RATIONAL FUNCTIAN AND DIFFERENTIAL POLYNOMIAL OF A MEROMORPHIC FUNCTION SHARING A SMALL FUNCTION

Molla Basir AHAMED*1 and Abhijit BANERJEE ${ }^{2}$

Abstract

In this paper we have mainly dealt with the relation between a generalized differential polynomial and a rational function $\mathcal{R}(f)$ of a non-constant meromorphic function f sharing a small function $a \equiv a(z)(\not \equiv 0, \infty)$. Our results will extend recent results in [4], [5] and [9] in the direction of Brück Conjecture. We have exhibited some examples which show that the result of this paper may or may not be true because non-constant entire functions and conditions obtained in the theorems cannot be removed. Other examples have also substantiated our certain claims.

2000 Mathematics Subject Classification: 30D35.
Key words: meromorphic function, derivative, small function, weighted sharing.

1 Introduction Definitions and Results

Throughout the paper, by meromorphic functions we will always mean meromorphic functions in the complex plane \mathbb{C}. We adopt the standard notations of the Nevanlinna theory of meromorphic functions as explained in [10]. It will be convenient to let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence. For a non-constant meromorphic function h, we denote by $T(r, h)$ the Nevanlinna characteristic of h and by $S(r, h)$ any quantity satisfying $S(r, h)=o\{T(r, h)\}$, as $r \longrightarrow \infty$ and $r \notin E$.

Let f and g be two non-constant meromorphic functions and let a be a complex number. We say that f and g share a CM, provided that $f-a$ and $g-a$ have the same zeros with the same multiplicities. Similarly, we say that f and g share a IM, provided that $f-a$ and $g-a$ have the same zeros ignoring multiplicities.

[^0]In addition, we say that f and g share ∞ CM, if $1 / f$ and $1 / g$ share 0 CM , and we say that f and g share ∞ IM, if $1 / f$ and $1 / g$ share 0 IM.

A meromorphic function a is said to be a small function of f provided that $T(r, a)=S(r, f)$, that is $T(r, a)=o(T(r, f))$ as $r \longrightarrow \infty, r \notin E$.

Throughout this paper we denote, $k^{*}=\left\{\begin{array}{ll}\frac{k}{2}+1, & \text { if } k \text { is even, } \\ {\left[\frac{k}{2}\right]+2,} & \text { if } k \text { is odd. }\end{array}\right.$ and
$\chi_{m}= \begin{cases}0, & \text { if } m=0, \\ 1, & \text { if } m \geq 1 .\end{cases}$
At the starting point of our discussion we present the following theorem of Mues and Steinmetz [16] proved in 1979. In 1979, Mues and Steinmetz [16] proved the following theorem.
Theorem A. [16] Let f be a non-constant entire function. If f and f^{\prime} share two distinct values $a, b I M$ then $f^{\prime} \equiv f$.

The following result is due to Brück [6] who first dealt with the uniqueness problem of an entire function sharing one value with its derivative.

Theorem B. [6] Let f be a non-constant entire function. If f and f^{\prime} share the value $1 C M$ and if $N\left(r, 0 ; f^{\prime}\right)=S(r, f)$ then $\frac{f^{\prime}-1}{f-1}$ is a nonzero constant.

In the recent past, authors such as Yang [17], Zhang [20], Yu [19], Liu-Gu [14], Zhang-Yang [22] extended and generalized the results of Brück. In 2001 the notion of weighted sharing of values appeared in the uniqueness literature as follows.

Definition 1.1. [11, 12] Let k be a non-negative integer or infinity. For $a \in$ $\mathbb{C} \cup\{\infty\}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z_{0} is an a-point of f with multiplicity $m(\leq k)$ if and only if it is an a-point of g with multiplicity $m(\leq k)$ and z_{0} is an a-point of f with multiplicity $m(>k)$ if and only if it is an a-point of g with multiplicity $n(>k)$, where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k), then f, g share (a, p) for any integer $p, 0 \leq p<k$. Also, we note that f, g share a value a IM or CM if and only if f, g share ($a, 0$) or (a, ∞) respectively.

If a is a small function we define that f and g share a IM or a CM or with weight l accordingly as $f-a$ and $g-a$ share $(0,0)$ or $(0, \infty)$ or $(0, l)$ respectively.

Though we use the standard notations and definitions of the value distribution theory available in [10], we explain some definitions and notations which are used in the paper.

Definition 1.2. [13]Let p be a positive integer and $a \in \mathbb{C} \cup\{\infty\}$.
(i) $N(r, a ; f \mid \geq p) \overline{(N}(r, a ; f \mid \geq p))$ denotes the counting function (reduced counting function) of those a-points of f whose multiplicities are not less than p.
(ii) $N(r, a ; f \mid \leq p) \overline{(N}(r, a ; f \mid \leq p))$ denotes the counting function (reduced counting function) of those a-points of f whose multiplicities are not greater than p.

