Bulletin of the Transilvania University of Bragov e Vol 10(59), No. 1 - 2017
Series II1: Mathematics, Informatics, Physics, 67-82

IDEALS OF A COMMUTATIVE ROUGH SEMIRING

V. M. CHANDRASEKARAN?, A. MANIMARAN*? and B. PRABA'

Abstract

In this paper, we proved that for every subset X of U there is a
corresponding ideal Jy of the rough semiring (T, A,V) also we gave a
characterization theorem for the ideals in the rough semiring (T, A, V) by
proving every ideal in (7', A, V) will be of the form Jx for some subset X of
U and the properties of these ideals are discussed with suitable examples.
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1 Introduction

Fundamentals of semigroups were discussed by J. M. Howie [14] in his
classical book in 2003. Z.Pawlak [23] introduced the concept of rough set theory
in 1982 to process incomplete information in the information system and it is
defined as a pair of sets called lower and upper approximation. Rough sets can
be applied in many fields like data analysis, pattern recognition, remove
redundancies and generate decision rules. Also rough set theory will be applied
in several fields like computational intelligence such as machine learning,
intelligent systems, knowledge discovery, expert systems and others
[27],[22],[5],[1],[7]. Praba and Mohan [26] discussed the concept of rough lattice.
In this paper the authors considered an information system I = (U, A4). A
partial ordering relation was defined on 7' = { RS(X) | X C U}. The least upper
bound and greatest lower bound were established using the operation Praba A
and Praba V. Praba et al.[24] discussed a commutative regular monoid on
rough sets under the operation Praba A in 2013. In this paper the authors dealt
with the rough ideals on (7,A). Manimaran et al.[20] studied the notion of a
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regular rough V monoid of idempotents under Praba V in 2014. Praba et al.
[25] dealt with semiring on the set of all rough sets also the authors discussed
the pivot rough set as rough ideals on rough semiring in 2014. Manimaran et
al.[21] discussed the characterization of rough semiring in 2017. Also, we defined
the concept of rough homomorphism between two rough semirings (7, A, V) and
(T',A1,V1). N. Kuroki and P. P. Wang [17] discussed some properties of lower
and upper approximations with respect to the normal subgroup. R. Biswas and
S. Nanda [2] introduced the notion of rough groups and rough subgroups. The
concept of rough ideal semigroup was introduced by Kuroki [18] in 1997. M.
Kondo [16] described the notion of the structure on generalized rough sets in
2006. Changzhong Wang and Degang Chen [4] discussed about a short note on
some properties of rough groups and the authors studied the image and inverse
image of rough approximations of a subgroup with respect to a homomorphism
between two groups in 2010. Zadeh [28] introduced the concept of fuzzy sets in
his paper. Golan [11] described the concept of ideals in semirings in 1999.

Yonghong Liu [19] dealt with the concepts of special lattice of rough algebras
in 2011. Ronnason Chinram [6] introduced the concept of rough prime ideals and
rough fuzzy prime ideals in gamma semigroups in 2009. Also the authors T. B.
Iwinski [15] and Z. Bonikowaski [3] studied algebraic properties of rough sets. The
concept of rough fuzzy sets and fuzzy rough sets was introduced by D. Duboais,
H. Parade [8]. Nick C. Fiala [9] discussed about semigroup, monoid and group
models of groupoid identities in his paper. Gupta and Chaudhari [12] described
that an ideal is a partitioning ideal if and only if it is a subtractive ideal. They also
proved that a monic ideal is a partitioning ideal if and only if it is a substractive
ideal. Hong et al. [13] dealt with some resultants over commutative idempotent
semirings in 2017.

In this paper we discuss the ideals of a rough semiring (7', A, V) and we give a
relation between the principal rough ideal of a commutative regular rough monoid
of idempotent (T, V) and the rough semiring (7', A, V) for the given information
system I = (U, A) where the information system is defined by using the universal
set U and a nonempty set of fuzzy attributes A. The paper is organized as follows.

In section 2, we give the necessary definitions related to rough set theory.

In section 3, we deal with the ideals of a rough semiring (7,A,V) and a
relation between the principal rough ideal of a commutative regular rough monoid
of idempotent (7, V) and the ideals of a rough semiring (7, A, V).

