky polynomials

Bn(f ;x) =

n∑
k=0

(
n

k

)(
x

bn

)k (
1− x

bn

)n−k
f

(
k

n
bn

)
, 0 ≤ x ≤ bn (2)
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where bn is an increasing sequence of positive terms with the properties bn →∞
and bn

n → 0 as n→∞.
Among the results obtained for the Bernstein-Chlodovsky operators we men-

tion a Voronoskaya-type theorem for the derivative of the Kantorovich variant of
the Bernstein–Chlodovsky operators, presented by Butzer and Karsli in [3]. Also,
Karsli introduced a variant of the Chlodovsky–Kantorovich operators and a vari-
ant of the Chlodovsky-Durrmeyer operators in [11] and [12]. A Chlodovsky variant
of Szasz operators was introduced in [17]. On the other hand, the q-modification
of the Bernstein-Chlodovsky operators were studied in [10].

The aim of Chlodovsky–modification is to obtain operators for approximation
on a unbounded interval. In the next section we define α–Bernstein–Chlodovsky
operators. First we give definition of this new type of operators and certain
elementary properties which play an important role in the theory of uniform ap-
proximation of functions. The main purpose is to study some results concerning
uniform convergence and estimates of the degree of approximation.

2 The α–Chlodovsky–Bernstein operators.
Basic Properties

In [4], the authors introduced a new family of operators as follows
Definition A[4] Given a function f on [0, 1], for each positive integer n and

any fixed real α, we define α-Bernstein operator for f as

Tn,α(f ;x) =
n∑
i=0

fip
(α)
n,i (x) (3)

where fi = f
(
i
n

)
. For i = 0, 1, . . . , n, the α-Bernstein polynomial pαn,i(x) of degree

n are defined by pα1,0(x) = 1− x, pα1,1(x) = x and

p
(α)
n,i (x) =

[(
n− 2

i

)
(1− α)x+

(
n− 2

i− 2

)
(1− α)(1− x) +

(
n

i

)
αx(1− x)

]
(4)

·xi−1(1− x)n−i−1,

where n ≥ 2, 0 ≤ i ≤ n, x ∈ [0, 1] and the binomial coefficients
(
k
l

)
are given by(

k

l

)
=

{
k!

l!(k−l)! , if 0 ≤ l ≤ k,
0, else

Calculating some terms given above we easily observe the followings formulas

pαn,0(x) = (1− αx)(1− x)n−1 (5)

pαn,n(x) = (1− α+ αx)xn−1

The α-Bernstein operator maps a function f , defined on [0, 1], to Tn,α(f ;x). When
α = 1, the α-Bernstein polynomial reduces to the classical Bernstein polynomial.
Our main definition is the following.
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Definition 1. Let CTn,α : C[0,∞) → C[0, bn] be the α-Chlodovsky-Bernstein
operators, defined by

CTn,α(f ;x) :=

n∑
i=0

f

(
bn
n
i

)
pαn,i

(
x

bn

)
(6)

where α ∈ R, pαn,i are defined defined in (4), f ∈ C[0,∞), x ∈ [0, bn] and (bn)∞n=1

is a positive increasing sequence of reals with the properties

lim
n→∞

bn =∞ and lim
n→∞

bn
n

= 0 (7)

Remark 1. For α ∈ [0, 1] and n ∈ N, the operator CTn,α( · ;x) is positive.

For this family of operators, we give here some of their properties and results.

Lemma 1. For all n ≥ 1, independent of α:

(i) (End point interpolation) The α–Chlodovsky–Bernstein operator for f in-
terpoletes f at both endpoints of the interval [0, bn], namely

CTn,α(f ; 0) = f(0) and CTn,α(f ; bn) = f(bn) (8)

(ii) (Linearity) The α–Chlodovsky–Bernstein operator is linear, that is,

CTn,α(λf + µg) = λCTn,α(f) + µCTn,α(g) (9)

for all function f(x) and g(x) defined on [0,∞), and all real λ and µ.

