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ON GENERALIZED WEAKLY SYMMETRIC MANIFOLDS

Kanak Kanti BAISHYA !

Abstract

The purpose of the study is to introduce a new type of space, called gen-
eralized weakly symmetric space. The existence of such space is ensured by
a non-trivial example.
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1 Introduction

The notion of weakly symmetric Riemannian manifold has been introduced
by Taméssy and Binh [25]. Thereafter, a lot of research has been carried out in
this topic. For details, we refer to [10], [13], [14], [16], [19], [20], [21], [22], [24]
and the references there in. In the spirit of Taméssy and Binh [25], a non-flat n-
dimensional Riemannian manifold (M™, g)(n > 2), is said to be weakly symmetric
manifold, if its curvature tensor R of type (0, 4) is not identically zero and satisfies
the relation

(VxR)(Y,U,V, W) = AX)RY,U,V, W)+ BY)R(X,U,V,W)
+B(U)R(Y, X, V,W)+ D(V)R(Y,U, X, W)
+D(W)R(Y,U,V, X) (1)

where A, B, & D are non-zero 1-forms defined by A(X) = ¢(X,0:1), B(X) =
9(X,01) and D(X) = g(X,¢1) for all X and R(Y,U,V, W) = g(R(Y,U)V, W),
V being the operator of the covariant differentiation with respect to the metric
tensor ¢g. An n-dimensional manifold of this kind is denoted by (W.5),,.

Keeping in tune with Dubey [12], we introduce a new type of space called
generalized weakly symmetric manifold which is abbreviated by (GWS),-space
and defined as follows
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A non-flat n-dimensional Riemannian manifold (M™;g) (n > 2), is termed as
generalized weakly symmetric manifold, if its Riemannian curvature tensor R of
type (0;4) is not identically zero and admits the identity

Wﬂanqu::m YR(Y,U,V, W)+ B(Y)R(X,U,V, W)
() R(Y,X,V, W)+ D(V)R(Y,U,X, W)
D(W)R(Y,U,V,X )+ a(X)G(Y,U,V, W)
()(XUNJW+ﬂWN%KXMPW
+y(V) G, U, X, W)+~(W) GY,U,V.X ) (2)

where

G(Y,U,V, W) = [g(U,V)g(Y, W) —g(Y, V)g(U, W)] (3)

and A, B, D, a, § & ~ are non-zero 1-forms which are defined as A(X) =

g(X7 91)7B(X) = g(X7 ¢1)7 D(X) = g(Xa 7T1)7 Oé(X) = Q(X, 02)7ﬁ(X) = g(X7 QSQ)
and v(X) = g(X, m2). The local expression of (2) is

Rmnpq7k = AkRmnpq + BmRknpq + Bankpq + DpRmnkq + Dqunpk
+akanpq + /BmGknpq + ﬁnGmkpq + Vmenkq + ’Yqunpky (4)

where A;, B;, D;,«;, B; and ~; are non-zero co-vectors. The beauty of such
(GW S),-space is that it has the flavour of

(1) symmetric space[6] (for A=B=D=a=0=v=0),
ii) recurrent space[29] (for A# 0and B=D =a ==

Q
=)

),

")/:

(

(ili) generalized recurrent space[12] (for A#0,a#0,B=D=p=~v=0),
(iv) pseudo symmetric space[7] (for S=B=D=§#0,a=0=~v=0),

(v) generalized pseudo symmetric Space[ J(for 4 =B=D=0#0%&

§=B=7=pn#0),

(vi) semi-pseudo symmetric space[27] (for B=D=0#0, A=a=p=v=
0)

(vii) generalized semi-pseudo symmetric space[2] (for A =0=a,B =D =
§#0& B=v=p#0),

(viii) almost pseudo symmetric space[8] (for A = F+ H, B =D = H &
a=p=v=0),

(ix) almost generalized pseudo symmetric space([3], [4], [5]) (for A = E +
HB=D=H&a=\+¢,=v=]\) and

(x) weakly symmetric space [25|(for A,B,D #0 & a = =~ =0).