Section 4 deals with the properties of the ideals of rough semiring.

Section 5 gives the conclusion.

2 Preliminaries

In this section we present some preliminaries in rough sets and monoids.
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2.1 Rough sets

An information system is a pair I = (U, A) where U is a non empty finite
set of objects, called universal set and A is a nonempty set of fuzzy attributes
defined by pg : U — [0,1], a € A, is a fuzzy set. Indiscernibility is a core concept
of rough set theory and it is defined as an equivalence between objects. Objects
in the information system about which we have the same knowledge forms an
equivalence relation.

Formally any set P C A, there is an associated equivalence relation called
P — Indiscernibility relation defined as follows,

IND(P) = {(z,y) € U? | Ya € P, pa(x) = pa(y)}-
The partition induced by I N D(P) consists of equivalence classes defined by
[z], ={y €U | (z,y) € IND(P)}.

For any X C U , define the lower approximation space P(X) ={z e U | [z], C
X}.
Also, define the upper approximation space P(X) ={z € U | [z], N X # ¢}.

Let I = (U, A) be an information system, where U is a non empty finite set
of objects, called the universe, A is a non empty finite fuzzy set of attributes and
T ={RS(X) | X CU} denotes the set of all rough sets.

Definition 2.1 (Rough set). A rough set corresponding to X, where X is an
arbitrary subset in in the approrimation space P, we mean the ordered pair
RS(X) = (P(X), P(X)).

Example 2.1. [26] Let U = {x1, x2,x3, 24, 25,26} and A = {a1, a2, a3, as} where
each a; (i =1 to 4) is a fuzzy set whose membership values are shown in Table
1.

Table 1:

A/U al a2 as a4
T1 0 0.1 ] 03] 0.2
T2 1 0.6 | 0.7 | 0.3
T3 0 0.1 | 03| 0.2
T4 1 0.6 | 0.7 | 0.3
5 08|05 (02104
T6 1 0.6 | 0.7 | 0.3

Let X = {z1,x3,x5,26} and P = A. Then the equivalence classes induced by
the P — Indiscernibility are given below.

Xy =[m], = {z1,23} (1)
Xa = [x2], = {w2, 74,26} (2)
Xy =las], = {xs} (3)
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Hence, P(X) = {x1,z3,25} and
P(X) = {x1, 22, 3, 4,5, T6 }.
Therefore RS(X) = ({1, 23,25}, {r1, 22, 3, T4, 5, T6})-

Note that the upper approximation space consists of those objects that are
possibly members of the target set X.

Definition 2.2. [26] If X C U, then the number of equivalence classes
(Induced by IND(P)) contained in X is called as the Ind. weight of X. It is
denoted by IW (X).

Example 2.2. [26] Let U = {x1,x2,--- ,x6} as in Table 1 and from equations
(1),(2) € (3). The equivalence classes induced by IN D(P) are

[z1], = {2123}
[22], = {22,246}
[z5], = {ws}

Let X = {x1,z4,25} C U then by definition, Ind. weight of X = IW(X) =1
(since there is only one equivalence class [x5], = {x5} present in X).

Definition 2.3. [26] Let X,Y C U. The Praba A is defined as

XAY =XUY,if IWXUY)=IWX)+IW(Y)—-IW(XNY).
If IW(XUY)>IWX)+IW(Y)—-IW(XNY), then identify the equivalence
class obtained by the union of X and Y. Then delete the elements of that class
belonging to Y. Call the new set as Y. Now, obtain XAY . Repeat this process
until IW(XUY)=IW(X)+IW(Y)-IW(XNY).

Example 2.3. [26] Let U = {x1,22,...,26} as in Table 1.
Let X = {x2,x4,25},Y = {x1,26} C U then by definition,

IW(X)=1; IW(Y)=0; IW(XUY)=2 IW(XNY)=0

Here,
IWXUY)>IWX)+IW(Y)-IW(XNY).

The new equivalence class formed in X UY is [xa],. As ¢ € Y and x¢ is an
element of [x2]y,, delete x¢ from Y. Now the new Y is {z1}. Now for X =
{z2, 25,26} andY = {x1}. Finding IW(X UY),

IW(XUY) =IW(X)+IW(Y) - IW(XNY).
Therefore, XAY = X UY = {x1, 29,24, 25}.