Proof. Point i) follows easily from (4) and (5) and point ii) follows from (6)

By using Theorem 2.1. from [4] the α–Chlodovsky–Bernstein operator can be
expressed as

Theorem 1. For n ∈ N, x ∈ [0, bn], α ∈ [0, 1], f ∈ C[0,∞) we have

CTn,α(f ;x) = (1− α)
n−1∑
i=0

gi

(
n− 1

i

)(
x

bn

)i(
1− x

bn

)n−i−1
(10)

+ α
n∑
i=0

fi

(
n

i

)(
x

bn

)i(
1− x

bn

)n−i
where

gi =

(
1− i

n− 1

)
f

(
x

bn
i

)
+

i

n− 1
f

(
x

bn
(i+ 1)

)
(11)

To obtain our results in an easy and elegant way, we introduce the notion of
a forward difference.
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Definition 2. Let I ⊂ R be a compact interval and f : I → R and h > 0. We
define the forward difference as

∆hf(x) = f(x+ h)− f(x). (12)

Let us define also the higher-order forward difference as

∆k
hf(x) = ∆k−1

h ∆hf(x). (13)

This last formula leads us to

∆k
hf(x) =

k∑
i=0

(−1)k+i
(
i

k

)
f(x+ ih). (14)

We will use this higher-order forward differences to rewrite the form of the operator
and to simplify our calculation for the moments of the operator. We need only
the fourth higher-order forward difference to calculate the fourth moment of the
operator. So, let us take h = bn

n and the polynomial function of degree k f(x) =
xk, where n ≥ k. Then we have

∆rf(0) = 0 for r > k (15)

and

∆kf

(
bn
n
i

)
=
bkn
nk
f (k) (ξi) =

bkn · k!

nk
, ξi ∈

(
bn · i
n

,
bn · (i+ k)

n

)
(16)

We consider now the following result

Lemma 2. The higher-order forward difference of gi, adapted to our case, can be
expressed in the form

∆rgi =

(
1− i

n− 1

)
∆rfi +

i+ r

n− 1
∆rfi+1 (17)

where gi =
(

1− i
n−1

)
f
(
bn
n i
)

+ i
n−1f

(
bn
n (i+ 1)

)
.

Now from Theorem 3.1 ([4]), pag. 6, we have

Theorem 2. The α-Chlodovsky Bernstein Operator has the following representa-
tion in terms of the difference operators

CTn,α(f ;x) =

n∑
k=0

[
(1− α)

(
n− 1

k

)
∆kg0 + α

(
n

k

)
∆kf0

]
xk (18)

Theorem 2 and Lemma 2 show that the α-Chlodovsky Bernstein Operator has
the degree-preserving property. In particular case, for f(x) = xk and n ≥ k+ 1 it
follows that

CTn,α(tk;x) = ak

(
x

bn

)k
+ ak−1

(
x

bn

)k−1
+ . . .+ a1

(
x

bn

)
+ a0 (19)

where

ak = (1− α
(
n− 1

k

)
∆kg0 + α

(
n

k

)
∆kf(0) (20)
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Lemma 3. Let CTn,α(f ;x) be given by (6). The first few moments of the opera-
tors are

(i) CTn,α(1;x) = 1

(ii) CTn,α(t;x) = x

(iii) CTn,α(t2;x) = x2 + n+2(1−α)
n2 x(bn − x)

(iv) CTn,α(t3;x) = x3 + 3[n+2(1−α)]
n2 x2(bn − x) + n+6(1−α)

n3 x(bn − x)(bn − 2x)

(v) CTn,α(t4;x) = x4 + 6[n+2(1−α)]
n2 x3(bn− x) + 4[n+6(1−α)]

n3 x2(bn− x)(bn− 2x) +
[3n(n−2)+12(n−6)(1−α)]x(bn−x)+[n+14(1−α)]

n4 x(bn − x)

(vi) CTn,α(t− x;x) = 0;

(vii) CTn,α
(
(t− x)2;x

)
= n+2(1−α)

n2 (bn − x)x

(viii) CTn,α
(
(t− x)4;x

)
= [3n(n−2)+12(n−6)(1−α)]x(bn−x)+[n+14(1−α)]

n4 x(bn − x)

where n ∈ N, x ∈ [0, bn].

Proof. (i) By taking f(x) ≡ 1 from (10) and (11) we have f
(
x
bn
i
)

= gi = 1

and

CTn,α(1;x) = (1− α)
n−1∑
i=0

(
n− 1

i

)(
x

bn

)i(
1− x

bn

)n−i−1
+ α

n−1∑
i=0

(
n

i

)(
x

bn

)i(
1− x

bn

)n−i
So, the α-Chlodovsky Bernstein operator for the constant function 1 is

CTn,α(1;x) = (1− α)
n−1∑
i=0

pn−1,i

(
x

bn

)
+ α

n∑
i=0

pn,i

(
x

bn

)
= 1.

