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ON THE EXISTENCE AND MULTIPLICITY RESULTS FOR
A CLASS OF ELLIPTIC PROBLEMS WITH SINGULAR

WEIGHTS AND FAILING ZEROES

S. H. RASOULI1

Abstract

In this paper we consider the existence of positive solutions of singular
elliptic problems of the form{

−div(|x|−ap |∇u|p−2∇u) = λ |x|−(a+1)p+b f(u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

where Ω is a bounded smooth domain of RN with 0 ∈ Ω, 1 < p < N,
0 ≤ a < N−p

p , and b, λ are positive parameters. Here f : [0,∞) → R is
continuous function. We discuss the existence of positive solution when f
satisfies certain additional conditions. We use the method of sub-super solu-
tions to establish our results.
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1 Introduction

We study the existence of positive solutions to the singular elliptic problem{
−div(|x|−ap |∇u|p−2∇u) = λ |x|−(a+1)p+b f(u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1)

where Ω is a bounded smooth domain of RN with 0 ∈ Ω, 1 < p < N, 0 ≤ a < N−p
p ,

and b, λ are positive parameters. Here f : [0,∞)→ R is continuous function.

Elliptic problems involving more general operator, such as the degenerate
quasilinear elliptic operator given by −div(|x|−ap |∇u|p−2∇u), were motivated
by the following Caaffarelli, Kohn and Nirenberg’s inequality (see [6], [15]). The
study of this type of problem is motivated by its various applications, for exam-
ple, in fluid mechanics, in newtonian fluids, in flow through porous media and
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in glaciology (see [3, 9]). So, the study of positive solutions of singular elliptic
problems has more practical meanings. We refer to [1], [2], [5], [11] for additional
results on elliptic problems.

For the regular case, that is, when a = 0 and b = p and the quasilinear el-
liptic equation has been studied by several authors (see [12, 4]). See [8] where
the authors discussed the problem (1) when a = 0, b = p = 2. In [14], the au-
thors extended the study of [8], to the case when p > 1. Here we focus on further
extending the study in [12] for the quasilinear elliptic problem involving singu-
larity. Due to this singularity in the weights, the extensions are challenging and
nontrivial. Our approach is based on the method of sub-super solutions, see [7, 10].

2 Preliminaries

In this paper, we denote W 1,p
0 (Ω, |x|−ap), the completion of C∞0 (Ω), with re-

spect to the norm ‖u‖ = (
∫

Ω |x|
−ap|∇u|pdx)

1
p . To precisely state our existence

result we consider the eigenvalue problem{
−div(|x|−ap |∇φ|p−2∇φ) = λ|x|−(a+1)p+b |φ|p−2φ, x ∈ Ω,
φ = 0, x ∈ ∂Ω.

(2)

Let φ1,p be the eigenfunction corresponding to the first eigenvalue λ1,p of (2) such
that φ1,p(x) > 0 in Ω, and ||φ1,p||∞ = 1 (see [13, 16]). It can be shown that
∂φ1,p
∂n < 0 on ∂Ω. Here n is the outward normal. This result is well known and

hence, depending on Ω, there exist positive constants ε, δ, σp such that

λ1,p |x|−(a+1)p+b φp1,p − |x|
−ap |∇φ1,p|p ≤ −ε, x ∈ Ω̄δ, (3)

φ1,p ≥ σp, x ∈ Ω0 = Ω \ Ω̄δ, (4)

where Ω̄δ = {x ∈ Ω | d(x, ∂Ω) ≤ δ} (see [13]).

3 Our results

A nonnegative function ψ is called a subsolution of (1) if it satisfy ψ ≤ 0
on ∂Ω and∫

Ω
|x|−ap |∇ψ|p−2 |∇ψ| · ∇w dx ≤ λ

∫
Ω
|x|−(a+1)p+b f(ψ)w dx,

∫
Ω
|x|−ap |∇ z|p−2 |∇ z| · ∇w dx ≥ λ

∫
Ω
|x|−(a+1)p+b f(z)w dx,

for all w ∈W = {w ∈ C∞0 (Ω)|w ≥ 0, x ∈ Ω}. Then the following result holds:

Lemma 3.1. (See [13]) Suppose there exist sub and super- solutions ψ and z
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respectively of (1) such that ψ ≤ z. Then (1) has a solution u such that ψ ≤ u ≤ z.

We make the following assumptions:

(H1) There exists µ > 0 such that f(y)(µ− y) > 0; y 6= µ1.

(H2)

lim
y→0+

f(y)

yp−1
= 0.

We establish:

Theorem 3.2. Assume (H1) holds. Then the problem (1) admits a positive
large solution provided λ is large.

Theorem 3.3. Assume (H1) and (H2) hold. Then the problem (1) has at least
two positive solutions provided λ is large.