Definition 2.4. [26] If X, Y C U then an element x € U is called a Pivot element,
if [z, € XNY, but 2], N X # ¢ and [z],NY # ¢

Definition 2.5. [26] If X, Y C U then the set of Pivot elements of X and Y is
called the Pivot set of X and Y and it is denoted by Pxny -



Ideals of a commutative rough semiring 71

Definition 2.6. [26] Praba V of X and Y is denoted by XVY and it is defined
as
XVY ={z | [z], S X NY}UPxny where X,Y CU.

Note that each Pivot element in Pxy is the representative of that particular class.

Example 2.4. [26] Let U = {x1,22,...,2¢} as in Table 1.

and let X = {x1,x2,x4,25} and Y = {x3, 25,26} CU then X NY = {x5}

Here, [x1], € X NY, but [x1], N X # ¢ and [x1],NY # ¢. Therefore x1 is a pivot
element

Similarly xo is a pivot element. Also pivot set Pxny = {x1,z2}. Therefore XNY =
{1, 29,25}

Similarly YV X = {3, x5, x4}

S XVY £YVX
fs](i(v}/) = ([z5]p, [21]p U [z2]p U [75]p) and RS(YVX) = ([x5]p, [21]p U [22]p U
x5 D

- RS(XVY) = RS(YVX).

Definition 2.7 (Binary operation as A). [24] Let T' be the collection of rough
sets and let A: T x T — T such that A(RS(X),RS(Y)) = RS(XAY).

Theorem 2.1. [24] Let I = (U, A) be an information system where U is the
universal (finite) set and A is the set of attributes and T is the set of all rough
sets then (T, A) is a commutative monoid of idempotents.

Theorem 2.2. [24] (T, A) is a reqular rough monoid of idempotents.

Definition 2.8 (Binary operation as V). [20] Let T be the collection of rough
sets and let V : T x T — T such that V(RS(X),RS(Y)) = RS(XVY).

Theorem 2.3. [20] Let I = (U, A) be an information system where U is the
universal (finite) set and A is the set of attributes and T is the set of all rough
sets then (T,V) is a monoid of idempotents and it is called rough monoid of
idempotents.

Theorem 2.4. [20] (T, V) is a commutative rough V monoid of idempotents.

Theorem 2.5. [20] (T,V) is a commutative regular rough ¥V monoid of
idempotents.

Theorem 2.6. [25] (T, A, V) is a rough semiring.

Theorem 2.7. For any subset X of U the principal ideal generated by RS(X) in
T (with respect to A) is given by RS(X)AT =Ty where Ty = {RS(Y) | Y €
(XUP(E\Ex)UP(Px))}, E = {X1, Xo,..X,,} is the equivalence classes induced
by Ind(P) and Ex 1is the set of all equivalence classes contained in X .

Theorem 2.8. For any subset X of U, the principal ideal generated by RS(X)
in T (with respect to V) is given by RS(X)VT =Ty where To = {RS(Y) | Y €
(P(Ex)UP(Zx))} where Zx ={x €U | [z], N X # ¢}, P(Ex) is the power set
of Ex and P(Zx) is the power set of Zx.
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In the following section, we discuss the ideals of a commutative rough semiring
(T, A, V), the principal ideals of a regular rough monoid of idempotents (7', V)
and relation between them with their properties.

3 Ideals of a rough semiring and principal ideals of a
commutative regular rough V monoid of
idempotents

In this section, we consider an information system I = (U, A). Now for any

X CU,RS(X)=(P(X),P(X)) be the rough set and let T'= {RS(X)|X C U}
be the set of all rough sets and let E = { X7, X»,...X,,} be the equivalence classes
induced by Ind(P)

For any subset X of U, let Ex be the set of equivalence classes contained in
X, Px be the set of pivot elements of X and P(X) be the power set of X which

is a subset of U.

Theorem 3.1. For any X C U, let Jx = {RS(Y) | Y € P(X)} then Jx is an
ideal of (T, A, V).

Proof. Case 1: Let RS(Y),RS(Z) € Jx where Y,Z € P(X) and X C U implies
that YAZ C X then RS(YAZ) € Jx.

Case 2: Let RS(Y) € Jx and RS(Z) € T.