(ii) By taking f(x) = x from (10) and (11) we have f
(
x
bn
i
)

= bn
n i and

gi =

(
1− i

n− 1

)
· bn
n
i+

i

n− 1
· bn
n

(i+ 1) =
bn

n− 1
i
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and

CTn,α(t;x) = (1− α)
n−1∑
i=0

bn
n− 1

i

(
n− 1

i

)(
x

bn

)i(
1− x

bn

)n−i−1
+ α

n∑
i=0

bn
n
i

(
n

i

)(
x

bn

)i(
1− x

bn

)n−i
= (1− α)x

n−1∑
i=0

pn−2,i(
x

bn
) + αx

n∑
i=0

pn−1,i(
x

bn
)

= (1− α)x+ αx = x

f(0) = 0 ∆f(0) =

(
bn
n

)2

∆2f(0) = 2 ·
(
bn
n

)2

f

(
bn
n

)
=

(
bn
n

)2

∆f

(
bn
n

)
= 3 ·

(
bn
n

)2

∆2f

(
bn
n

)
= 2 ·

(
bn
n

)2

f

(
2bn
n
·
)

= 4 ·
(
bn
n

)2

∆f

(
2bn
n

)
= 5 ·

(
bn
n

)2

f

(
3bn
n

)
= 9 ·

(
bn
n

)2

and

g0 = 0

∆g0 = ∆f(0) +
1

n− 1
∆f

(
bn
n

)
=
n+ 2

n− 1

(
bn
n

)2

∆2g0 = ∆2f(0) +
2

n− 1
∆2f

(
bn
n

)
= 2 · n+ 1

n− 1

(
bn
n

)2

for n ≥ 2. Thus it follows from (19) that

CTn,α(t2;x) =

[
(1− α)

(
n− 1

1

)(
bn
n

)2 n+ 2

n− 1
+ α

(
n

1

)(
bn
n

)2
]
x

bn

+

[
(1− α)

(
n− 1

2

)
2 ·
(
bn
n

)2

· n+ 1

n− 1
+ α

(
n

2

)
2 ·
(
bn
n

)2
](

x

bn

)2

=

(
bn
n

)2

· x
bn
· (n+ 2(1− α))

+

(
bn
n

)2

·
(
x

bn

)2

·
(
n2 − n− 2(1− α)

)
Grouping this terms we obtain

CTn,α(t2;x) = x2 +
n+ 2(1− α)

n2
x(bn − x)
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Similarly, we can prove (iv) and (v).
To prove (vi), (vii) and (viii) we will use the first five relations (i), (ii), (iii), (iv)
and (v), and the linearity of the Operator α-Chlodovsky Bernstein.

Corollary 1. The α Bernstein-Chlodovsky operator reproduces linear functions,
so

CTn,α(ax+ b;x) = ax+ b (21)

for all real numbers a and b.

Proof. It immediately follows from Lemma 3 (i), (ii) and the linear property.

3 Convergence Properties

Theorem A [[1], Th. 3.2. page 98][Altomare’s Theorem] Let (X, d) be a
metric space and consider a lattice subspacce E of F (X) containing the constant
functions and all function d2x(x ∈ X) where F (X) is the space of real functions
on X. Let (Ln)n≥1 be a sequence of positive linear operators from E into F (x)
and let Y be a subset of X such that

(i) limn→∞ Ln(1) = 1 uniformly on Y

(i) limn→∞ Ln(d2x;x) = 0 uniformly with respect to x ∈ Y .

Then for every f ∈ E ∩ UCb(X)

lim
n→∞

Ln(f) = f uniformly on Y

where UCb(X) is the space of all continuous bounded functions on X.
Thus, we have the following result

Theorem 3. Let f ∈ UCb[0,∞) and (bn)n≥1 defined in (7) then for any K ⊂
[0,∞) we have

lim
n→∞

CTn,α(f ;x) = f(x) (22)

uniformly with regard to x ∈ K, where CTn,α(f ;x) is considered for n sufficiently
large .

Proof. We apply Theorem A, by considering X = [0,∞), d(x, y) = |x − y| and
Y = K. So

CTn,α(1;x) = 1

and

CTn,α
(
(t− x)2;x

)
=
n+ 2(1− α)

n2
(bn − x)x
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When n tends to ∞ the last relation is

lim
n→∞

n+ 2(1− α)

n2
(bn − x)x = lim

n→∞

(
1 +

2(1− α)

n

)(
bn
n
− x

n

)
x = 0

Condition (i) and (ii) of Theorem A are satisfied for f ∈ UC[0,∞), so from this
we have

lim
n→∞

CTn,α(f ;x) = f(x).

