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SURFACE STATES AND ACTIVITY OF NANOCATALYST:
ZERO-RANGE POTENTIALS MODEL

Irina V. BLINOVA1 and Igor Y. POPOV2

Abstract

We investigate the problem of nanocatalysts improvement. Namely, the
increase of the catalytic activity due to irregular inclusion at the nanoparticle
surface is under consideration. A 3D model of a half-crystal with irregular
impurities at the surface is suggested. It is shown that the surface impurities
lead to the appearance of surface bound states or surface bands which give
rise to the electron density at the surface related with the catalytic activity.
The suggested solvable model is based on the theory of self-adjoint extensions
of symmetric operators.
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1 Introduction

Nano catalysts are widely used in modern chemistry due to high surface/vol-
ume ratio for nanoparticles (see, e.g., [1]). High catalytic activity and, at the same
time, thermal stability of nano catalysts are observed also due to unusual behavior
of the nanoparticles in the matrix [2]. Peculiarities of nanoparticles and nanocom-
posite structures lead to changes of the catalysts properties (see, e.g., [3] - [12]).
One can mention an interesting phenomenon: the catalytic activity of nanocat-
alyst increases considerably if there are irregular inclusions at the nanoparticle
surface. It can be related with the change of surface electron states. There are
different (rather complicated) approaches (see, e.g.. [13]) for the description of
these catalysts. It is also worth constructing simple models which allows one to
explain and predict the properties of the system. In this paper we suggest a 3D
model which shows that the effect of increasing the surface electron density (and,
correspondingly, the catalytic activity) can be related with the surface irregular
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inclusion. A simple and rough variant (1D model) for the explanation of this
phenomenon was suggested in [14]. It was discussed in [15].

To construct a model of half-crystal we use zero-range potentials. Introducing
such potential, really, reduces to a ”boundary” condition (more precisely, given
logarithmic derivative) at the chosen point x0:

1

rψ

∂(rψ)

∂r
→ α, r → 0.

Here r is the distance from x0. Correct mathematical description for this proce-
dure is given in the framework of operator extensions theory (see, e.g., [16] and
references in [17]). Namely, one starts from the self-adjoint Laplacian in L2(R3)
with the domain W 2

2 (R3). The closure of its restriction on the set of smooth func-
tions vanishing at x0 is a symmetric operator with the deficiency indices (1, 1). It
has one-parameter (α) family of self-adjoint extensions which give us the model
operators with the point-like potential.

Nanoparticle can be considered as a half-crystal with impurities at its surface.
First, consider 3D half-crystal. Introduce some notations. Let Λn1

2 be a two-
dimensional lattice:

Λn1
2 = {n1a1 + n2a2 + n3a3 ∈ R3|(n2, n3) ∈ Z2, n1 ∈ N ∪ 0},

where a1, a2, a3 are basic lattice vectors, Γn1
2 be the dual lattice:

Γn1
2 = {n1b1 + n2b2 + n3b3 ∈ R3|(n2, n3) ∈ Z2, n1 ∈ N ∪ 0},

where b1, b2, b3 satisfy the condition bj ·an = 2πδjn. We denote the Brillouin zone
by Λ̂n1

2 ):
Λ̂n1

2 = {s2b2 + s3b3 ∈ R3|sj ∈ [−1/2, 1/2), j = 2, 3},

Γ̂n1
2 = {s2a2 + s3a3 ∈ R3|sj ∈ [−1/2, 1/2), j = 2, 3}.

We consider zero-range potential lattice. These potentials are introduced as
it has been described above. Taking into account the periodicity, we use Bloch’s
condition. In this case the Green function Gc(x, y, k) for the half-crystal can be
obtained using the Poisson summation formula [16]. Let

S(x, θ, k) =
∑

λ∈Λ0
2,λ 6=x

eik|λ−x|

4π|λ− x|
e−iλθ.

Then,

S(x, θ, k) = |Γ̂0
2|−1

∑
γ∈Γ2

e−
√
|γ+θ|2−k2|x1|

2
√
|γ + θ|2 − k2

e−i(γ+θ)x̃, (1)

for x = (x1, x̃) ∈ R3, x1 6= 0;

S(x, θ, k) = |Γ̂0
2|−1 lim

ω→∞

∑
γ∈Γ2,|γ+θ|≤ω

e−i(γ+θ)x̃

4π|γ + θ|
arctan

|γ + θ|
ik

, (2)
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for x = (0, x̃) which does not belong to Λ0
2;

S(x, θ, k) = e−iθx(− ik
4π

+ lim
ω→∞

(
∑

γ∈Γ2,|γ+θ|≤ω

|Λ̂0
2|

8π2
√
|γ + θ|2 − k2

− 2πω)), (3)

for x ∈ Λ0
2.

The Green function Gc(x, y, k) has the form

Gc(x, y, k) =
eik|y−x|

4π|y − x|
+ ac

+∞∑
n1=0

∑
λ∈Λ

n1
2 ,λ 6=x

eik|λ−x|

4π|λ− x|
e−iλθ.

Coefficient ac is determined from the condition at a lattice node (e.g., 0):

ac = eik|y|

4π|y| (−α+
∑+∞

n1=0

∑
γ∈Γ

n1
2

(k2−k20)|Γ̂0
2|−1

(|γ+θ|2−k2)(|γ+θ|2−k20)
+

1
4π (

∑+∞
n1=0

∑
λ∈Λ

n1
2 ,λ 6=0

eik0|λ|−iλθ

4π|λ| − 1))−1.