Subcase 1: If Z C X then RS(YVZ) € Jx.

Subcase 2: If Z ¢ X and ZN X # ¢ then YVZ = YV(Z N X) C X implies
RS(YVZ) € Jy.

Subcase 3: If Z ¢ X and ZN X = ¢ then RS(YVZ) = RS(¢) € Jx.

Therefore Jx is an ideal. ]

Theorem 3.2. Let J ={Jx | X CU} and R = {< RS(X) > | X C U} then
J=R.

Proof. Let X C U and consider the ideal generated by RS(X) where
< RS(X) >= RS(X)VT = {RS(Y) | Y € P(Ex)U P(Zx)} and
Jx = {RS(Y) | Y € P(X)}. To prove that < RS(X) >= Jx. Let
RS(Y) € RS(X)VT then Y € P(Ex) U P(Zx) <C X where
Zx =A{x € U | [z][, N X # ¢} implies that RS(Y) € Jx. Conversely, if
RS(Y) € Jx then Y € P(X) implies that Y C X implies that Y =Y N X. Since
XVY ={z | [z][, CXNY}UPxay ={z | [z], CY}UPy =Y. Therefore
RS(Y) = RS(XVY) = RS(X)VRS(Y) € RS(X)VT implies that
RS(Y) € RS(X)VT. Hence J = R. O

Theorem 3.3 (Characterization theorem for the rough ideals in rough semiring
(T,A,V)). Let (T,A,V) be a rough semiring and let Jy be a rough ideal in T then
J1 = Jx for some subset X of U.
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Proof. As U is finite, |T| is also finite and J; C T implies that |J;| is also finite.
Let J1 = {RS(Y1), RS(Y2),...RS(Yy)} where k < |T| then we have to prove that
Ji = Jx for some subset X of U. Let X = Y{AY5A...AY, then
Jx = {RS(Z) | Z € P(ViAYaA-- AY;)}. Let RS(Y;) € J then RS(Y) € Jy.
Conversely, let RS(Z) € Jx implies that Z € P(X) implies that
7 € P(YlAYQAAYk)} where Z = EZ U PZ = Ezﬁpz. Let Yl,YQ,"‘}/r be
the subsets containing the equivalence classes that are completely contained in Z
and let Pz is a subset of Y3, AY;,A--- AY;, where 1y,12,13,---t; € {1,2,3,---r}.
Therefore RS(Z) = RS(EzAPyz) = RS(EZz)ARS(Pz) =
(RS(VIAY2A - - AY,)VRS(Ez))A(RS(Yy, AY,, A - - - AY; )VRS(Py)) since
RS(Y1AYs---AY,) € Ji, RS(E(Z) € T and Jj is an ideal in 7. Therefore
RS(iAY,A ---AY,)VRS(Ez) € Jy similarly RS(Y,AY,A---AY;) € Ji,
RS(Py) € T and J; is an ideal in 7. Therefore
RS(Yy AY,A--- AY; )VRS(Pz) € Ji1 and Jp is closed under A.  Hence
(RS(Y1AY2A -+ AY,)VRS(Ez))A(RS(Yy, AY,, A AY; )VRS(Py)) € Ji.
Therefore RS(Z) € J1. Hence J; = Jx. d

3.1 Examples
Example 3.1. From example 2.1, let X = {x1,x9,x5} then

P(X) = {¢, {z1},{z2}, {w5}, {z1, 22}, {w1, 25}, {22, 25}, {21, 22, 75} }

and from equations (1),(2) & (3), we have,
Jx = {RS(9), RS({x1}), RS({x2}), RS(X3), RS({w1} U {w2}), RS({a1} U
X3}), RS({z2} U X3}), RS({z1} U {2} U X3})} where

T = {RS(6), RS({a1}), RS({xa}), RS(X1), RS(Xa), RS(Xa), RS({a1} U

{xg}),RS({xl} U Xg),RS({xQ} U X3),RS(X1 U {xg}),RS({xl} U XQ),RS(Xl U
Xg),RS(Xl U X3),RS(X2 U Xg),RS({l‘l} U Xy U Xg),RS(Xl U {:L'Q} U
X3),RS({.’L‘1}U{xQ}UX3),RS(U)}
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Table 2:
A RS(¢) | RS({z1})| RS({z2})| RS(X3) | RS({z1}4 RS({x1}Y RS({z2} RS({z1}U
{z2}) Xs) X3) {z2} U
X3)
RS(¢) | RS(¢) | RS({z1})| RS({z2})| RS(X3) | RS({z1}Y RS({z1}Y RS({z2}4 RS({a1}Y
{x2}) X3) X3) {:;?})U