Let be an interval. In order to determinate the degree of approximation, we
use the moduli of continuity of order 1 and 2 given by

ω1(f ;h) = sup {|f(x)− f(y)|, x, y ∈ I, |x− y| ≤ h, I ⊂ R} (23)

ω2(f ;h) = sup

{
|f(x)− 2f

(
x+ y

2

)
+ f(y)|, x, y ∈ I, |x− y| ≤ 2h, I ⊂ R

}
(24)

The general estimates with these moduli of continuity by positive linear operators
are given by the following theorems:

Theorem B[13] Let L : V → F (I) be a linear positive operator, where F (I)
is the space of real functions on compact interval I and V is a linear subspace of
F (I) such that ej ∈ V, ej = tj , j ∈ 0, 1, 2 and g ∈ V. For all y ∈ I and h > 0 one
has

|L(g, y)− g(y)| ≤|g(y)||L(e0, y)− 1|

+

(
L(e0, y) +

1

h2
L((e1 − ye0)2, y)

)
· ω1(g, h). (25)

Theorem C[14] Let L : V → F (I ) be a linear positive operator, where V is
linear subspace of C(I) such that e0, e1, e2 ∈ V and g ∈ V . Let y ∈ I and h > 0,
such that h ≤ 1

2 length(I). Then

|L(g, y)− g(y)|] ≤|g(y)||L(e0, y)− 1|+ 1

h
· |L(e1 − ye0, y)| · ω1(g, h)

+

(
L(e0, y) +

1

2h2
L((e1 − ye0)2, y)

)
· ω2(g, h) (26)

We obtain

Theorem 4. If 0 ≤ α ≤ 1, n ≥ 1, f ∈ C[0,∞) and x ∈ [0, bn] then

|CTn,α(f ;x)− f(x)| ≤ 2ω1

(
f ;

√
n+ 2(1− α)

n2
(bn − x)x

)
(27)
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Proof. We apply Theorem B and Lemma 3.

Remark 2. From Theorem 4 we can obtain an improvement of Theorem 3 since

if K ⊂ [0,∞) is an compact interval, then maxx∈K

√
n+2(1−α)

n2 (bn − x)x −→ 0
when n→∞. Consequently we have

lim
n→∞

CTn,α(f, x) = f(x) uniformly on K for any function f ∈ UC[0,∞).

Theorem 5. If 0 ≤ α ≤ 1, n ≥ 1, f ∈ C[0,∞) and x ∈ [0, bn] then

|CTn,α(f ;x)− f(x)| ≤ 3

2
ω2

(
f ;

√
n+ 2(1− α)

n2
(bn − x)x

)
(28)

Proof. We apply Theorem C and Lemma 3.

4 A Voronovskaja type Theorem for α–Bernstein–Chlodovsky
Operators

Theorem 6. Let f ∈ C2[0,∞) and x ∈ [0, bn]. If f ′′ is uniform continuous on

[0,∞) and limn→∞ ω(f ′′;
√

CTn,α((t−x)4;x)
CTn,α((t−x)2;x)) = 0, then

lim
n→∞

n

bn
[CTn,α(f ;x)− f(x)] =

1

2
xf ′′(x). (29)

uniformly on any compact set.

Proof. We have by Taylor’s formula

f(t) = f(x) + (t− x)f ′(x) +
1

2
(t− x)2f ′′(x) + ηx(t)(t− x)2

where limt→x ηx(t) = 0.. Thus we have

n

bn
[CTn,α(f ;x)− f(x)] =

n

bn
(f ′(x)CTn,α(t− x;x) +

1

2
f ′′(x)CTn,α((t− x)2;x)

+CTn,α(ηx(t)(t− x)2;x)).

From Lemma (3) we obtain

n

bn
[CTn,α(f ;x)− f(x)] =

n

bn
(
1

2
f ′′(x)

n+ 2(1− α)

n2
x(bn − x)

+CTn,α(ηx(t)(t− x)2;x)).
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Now by taking limit as n→∞ for the first term, we obtain that

lim
n→∞

n

bn

1

2
f ′′(x)

n+ 2(1− α)

n2
x(bn − x)

=
1

2
xf ′′(x) lim

n→∞

n

bn

n
(

1 + 2(1−α)
n

)
n2

bn

(
1− x

bn

)
=

1

2
xf ′′(x).