We organized this paper as follows; Section 2 is concerned with some results
n (GWS),-manifold. ~Among other things, it is pointed out that a weakly
concirculaly symmetric space can always be considered as a generalized weakly
symmetric space. In section 3, the existence of a generalized weakly symmetric
space is ensured by a non-trivial example.
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2 Some results on (GWS),-manifold

In this section, we consider a Riemann manifold (M",g) n > 2 which is
generalized weakly symmetric. Now, contracting (4) we find

(VxS)(Y, W) = AX)SY, W)+ B(Y)S(X, W)+ D(W)S(Y, X) (5)
—B(R((Y, X)W) + D(R(X, W)Y) + (n — 1)[a(X)
g(Y, W)+ B(Y)g(X, W) +~+(W)g(Y, X )]
—BY) g(X, W)+ [B ( ) +(X)] g(Y, W) —y(W)g(X, Y)
which yields after further contraction
dr(X) = AX)r+ 2B1(X)+2 Di(X)
+(n = 1na(X) +28(X) + 2v(X)] (6)

where A;(X) = S(X,6,).
Next, if we suppose that the scalar curvature of a (GW.S),-space is non-zero
constant, then (6) becomes

[AX)r+ 2B1(X)+2 Di(X) =—(n—1)na(X)+268(X) +2v(X)]. (7)
This leads to the following:

Theorem 1. The I-forms of a (GWS),-manifold are related by the expression
(7) provided that the scalar curvature is non-zero constant.

Definition 1. [1] A non-flat n-dimensional Riemannian manifold (M™,g) (n >
2), is said to be a generalized weakly Ricci-symmetric manifold (which is abbre-
viated by (GW RS),,-space), if its Ricci tensor S of type (0, 2) is not identically
zero and admits the identity

(VxS)(Y, W) = AX)S(Y, W)+ B(Y)S(X, W)
) +

where A, B, D, &, B & 7 are non-zero 1-forms which are defined as A(X) =

9(X,01), B(X) = g(X,¢1), D(X) = g(X,T1), &(X) = g(X,02), B(X) = g(X, $2)
and ¥(X) = g(X, 7). In particular, if @ = =7 = 0, the relation (8) reduces
to weakly Ricci symmetric manifold[26].

Theorem 2. A (GW S),,-manifold is necessarily a (GW PRS),,-manifold provided
that the relation

S(X,¢1) + S(X,m) = —(n — D[B(X) +~7(X)] (9)
holds for all X.

Proof. 1t follows directly from (5). O
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Again, in analogous with the definition of a (GWS),-manifold, a non-flat
concircular curvature tensor

n(n—1)

is called a weakly concirculaly symmetric if it satisfies the identity

E(K Ua V7 W) = R(Y7 U: ‘/7 W) - G(Y7 Ua ‘/7 W)v (10)

(VxE)(Y,U,V, W) = AX)E(XY,UV, W)+ B(Y)E(X,U,V, W)
+B(
+D(

U)E(Y,X,V, W)+ D(V)E(Y,U, X, W)
WYE(Y,U,V,X ). (11)

We observe that for the following choice of the 1-forms

_ [dr(X) —rA(X)] _ T
& (X)) = —ﬁpm v X.

B(X)

the equation (11) turns into (5). This motivates us to state

Theorem 3. A weakly concircularly symmetric space is necessarily a (GW.S),,-
space.

However, the converse of the above Theorem may not true.
Again, contracting Y over W in (8) we obtain

(VxS)(U,V) -

drle)g(U’V) _ A(X)[S(U,V)—%Q(va)]

TBU)S(X, V)~ ~g(X, V)]

—-B(E(U,X)V)+ D(E(X,V)U)

+D(V)IS(U.X) = ~g(U, X)]  (12)
which yields

(Vx2)Y, V) = AX)Z(Y, V)+BY)Z(X, V)
+D(V)Z(Y, X)

—B(E(Y,X)V)+ D(E(X,V)Y) (13)

where Z stands for a well known Z-tensor ([17], [18]). This leads us to state

Theorem 4. A weakly concircularly symmetric space is a weakly Z-symmetric
space if
Z(U, ¢) = Z(U, ). (14)

Proof. 1t follows directly from (13). O
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3 Existence of generalized weakly symmetric space