RS{z )| RS{er )| RS{ah)| RSUzidd RSz 3d RS{z}U RS{z U RS{wi U RS{w: U
{z2}) X3) {z2}) X3) {z2} U {z2} U

X3) X3)

RS({z2))| RS{wa})| RSUaztd RS({a2})| RS({z2}d RS{z1}U RS{z1}U RS{wall RS{w: U
{z2}) X3) {z2}) {z2} U X3) {z2} U
X3) X3)

RS(Xs) | RS(Xs) | RS{z1 ) RS({z2}U RS(Xs) | RS{z 3 RS({z1}U RS{ws}d RS({w1}U
Xs) Xs) {z2} U Xs) Xs) {2} U
X3) Xs)

RS({.’£1}L RS({JZl}L RS({Il}L RS({ZEl}L RS({wl}L RS({.’£1}L RS({JZl}L RS({{El}L RS({xl}L
{z2}) {z2}) {z2}) {w2}) {2} U {x2}) {w2} U | {a2}u | {z2}U

X3) X3) X3) X3)

RS({.’[l}L RS({&H}L RS({JH}L RS({.Tl}L RS({CE1}L RS({CEl}L RS({QZl}L RS({IEl}L RS({xl}L
X3) X3) X3) {z2} U X3) {z2} U X3) {z2}U | {z2}U
X3) X3) X3) X3)

RS({za}) RS({z}) RS{z} RS{z} RSz} RSz }d RSz }U RS({wa}U RS({z1}d
Xd) Xg) {mg} U X5) X,j) {1'2} @] {.%2} U X5) {xz} U
X3) X3) X3) X3)

RS{z1})URS{z1 HURS{z1 HURS{z1 HU RS({z1 HURS {1 HU RS ({z1 U RS({z1 U RS {z1 }U
{332} U {:L'Q} @] {:Ez} @] {:CQ} @] {:CQ} U {332} U {SL'Q} @] {:Ez} @] {xz} @]
Xg) Xg) Xg) X3) X3) XB) XS) XS X3)

From Table 2, it is clear that Jx is closed under A
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({ez} n{lz})sy ({ez})sy {tz})sy (9)sy (P)sy

{ez} n{Tz})sy ({ez})sy {Tz})sy (P)sy v
¥ 91qRL

{()sy ‘(ex n{zz} n{re})gy ‘(tx n{ez} N 1x)sy ‘(Ex Nex N{2})sy ‘(X N ex)SY ‘(X N 1X)SY ‘(B
NIX)SY ‘Cx n{})sy ‘({eetnix)sy ‘((x n{zz}) sy ‘(sxn{'z}) gy ‘({cz}n{ =})sy ‘(¢x)sy ‘(?x)sy ‘('x)sy ‘({zz}) sy ‘({'=})sy ‘(9)S¥} = L
aLaym ﬁﬁmﬁ,
N{hHsy ‘({ee})sy ‘({=})sy ‘(9)syu} = Xr puv {{zx 1z} {ex} {1z} ‘@¢} = (X)d woyr {¢z 12} = x 9] ‘T'g 2)dwnra woly g ¢ ojdurexy
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‘OS[Y "L Jo Tespr e st X sy, X S (X)SYA(X)SY veud wons 1 3 (X)SY Pue XS (X)SY (I8 10§ Yer) 1eald ST )1 °L 9[qR], WOl
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{te})sy {te)sy {Teh)sy ({Te})sy (@)sy |{zhsy |{tehsy |({Teh)sy |({Te})sy @)sy  |[{tehsy |({T=zh)sy |(P)sy |(@)sd{l=zhsy |(@)sd{fz})sy |(P)sy |({Tz})sy
(P)sy (P)sy (P)sy (P)sy (P)sy (®)su (P)su (¢)su (P)su (¢)su (®)su (P)su | (@)sy | (P)sy |(P)sy |(P)su | (P)sy |(#)su (¢)su
(6x (¢x (ex
n{ez} | n{cz} nex (8x (ex (ex (ex ({ex} (x (ex ({ez}
(msy N{tz})sy |Nntx)synilz})sy |Nnex)sy | Nnix)sy | nix)sy [N{'z})sy | nix)sy [n{¢z})sy |n{Teh)sy |n{Tz})sy (€x)sy (tx)sy ('x)sd{fz})sd{fz})sy |(¢)sy A
L 9lqel
V/ Iapun posolo st X 9ey) 1eod ST I ‘9 o[qe], Wwoig
(x)sy (x)sy (x)sy (x)sy
(x)sy ({rz})sy ({re})sy ({tz})sy
(Ix)sy ({rz}) sy (P)sy (P)su
(x)sy {t=})sy (P)sy v
19 9[qRL,
{(n)sy ‘(¢x