Now we have to show that the rest of Taylor’s formula tends to zero also. So

|ηx(t)| =
∣∣∣∣∫ t

x
(t− u)[f ′′(u)− f ′′(x)]du

∣∣∣∣
≤
∫ t

x
|(t− u)|

∣∣f ′′(u)− f ′′(x)
∣∣ du

≤
∫ t

x
(t− u)ω(f ′′, h)

(
1 +

(u− x)2

h2

)
du

≤ ω(f ′′, h)

[
(t− x)2

2
+

1

h2

∫ t

x
(u− x)2(t− u)du

]
≤ ω(f ′′, h)

[
(t− x)2

2
+

(t− x)4

12h2

]
.

Applying the operator to the above inequality we obtain

CTn,α (|ηx(t)|;x) ≤ ω1(f
′′, h)

[
CTn,α

(
(t− x)2;x

)
2

+
CTn,α

(
(t− x)4;x

)
12h2

]
.

From Lemma 3 we have that

CTn,α((t− x)4;x) = o
(
CTn,α((t− x)2;x)

)
.

And by taking h = hn =
√

CTn,α((t−x)4;x)
CTn,α((t−x)2;x) =

√
[3n(n−2)+12(n−6)(1−α)]x(bn−x)+[n+14(1−α)]

n2[n+2(1−α)]
we have

lim
n→∞

ω(f ′′;hn) = 0

All this leads us to the assertion in Theorem 6.

For a quantitative estimations of the above result we consider the least concave
majorant ω̃1(f ; ε)

ω̃1(f ; ε) =

{
sup

{
(ε−x)ω1(f ;y)+(y−ε)ω(f ;x)

y−x , 0 ≤ x ≤ ε ≤ y ≤ b− a, x 6= y
}

ω1(f ; b− a), ε > b− a

where f ∈ C[a, b], ε > 0.
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Theorem D.[6] Let q ∈ N0, f ∈ Cq[0, 1] and L : C[0, 1] → C[0, 1] be a posi-
tive linear

∣∣∣∣∣L(f ;x)−
q∑
r=0

L((e1 − x)r;x) · f
(r)(x)

r!

∣∣∣∣∣
≤ L(|e1 − x|q;x)

q!
· ω̃1

(
f (q);

1

q + 1
· L(|e1 − x|q+1;x)

L(|e1 − x|q;x)

)
Remark 3. Theorem D can be extended also for a linear and positive operator
L : C[a, b]→ C[a, b] without any change.

Theorem 7. Let f ∈ C2[0,∞), x ∈ [0, bn] and (bn)∞n=1 defined in (7). Then∣∣∣∣ nbn (CTn,α(f ;x)− f(x))− 1

2
xf ′′(x)

∣∣∣∣ ≤|f ′′(x)|x
∣∣∣∣− x

bn
+

2(1− α)

n
− 2(1− α)

nbn
x

∣∣∣∣
+
x

2

(
1 +

2(1− α)

n

)
ω̃1

(
f ′′;

1

3

√
M2(x)

M4(x)

)

where Mi(x) = CTn,α
(
|t− x|i;x

)
, i ∈ N

Proof. From Theorem D by taking q = 2, we obtain∣∣∣∣CTn,α(f ;x)− f(x)− 1

2

n+ 2(1− α)

n2
(bn − x)x · f ′′(x)

∣∣∣∣ (30)

≤ M2(x)

2
ω̃1

(
f ′′;

1

3

M3(x)

M2(x)

)
.

Applying the Cauchy-Schwartz-Buniakowski inequality we have

M3(x)

M2(x)
≤

√
M4(x)

M2(x)
(31)

From inequalities (30) and (31) it results

∣∣∣∣ nbn (CTn,α(f ;x)− f(x))− 1

2
xf ′′(x)

∣∣∣∣ ≤ | nbn [CTn,α(f ;x)− f(x)

−1
2f
′′(x) · n+2(1−α)

n2 (bn − x)x]|

+1
2 |f
′′(x) · x|

∣∣∣ nbn · n+2(1−α)
n2 (bn − x)− 1

∣∣∣
≤ x

2

(
1 + 2(1−α)

n

)
ω̃1

(
f ′′; 1

3

√
M2(x)
M4(x)

)
+1

2 |f
′′(x)|x

∣∣∣− x
bn

+ 2(1−α)
n − 2(1−α)

nbn
x
∣∣∣
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Remark 4. From Theorem 7 we can obtain Theorem 4 since if K ⊂ [0,∞) is an

compact interval, then maxx∈K

√
M2(x)
M4(x)

−→ 0 when n → ∞ and limn→∞− x
bn

+
2(1−α)
n − 2(1−α)

nbn
x = 0. Consequently we have

lim
n→∞

n

bn
[CTn,α(f ;x)− f(x)] =

1

2
xf ′′(x). uniformly on K for any function

f ∈ UC[0,∞).
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