Example 1. Let (R* g) be a 4-dimensional Riemannian space endowed with the

Riemann metric g given by

ds® = gijda'da! == (z*)*3[(dz")? + (d2®)* + (dz®)?] - (da® )?,

(i,j=1,2 3 4)

The non-zero components of Riemannian curvature tensor are

Ri212 =

Riys =

4
§($4)2/3 = R1313 = Ro323,

2
Rosoq = R3u34 = W,

Making use of (15), we can easily bring out

Gi212 =

Gia1a =

Covariant derivatives of Riemannian curvature tensors are

Ri212,4 =
Ri214,20 =
Ri9941 =

Rig14,4 =

For the following choice of the 1-forms

A;

B;

Bi

Yi

Giz1z = Gogoz = —(2h)8/3,
Gaogos = Gagzq = — (a3
Ristsa = Raosa = ———
1313,4 = H2323,4 = W’
R =R = .
1314,3 = 112324,3 = 9(z4)1/3’
R =R = .
1334,1 = 112334,2 = (1) 1/3’
4
Rouo4,4 = R3a34,4 = —W'
1
e or 1
= 0, otherwise
19
= 0, otherwise
19
= —@7 fOl“ Z = 4
= 0, otherwise
8 .
— W’ fori= 4
= 0, otherwise
64 )
= —m7 fOl" 1= 4
= 0, otherwise
64 )
_m, fori= 4

= 0, otherwise

(15)
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one can easily fit the followings

Ri212,k = ArRi212 + BiRgo12 + BaRig12 + D1Rioga + DaRi21k
+ai G212 + B1Gr212 + B2Gir12 + 711Gk + 2G 121k,

Riz13.s = A Ri313 + B1Rigi3 + B3Rig13 + D1Risgs + D3Rysix
+ay, Gi313 + B1Graiz + B3Giris + 71Gisks + 13Gs1k,
Risiay =  ApRisia + BiRyara + BaRigi1a + D1 Ryaga + DaRyaiy,

+ay, Graia + B1Grara + BaGiria + v1Graga + v4Graik,
Riouay = ApRi21a + B1Rpo1a + BoRyg1a + D1Rigka + DaRio1g
+ay Gi214 + B1Gra1a + B2Gikia + 71Gi2ka + 14Gr21k,

Rizuae =  Ap Riz14 + B1Ry3ia + B3Rigia + D1Riska + DaRizk
+ai Gi314 + B1Gr3ia + B3G1k1a + 71G13ka + 14G131k,
Ri9oa,k = Ag Ri2oa + B1Ryoos + BaRigoa + DaRioga + DyRioo

+ag Giaog + B1Graoa + B2Gipaa + v2G12ka + VaG1224k,
Rigsa,e = Ak Rizsa + B1Ri3sa + B3Rigsa + D3Rispa + DaRa33y,
+ag Gizsa + B1Gr334 + B3Girsa + 13G13k4 + 74G 133k
Rogos,e = Ak Roses + BaRgsas + BsRogas + DaRasks + D3 Rosap
+ag Ga3zs + B2Gr323 + B3Garas + 12Gasks + y3Gasak,
Rosoae = Ag Rozsa + BaRysaq + B3Rogoy + DoRaozps + DaRosox
+ag Ga32a + B2Gr32a + B3Garos + 12Gaska + 14Gosa,
Roszae = ApRassa + BaRg3ss + B3Rogsa + D3Roska + DaRossy,
+ag Gasza + B2Grsza + B3Gakss + 13Gaska + 14Gassr,
Rogoa,k = AgRoaza + BoRpaoy + ByRogos + Do Roygs + DaRagop,
+ag Gogoq + B2Graos + BaGagaa + v2Goaka + 74Goa24,
R3sza,x = Ap Rsaza + B3Ryaza + BaR3g3a + D3Raapa + DyR3asp
+ak Gsaza + B3Graza + BaGsisa + 13G3aka + 14G343k,

where, k = 1,2,3,4. As a consequence of the above one can say that

Theorem 5. There exists a (R*, g) which is a generalized weakly symmetric space
with non-zero and non-constant scalar curvature for the above mentioned choice
of the i-forms.

It is clear that the manifold under considered metric can’t be symmetric,
recurrent, generalized recurrent and almost pseudo symmetric space.
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