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STARLIKE AND CONVEX FUNCTIONS WITH RESPECT
TO SYMMETRIC POINTS ASSOCIATED WITH THE

GENERALIZED STRUVE FUNCTION
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Abstract

In this paper we determine conditions for the family of Struve function
in order to belong to the classes S∗

s (α) and Ks(α). Several corollaries follow
as special cases.
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1 Introduction

Let A be the class of all functions f which are analytic in the open unit disk
U = {z ∈ C : |z| < 1} of the form

f(z) = z +

∞∑
n=2

anz
n, z ∈ U. (1.1)

We denote by S∗s (α), 0 ≤ α < 1/2 the class of functions defined by

S∗s (α) :=

{
f ∈ A : Re

[
zf

′
(z)

f(z)− f(−z)

]
> α, z ∈ U, 0 ≤ α < 1/2

}
.

Let Ks(α), 0 ≤ α < 1/2 denote the class of functions defined by

Ks(α) :=

{
f ∈ A : Re

[
(zf

′
(z))

′

(f(z)− f(−z))′

]
> α, z ∈ U, 0 ≤ α < 1/2

}
.

It is well known that:
(i) S∗s (0) ≡ S∗s , where S∗s is called the class of starlike functions with respect to
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symmetric points (see [7]).
(ii) Ks(0) ≡ Ks, where functions in the class Ks are called convex functions with
respect to symmetric points (see [3]).
(iii) f ∈ Ks(α) if and only if zf ′ ∈ S∗s (α).

Recently, in [4, 5, 9] various conditions were obtained for the Struve func-
tion in order to belong to the classes of starlike, convex, uniformly starlike and
uniformly convex functions. Also, in [1] conditions for the univalence and the
order of convexity of certain integral operators involving generalized Struve func-
tion were given. Motivated by these works we find sufficient conditions for the
parameters of the normalized form of the generalized Struve function to belong
to the classes S∗s (α) and Ks(α).

The generalized Struve function of order p is defined by the infinite series

wp,b,c(z) =
∑
n≥0

(−1)ncn

Γ(n+ 3/2)Γ(p+ n+ (b+ 2)/2)

(z
2

)2n+p+1
, z ∈ C, (1.2)

where p, b, c ∈ C and Γ stands for the Euler’s gamma function (see [6, 8]). Next,
we consider the function up,b,c defined by this transformation:

up,b,c(z) = 2p
√
πΓ

(
p+

b+ 2

2

)
z(−p−1)/2wp,b,c(

√
z). (1.3)

By using the Pochhammer symbol defined by

(κ)n =
Γ(κ+ n)

Γ(κ)
=

{
1, if n = 0,

κ(κ+ 1) · · · (κ+ n− 1), if n ∈ {1, 2, . . . }
(1.4)

we can express up,b,c as

up,b,c(z) =
∑
n≥0

(−c/4)n

(3/2)n(k)n
zn, (1.5)

where k = p + (b + 2)/2 6= 0, −1, −2, . . . . The function up,b,c is analytic on C
and satisfies the second order non-homogeneous linear differential equation

4z2u
′′
(z) + 2(2p+ b+ 3)zu

′
(z) + (cz + 2p+ b)u(z) = 2p+ b, (1.6)

where p, b, c ∈ C.
The following results will be required in our investigation. We begin with some

theorems that relate the modulus of the coefficients with the order of starlikeness
or convexity with respect to symmetric points.

Lemma 1.1. (see [2]) If f ∈ A satisfies∑
n≥2
{2(n− 1)|a2n−2|+ (2n− 1− 2α)|a2n−1|} ≤ 1− 2α (1.7)

for some α, 0 ≤ α < 1/2, then f ∈ S∗s (α).
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Lemma 1.2. (see [2]) If f ∈ A satisfies∑
n≥2
{4(n− 1)2|a2n−2|+ (2n− 1)(2n− 1− 2α)|a2n−1|} ≤ 1− 2α (1.8)

for some α, 0 ≤ α < 1/2, then f ∈ Ks(α).

2 Main results

Theorem 2.1. If 0 ≤ α < 1/2, c < 0 and k > 0, then a sufficient condition for
g(z) = zup,b,c(z) to be in the class S∗s (α) is

u
′
p,b,c(1) + (1− α)up,b,c(1)− αup,b,c(−1) ≤ 2(1− 2α). (2.1)

Proof. Since

gp,b,c(z) = zup,b,c(z) = z +
∑
n≥2

(−c/4)n−1

(3/2)n−1(k)n−1
zn,

according to Lemma 1.1, we need to show that

∑
n≥2

{
2(n− 1)

(−c/4)2n−3

(3/2)2n−3(k)2n−3
+ (2n− 1− 2α)

(−c/4)2n−2

(3/2)2n−2(k)2n−2

}
≤ 1− 2α.