Nn{ez}n{tz})ey ‘(,x n{%} N 1x)gy ‘(Ex Nnex N{T=})sy ‘(,x N eX)sy ‘(X N 1x)SY ‘(ex N 'x)sy ‘(ex n{tz})sy ‘({?x}
NIX)SY ‘(5x N {2z})sy ‘(¢x N {tz})sy ‘({ex} n{1z}) sy ‘(5x)sy ‘(¢x) Sy ‘("x) sy ‘({%}) sy ‘({12}) sy ()Sy } = I 24oym
{(x)sy ‘({Te}) sy (@)sy } = X puv {{tx T} {tx} {1z} 9} = (X)J oy {$x 1w} = X 19] ‘T'g 9)dwnwa woL] *g'g opdurexyy
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4 Properties

Lemma 4.1. If X CY then Jx C Jy where X and Y CU.

Proof. Let X C Y where X,Y C U then X NY = X implies that RS(X) =
RS(XVY) =RS(X)VRS(Y) € RS(X)VT. Let RS(Z) € Jx then Z € P(X) C
X CY implies that Z € P(Y) then RS(Z) € Jy. Hence Jx C Jy.

O

Example 4.1. From example 2.1, let X = {x1,22} and Y = {x1,22, 24,76}
where X - Y then P(X) = {6, {x1}, {z2},{z1,22}} and
P(Y) = {¢7 {‘Tl}v {$2}’ {564}, {$6}7 {$17$2}7 {x17x4}’ {xlvxﬁ}v {xg,I4},

{w2, z6}, {74, x6}, {71, 22, 24}, {1, T2, T6 }, {72, T4, 6}, {71, 74, T6 }, {71, T2, 74, 76} }
also  Jx = {RS(¢), RS({x1}), RS({x2}), RS({x1} U {z2})} and
Jy = {RS(¢), RS({r1}), RS({z2}), RS(X2), RS({z1} U {z2}),

RS({z1} U X2)} clearly if X CY then Jx C Jy.

Lemma 4.2. For any two subsets X and Y of U, Jx NJy = Jxvy.
Proof.

Let RS(Z)ijﬂJy

& Ze{P(ExUPZx)}Nn{P(Ey)UP(Zy)}

& Ze{P(ExnP(Ey)}U{P(Zy) N P(Zy))

=4 Z € {P(Eme) U P(Zme)}

& . Z € P(XVY) ie., RS(Z)e€ Jxvy

= Hence Jx NJy = Jxvy.

O

Example 4.2. From example 2.1, let X = {x1,z4} and Y = {x1,22} then
XVY = {z1,22}, P(XVY) = {p,{z1}, {z2},{x1,22}} then
JIx = {RS(¢), RS({x1}), RS({wa}), RS({w1} U {w2})}
Jy = {RS(0), RS({x1}), RS({a2}), RS({x1} U {a2})},
Jx N Jy = {RS(¢), RS({z1}), RS({x2}), RS({x1} U {z2})} and

Ixvy = {RS5(¢), RS({z1}), RS({x2}), RS({z1} U{z2})} = Jx N Jy.