4 Proof of Theorems 3.2-3.3

Proof of Theorem 3.2

For fixed γ ∈ (0, µ), we shall verify that ψ = (γ2 )
1
p−1 (p−1

p )φ
p
p−1

1,p , is a sub-solution
of (1). Let w ∈W . Then a calculation shows that∫

Ω
|x|−ap |∇ψ|p−2∇ψ∇w dx

= (
γ

2
)

∫
Ω
|x|−ap φ1,p |∇φ1,p|p−2∇φ1,p∇w dx

= (
γ

2
)

∫
Ω
|x|−ap |∇φ1,p|p−2∇φ1,p [∇(φ1,pw)− |∇φ1,p|pw] dx

= (
γ

2
)

∫
Ω

[λ1,p |x|−(a+1)p+b φp1,p − |x|
−ap |∇φ1,p|p]w dx.

First we consider the case when x ∈ Ω̄δ. We have λ1,p |x|−(a+1)p+c1 φp1,p −
|x|−ap |∇φ1,p|p ≤ −ε on Ω̄δ. Since f(ψ) ≥ 0, it follows that

(
γ

2
)

∫
Ω̄δ

[λ1,p |x|−(a+1)p+c1 φp1,p − |x|
−ap |∇φ1,p|p]w dx

≤ −(
γ

2
)ε

∫
Ω̄δ

w dx

≤ λ

∫
Ω̄δ

|x|−(a+1)p+p f(ψ)w dx.
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On the other hand, on Ω \ Ω̄δ, we have φ1,p ≥ σp, for some 0 < σp < 1. We
can find λ∗ sufficiently large such that

(
γ

2
)λ1,p < λ min

s∈[
γσp
2
,γ]
f(s),

for all x ∈ Ω \ Ω̄δ and for all λ ≥ λ∗. Hence

(
γ

2
)

∫
Ω\Ω̄δ

[λ1,p |x|−(a+1)p+b φp1,p − |x|
−ap |∇φ1,p|p]w dx

≤ (
γ

2
)

∫
Ω\Ω̄δ

|x|−(a+1)p+b λ1,pw dx

≤ λ

∫
Ω\Ω̄δ

|x|−(a+1)p+b min
s∈[

γσp
2
,γ]
f(s)w dx

≤ λ

∫
Ω\Ω̄δ

|x|−(a+1)p+b f(ψ)w dx.

Hence∫
Ω
|x|−ap |∇ψ1|p−2 |∇ψ1| · ∇w dx ≤

∫
Ω
|x|−(a+1)p+c1 f(ψ1)h(ψ2)w dx,

i.e., ψ is a sub-solution of (1).
Next it is easy to see that constant function z = µ is a super-solution of (1) with
z ≥ ψ. Thus, by [13] there exists a positive solution u of (1) such that ψ ≤ u ≤ z.
This completes the proof of Theorem 3.2. �

Proof of Theorem 3.3
To prove Theorem 3.3, we will construct a subsolution ψ, a strict supersolution
ξ, a strict subsolution w1, and a supersolution z1 for (1) such that ψ ≤ ξ ≤ z,
ψ ≤ w ≤ z, and w � ξ. Then (1) has at least three distinct solutions ui, i = 1, 2, 3,
such that u1 ∈ [ψ, ξ], u2 ∈ [w, z], and

u3 ∈ [ψ, z] \
(
[ψ, ξ] ∪ [w, z]

)
.

We first note that ψ = 0 is a solution (hence a subsolution). In the proof of

Theorem 3.3 we saw that for λ large, w = (γ2 )
1
p−1 (p−1

p )φ
p
p−1

1,p , is a positive strict
subsolution. And also we know that z = µ is a super-solution of (1) with z ≥ w.
Now we will show that there is a positive and strict supersolution ξ such that

ξ ≤ z and w � ξ. From (H2) we can choose α ∈ (0, (γ2 )
1
p−1 (p−1

p )) such that for
0 < y < α,

λ f(y) < λ1,p y
p−1.
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Let ξ = αφ1,p. Then,∫
Ω
|x|−ap |∇ξ1|p−2∇ξ1∇w dx = αp−1

∫
Ω
|x|−ap |∇φ1,p|p−2∇φ1,p∇w dx

= λ1,p

∫
Ω
|x|−(a+1)p+b |αφ1,p|p−2w dx

> λ

∫
Ω
|x|−(a+1)p+b f(αφ1,p)w dx

≥ λ

∫
Ω
|x|−(a+1)p+b f(ξ)w dx.

Thus ξ is a strict supersolution and w � ξ. Hence there exists solutions u2 ∈ [ψ, ξ],
u3 ∈ [w, z], and u ∈ [ψ, z] \

(
[ψ, ξ] ∪ [w, z]

)
. Thus we have two positive solutions

u2 and u3. Hence Theorem 3.3 holds. �
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