(4)

Here k0 is some imaginary value (k2
0 < 0). It is a model parameter. α1 corresponds

to the ”strength” of the point-like potentials of the lattice. We use the represen-
tation of the lattice sum from [18, 19]. Note that the denominator (−α+gk(0, θ))
of the right hand side of (4) has the following properties:

it is meromorphic as a function of k∗2 with simple poles at k2 = |γ+θ|2, γ ∈ Γ;
gk(0, θ) = gk(0, θ);
it is symmetric with respect to each component of the quasi-momentum θ;
at the real axis it is real, it has singularities at k2 = |γ + θ|2, γ ∈ Γ and

between them increase monotonically from −∞ to ∞, moreover, gk(0, θ) → −∞
if k2 → −∞.

The behavior of the function gk(0, θ) is shown in Fig. 1. The spectral equation
is

α = gk(0, θ).

Variation of the quasi-momentum θ leads to the shift of the roots and gives us
bands.

2 Model of surface impurity

To construct point-like impurity near the half-crystal surface, we need the
Green function for the half-crystal corresponding to a source posed at a point
outside the half-space filled by crystal. Let Gc(x, x0, k) be the Green function for
the half-crystal with the source at x0. To construct the point-like potential at
x0, we, first, restrict the Hamiltonian for the half-crystal on the set of smooth
functions vanishing at x0. The closure of the obtained operator is symmetric
(non-self-adjoint) with the deficiency indices (1, 1). It’s self-adjoint extension
gives us the model operator in question. Taking into account the expression
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Figure 1: The behavior of the function from the spectral equation. Intersections
of the horizontal line with the curves gives one the corresponding point of the
spectral band for fixed quasi-momentum θ.
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for Gc(x, x0, k), one can see that the Green function for the model operator has
the following form

G(x, y, k) = Gc(x, y, k) + a e
ik|x0−x|

4π|x0−x| =

eik|y−x|

4π|y−x| + a e
ik|x0−x|

4π|x0−x| + ac
∑+∞

n1=0

∑
λ∈Λ

n1
2 ,λ 6=x

eik|λ−x|

4π|λ−x|e
−iλθ.

(5)

Here ac is determined in (4). a is determined from zero-range potential with the
strength α0 condition at x0:

a = Gc(x0, y, k)((Gc(x, x0, k)−Gc(x, x0, k0)|x=x0 − α0)−1.

One can see that the appearance of additional point-like potential leads to ad-
ditional singularity of the Green function in comparison with the singularities of
Gc(x0, y, k) (the singularities give us the spectrum). The spectral equation is as
follows

(Gc(x, x0, k)−Gc(x, x0, k0)|x=x0 − α0 = 0.

Keeping in mind Fig. 1, one can see that for sufficiently large α−1
0 this eigenvalue

lies below the continuous spectrum of the half-crystal Hamiltonian. We can men-
tion that the corresponding eigenstate is localized near the potential center, i.e.
at the half-crystal surface.

3 Discussion

There is no problem to add a finite number (n) of point-like potentials near
the surface. The condition at these points x1, x2, ...xn gives us a system of n linear
equations for the corresponding coefficients. The equation for eigenvalues is given
by the vanishing of the determinant

detA = 0,

Ajj = Gc(x, x0, k)−Gc(x, x0, k0)|x=xj − αj , Ajp = Gc(xj , xp, k).

In general, it leads to n eigenvalues and, correspondingly, to n eigenstates localized
near the crystal surface.

Another possibility is to add a layer (Λ−s12 ) with characteristics differing from
that for the half-crystal, particularly, another distance from the substrate than
between the internal layers. The systems with analogous structure (having per-
turbed monolayer) is used in photonic crystals (see, e.g., [20]). In this case the
expression for the Green function (5) is replaced by the following one where one
has an additional sum corresponding to the monolayer instead of the term corre-
sponding to the single additional center:

G(x, y, k) = Gc(x, y, k) + a
∑

λ∈Λ
−s1
2 ,λ 6=x

eik|λ−x|

4π|λ−x|e
−iλθ =

eik|y−x|

4π|y−x| + a
∑

λ∈Λ
−s1
2 ,λ 6=x

eik|λ−x|

4π|λ−x|e
−iλθ+

ac
∑+∞

n1=0

∑
λ∈Λ

n1
2 ,λ 6=x

eik|λ−x|

4π|λ−x|e
−iλθ.

(6)
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Here s1 is some positive number, s1 6= 1, coefficient a is related with the strength
of the point-like potentials in added layer (it differs from ac). The corresponding
additional term appears in the spectral equation. It produces a new spectral band
(”monolayer band”). This band is shifted with respect to the crystal bands. If
s1 differs sufficiently from 1 and a from ac then this band is separated from the
crystal bands. In this case we have the surface state (surface band) localized in a
neighborhood of the added monolayer.

Thus, it is shown that local surface impurities lead to the appearance of bound
states localized near the nanoparticle surface. Analogously, a perturbation of the
whole surface layer gives us a band state concentrated near the surface. In both
cases we have additional electron density near the nanoparticle surface. It results
in increasing of the catalytic activity. It correlates with the experimental results
concerning nanocatalyst with surface impurities.
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