Definition 1.3. [18] For $a \in \mathbb{C} \cup\{\infty\}$ and a positive integer p we denote by $N_{p}(r, a ; f)$ the $\operatorname{sum} \bar{N}(r, a ; f)+\bar{N}(r, a ; f \mid \geq 2)+\ldots+\bar{N}(r, a ; f \mid \geq p)$. Clearly $N_{1}(r, a ; f)=\bar{N}(r, a ; f)$.

Definition 1.4. For $a \in \mathbb{C} \cup\{\infty\}$ and a positive integer m, we denote by $\bar{N}(r, a ; f \mid$ $g \neq a \mid \geq m$) the reduced counting function of those a-points of f with multiplicities $\geq m$ which are not the a-points of g.

Definition 1.5. [1] Let f and g be two non-constant meromorphic functions such that f and g share the value 1 IM. Let z_{0} be a 1-point of f with multiplicity p, a 1-point of g with multiplicity q. We denote by $\bar{N}_{L}(r, 1 ; f)$ the counting function of those 1-points of f and g where $p>q$, by $N_{E}^{1)}(r, 1 ; f)$ the counting function of those 1-points of f and g where $p=q=1$ and by $\bar{N}_{E}^{(2}(r, 1 ; f)$ the counting function of those 1-points of f and g where $p=q \geq 2$, each point in these counting functions is counted only once. In the same way we can define $\bar{N}_{L}(r, 1 ; g), N_{E}^{1)}(r, 1 ; g), \bar{N}_{E}^{(2}(r, 1 ; g)$.

Definition 1.6. [11, 12] Let f, g share a value ($a, 0$) . We denote by $\bar{N}_{*}(r, a ; f, g)$ the reduced counting function of those a-points of f whose multiplicities differ from the multiplicities of the corresponding a-points of g.
Clearly $\bar{N}_{*}(r, a ; f, g) \equiv \bar{N}_{*}(r, a ; g, f)$ and $\bar{N}_{*}(r, a ; f, g)=\bar{N}_{L}(r, a ; f)+\bar{N}_{L}(r, a ; g)$.
The notion of weighted sharing played an important role in connection with the further investigation of the Brück's result [see [3], [13], [21], [23]]. In order to generalise and improve the results of $Y u$ [19], recently in [7] Chen-Wang-Zhang initiate the problem of uniqueness of f and $\left(f^{n}\right)^{(k)}$, when they share a small function.

Recently, in this direction Banerjee-Majumder [5] obtained the following two results which improve the results of Chen-Wang-Zhang [7].

Theorem C. Let f be a non-constant meromorphic function, let $k \geq 1, q \geq 1$, $p \geq 0$ be integers and $q \geq \frac{k}{2}+1$, and let $a \not \equiv 0, \infty$ be a non-constant meromorphic small function of f. Suppose that $f-a$ and $\left(f^{q}\right)^{(k)}-a$ share $(0, p)$. If $p=\infty$ and

$$
\begin{aligned}
& 2 \bar{N}(r, \infty ; f)+N_{2}\left(r, 0 ;\left(f^{q}\right)^{(k)}\right)+\bar{N}\left(r, 0 ;(f / a)^{\prime} \mid f \neq 0\right) \\
< & (\lambda+o(1)) T\left(r,\left(f^{q}\right)^{(k)}\right)
\end{aligned}
$$

or if $2 \leq p<\infty$ and

$$
\begin{aligned}
& 2 \bar{N}(r, \infty ; f)+N_{2}\left(r, 0 ;\left(f^{q}\right)^{(k)}\right)+\bar{N}\left(r, 0 ;(f / a)^{\prime} \mid f \neq 0\right) \\
+ & \bar{N}\left(r, 0 ;(f / a)^{\prime}|f \neq 0| \geq l\right)<(\lambda+o(1)) T\left(r,\left(f^{q}\right)^{(k)}\right)
\end{aligned}
$$

or $p=1$ and

$$
\begin{aligned}
& 2 \bar{N}(r, \infty ; f)+N_{2}\left(r, 0 ;\left(f^{q}\right)^{(k)}\right)+2 \bar{N}\left(r, 0 ;(f / a)^{\prime} \mid f \neq 0\right) \\
< & (\lambda+o(1)) T\left(r,\left(f^{q}\right)^{(k)}\right)
\end{aligned}
$$

or $p=0$ and

$$
\begin{aligned}
& 4 \bar{N}(r, \infty ; f)+2 N_{2}\left(r, 0 ;\left(f^{q}\right)^{(k)}\right)+N\left(r, 0 ;\left(f^{q}\right)^{(k)} \mid=1\right)+ \\
+ & 2 \bar{N}\left(r, 0 ;(f / a)^{\prime} \mid f \neq 0\right)<(\lambda+o(1)) T\left(r,\left(f^{q}\right)^{(k)}\right)
\end{aligned}
$$