(2.2)

We notice that

∑
n≥2

(−c/4)2n−2

(3/2)2n−2(k)2n−2
= 1/2[up,b,c(1) + up,b,c(−1)− 2] (2.3)

and∑
n≥2

(−c/4)2n−3

(3/2)2n−3(k)2n−3
= 1/2[up,b,c(1)− up,b,c(−1)]. (2.4)

Next, differentiating zup,b,c(z) with respect to z and setting z = 1 and z = −1
respectively, we find that

∑
n≥2

(2n− 2)
(−c/4)2n−2

(3/2)2n−2(k)2n−2
= 1/2[u

′
p,b,c(1)− u′

p,b,c(−1)] (2.5)

and∑
n≥2

(2n− 3)
(−c/4)2n−3

(3/2)2n−3(k)2n−3
= 1/2[u

′
p,b,c(1) + u

′
p,b,c(−1)]. (2.6)
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Thus, we have

∑
n≥2

{
2(n− 1)

(−c/4)2n−3

(3/2)2n−3(k)2n−3
+ (2n− 1− 2α)

(−c/4)2n−2

(3/2)2n−2(k)2n−2

}

=
∑
n≥2

(2n− 3)
(−c/4)2n−3

(3/2)2n−3(k)2n−3
+
∑
n≥2

(−c/4)2n−3

(3/2)2n−3(k)2n−3

+
∑
n≥2

(2n− 2)
(−c/4)2n−2

(3/2)2n−2(k)2n−2
+
∑
n≥2

(1− 2α)
(−c/4)2n−2

(3/2)2n−2(k)2n−2

= u
′
p,b,c(1) + (1− α)up,b,c(1)− αup,b,c(−1) + 2α− 1. (2.7)

Because the last expression is bounded above by 1− 2α if and only if (2.1) holds,
we obtain that zup,b,c ∈ S∗s (α).

If we set α = 0, we obtain the following result:

Corollary 2.1. If c < 0 and k > 0, then a sufficient condition for g(z) = zup,b,c(z)
to be in the class S∗s is

u
′
p,b,c(1) + up,b,c(1) ≤ 2. (2.8)

Theorem 2.2. If 0 ≤ α < 1/2, c < 0 and k > 0, then a sufficient condition for
g(z) = zup,b,c(z) to be in the class Ks(α) is

u
′′
p,b,c(1) + (3− α)u

′
p,b,c(1) + αu

′
p,b,c(−1)

+ (1− α)up,b,c(1)− αup,b,c(−1) ≤ 2(1− 2α). (2.9)

Proof. By virtue of Lemma 1.2, it is sufficient to show that

∑
n≥2
{4(n− 1)2

(−c/4)2n−3

(3/2)2n−3(k)2n−3

+ (2n− 1)(2n− 1− 2α)
(−c/4)2n−2

(3/2)2n−2(k)2n−2
} ≤ 1− 2α. (2.10)

Differentiating zu
′
p,b,c(z) with respect to z and taking z = 1 and z = −1 respec-

tively, we get

∑
n≥2

(2n− 3)(2n− 2)
(−c/4)2n−2

(3/2)2n−2(k)2n−2
= 1/2[u

′′
p,b,c(1) + u

′′
p,b,c(−1)] (2.11)

and∑
n≥2

(2n− 3)(2n− 4)
(−c/4)2n−3

(3/2)2n−3(k)2n−3
= 1/2[u

′′
p,b,c(1)− u′′

p,b,c(−1)]. (2.12)
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Now, if we write 4(n−1)2 = (2n−3)(2n−4)+6n−8 and (2n−1)(2n−1−2α) =
(2n− 2)(2n− 3) + (3− 2α)(2n− 2) + (1− 2α), after some computation, we obtain

∑
n≥2
{4(n− 1)2

(−c/4)2n−3

(3/2)2n−3(k)2n−3
+ (2n− 1)(2n− 1− 2α)

· (−c/4)2n−2

(3/2)2n−2(k)2n−2
} = u

′′
p,b,c(1) + (3− α)u

′
p,b,c(1) + αu

′
p,b,c(−1)

+ (1− α)up,b,c(1)− αup,b,c(−1) + 2α− 1. (2.13)

Since the last sum is bounded above by 1−2α if and only if (2.9) holds, we obtain
that zup,b,c ∈ Ks(α).

If we set α = 0, we obtain the following result:

Corollary 2.2. If c < 0 and k > 0, then a sufficient condition for zup,b,c to be in
the class Ks is

u
′′
p,b,c(1) + 3u

′
p,b,c(1) + up,b,c(1) ≤ 2. (2.14)
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