Example 4.3. From example 2.1, let X = {x1,22} and Y = {x3, x5} then

XVY = {z1}, P(XVY) = {p,{z1}} then
Jx = {RS(¢), RS({x1}), RS({w2}), RS({x1} U {w2})}
Jy = {RS(#), RS({x1}), RS(X3), RS{x1} U X3)},

Jx NJy = {RS(¢),RS({$1})} and Jxvy = {RS(¢),RS({$1})} =JxNJy.

Example 4.4. From example 2.1, let X = {z1,22} and Y = {wx5} then
XVY = {¢}, P(XVY) = {¢} and P(X) = {¢,{z1}, {z2}, {z1,22}} also
P(Y) = {6, {ws}} then Jx = {RS(6), RS({z1}), RS ({x2}),

RS({x1} U {x2})} and Jy = {RS(¢), RS(X3)} also Jx N Jy = {RS(¢)} then
Jxvy ={RS(¢®)} = Jx N Jy.
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Lemma 4.3. If X NY # ¢ then Jx N Jy = Jpyy -

Proof.

Let RS(Z) e Jx N Jy
&  Ze{P(ExUP(Zx)}N{P(Ey)UP(Zy)}
Z € {P(ExNP(Ey)yU{P(Zx)NP(Zy)}
If Ze{P(ExNP(Ey)} then XNY % ¢
which is not possible so Z € P(Zx)N P(Zy)
< Hence Z € P(Pxny) t.e., RS(Z)€ Jpy.y

T o

O
Example 4.5. From example 2.1, let X = {1,292} and Y = {x3,x4, 25} where
X nY = ¢ then P(X) = {d,{z1},{x2}, {x1,22}} and
P(Y) = {¢7 {.1'3},{334},{.%'5},{1'3,.1}4},{333,1‘5},{.%4,1'5},{xg,.%'4,x5}} also
JIx = {RS(9), RS({z1}), RS({w2}), RS({z1} U {ze})}  and
Jy = {RS(¢),RS({$1}),RS({%Q}),RS(X:;),RS({.%I} U X3)7RS({-%'2} U
X3), RS({z1} U {z2}), RS({x1} U {z2} U X3)} then
Jx N Jy = {RS(¢),RS{z1}), RS({x2}), RS{z1} U {z2})}. Now

Pxny = {z1,22} and Jpy., = {RS(¢), RS({z1}), RS({z2}), RS({z1} U {x2})}.
Therefore Jx N Jy = Jpyqy -

Remarks 4.1. 1. For any two subsets X and Y of U, X #Y does not imply
that Jx # Jy.

2. For any two subsets X and Y of U, XNY = ¢ does not imply that Jx # Jy.

Example 4.6. From example 2.1, let X = {x1,24} andY = {x2, 23} since X #Y
then P(X) = {¢,{z1},{za},{z1,24}} and P(Y) = {¢,{x2}, {23}, {x2,23}} also
Jx = {RS5(¢), RS({z1}), RS ({2},

RS({z1}U{x2})} and Jy = {RS(¢), RS({z1}), RS({z2}, RS({x1}U{x2})} where
Jx = Jy. This shows that for any two subsets X and Y of U, X #Y does not
imply that Jx # Jy and X NY = ¢ does not imply that Jx # Jy.

Remarks 4.2. If X NY # ¢ then Jx N Jy need not be equal to Jxny .

Example 4.7. From example 2.1, let X = {x1,22} and Y = {x1,z¢} then
XNY ={x1} and P(X NY) ={¢,{x1}} then P(X) = {¢,{z1}, {x2}, {z1,22}}

and P(Y) = {6, {z1},{x2},{x1, 22} } then
Jx = {RS(¢), RS({z1}), RS({z2}), RS({z1} U {z2})}
Jy = {RS(¢), RS({z1}), RS({z2}), RS({z1} U {x2})},
Jx N Jy = {RS(¢), RS({z1}), RS({x2}), RS({x1} U {x2})} and

Jxny = {RS(¢), RS({x1})}. Thus we can conclude if X NY # ¢ then Jx N Jy
need not be equal to Jxny .
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Conclusion

In this paper, we discussed the ideals of a commutative rough semiring

(T,A,V) and we gave a characterization for the ideals of a rough semiring
(T, A, V) in terms of the principal ideals of the rough monoid (7, V) for a given
information system I = (U, A). We present some properties related to these
concepts and the same concepts are illustrated through examples.
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