for $r \in I$, where $0<\lambda<1$ then $\frac{\left(f^{q}\right)^{(k)}-a}{f-a}=c$ for some constant $c \in \mathbb{C} /\{0\}$.
Theorem D. Let f be a non-constant meromorphic function, let $k \geq 1, q \geq 1$, $p \geq 0$ be integers and $q<\frac{k}{2}+1$, and let $a \not \equiv 0, \infty$ be a non-constant meromorphic small function of f. Suppose that $f-a$ and $\left(f^{q}\right)^{(k)}-a$ share $(0, p)$. If $2 \leq p<\infty$ and

$$
\begin{aligned}
& 2 \bar{N}(r, \infty ; f)+N_{2}\left(r, 0 ;\left(f^{q}\right)^{(k)}\right)+\bar{N}\left(r, 0 ;(f / a)^{\prime}\right)+\bar{N}\left(r, 0 ;(f / a)^{\prime} \mid \geq l\right) \\
& <(\lambda+o(1)) T\left(r,\left(f^{q}\right)^{(k)}\right)
\end{aligned}
$$

or $p=1$ and

$$
\begin{aligned}
& 2 \bar{N}(r, \infty ; f)+N_{2}\left(r, 0 ;\left(f^{q}\right)^{(k)}\right)+2 \bar{N}\left(r, 0 ;(f / a)^{\prime}\right) \\
< & (\lambda+o(1)) T\left(r,\left(f^{q}\right)^{(k)}\right)
\end{aligned}
$$

or $p=0$ and

$$
\begin{aligned}
& 4 \bar{N}(r, \infty ; f)+2 N_{2}\left(r, 0 ;\left(f^{q}\right)^{(k)}\right)+N\left(r, 0 ;\left(f^{q}\right)^{(k)} \mid=1\right)+ \\
+ & 2 \bar{N}\left(r, 0 ;(f / a)^{\prime}\right)<(\lambda+o(1)) T\left(r,\left(f^{q}\right)^{(k)}\right)
\end{aligned}
$$

for $r \in I$, where $0<\lambda<1$ then, $\frac{\left(f^{q}\right)^{(k)}-a}{f-a}=c$ for some constant $c \in \mathbb{C} /\{0\}$.
In this direction, very recently Harina-Husna [9], obtained a result as follows.

Theorem E. Let f be a non-constant meromorphic function and $k \geq 1, n \geq 1$, $m \geq 2$ and $p \geq 0$ be integers. Also let $a \equiv a(z)(\not \equiv 0, \infty)$ be a small meromorphic function. Suppose $f^{n}-a$ and $\left(f^{(k)}\right)^{m}-a$ share ($0, p$).
If $p \geq 2$ and

$$
\frac{2}{m} \bar{N}(r, \infty ; f)+\frac{2}{m} \bar{N}\left(r, 0, f^{(k)}\right)+N_{2}\left(r, 0,(f / a)^{\prime}\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right)
$$

or $p=1$ and

$$
\frac{2}{m} \bar{N}(r, \infty ; f)+\frac{2}{m} \bar{N}\left(r, 0, f^{(k)}\right)+2 N\left(r, 0,(f / a)^{\prime}\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right)
$$

or $p=0$ and

$$
\frac{4}{m} \bar{N}(r, \infty ; f)+\frac{6}{m} \bar{N}\left(r, 0, f^{(k)}\right)+2 \bar{N}\left(r, 0,(f / a)^{\prime}\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right)
$$

for $r \in I$, where $0<\lambda<1$ then, $\frac{\left(f^{(k)}\right)^{m}-a}{f^{n}-a}=c$ for some constant $c \in \mathbb{C} /\{0\}$.
Note 1.1. In the above Theorem E, the authors made a trivial mistake in the proof. Actually in the Theorem 1.1 [9], the last term on the left hand side of each of the inequalities (7), (8) and (9) a factor $\frac{1}{m}$ should be multiplied.

For further extension and improvement of all the above mentioned theorems to a large extent, we recall the following well known definition.

Definition 1.7. [4] Let $n_{0 j}, n_{1 j}, \ldots, n_{k j}$ be non-negative integers. Also let $g=f^{q}$.

- The expression $\mathcal{M}_{j}[g]=(g)^{n_{0 j}}\left(g^{\prime}\right)^{n_{1 j}} \ldots\left(g^{(k)}\right)^{n_{k j}}$ is called a differential monomial generated by g of degree $d\left(\mathcal{M}_{j}\right)=\sum_{i=0}^{k} n_{i j}$ and weight $\Gamma_{\mathcal{M}_{j}}=\sum_{i=0}^{k}(1+i) n_{i j}$.
- The sum $\mathcal{P}[g]=\sum_{j=1}^{t} b_{j} \mathcal{M}_{j}[g]$ is called a differential polynomial generated by g of degree $\bar{d}(\mathcal{P})=\max \left\{d\left(\mathcal{M}_{j}\right): 1 \leq j \leq t\right\}$ and weight $\Gamma_{\mathcal{P}}=\max \left\{\Gamma_{\mathcal{M}_{j}}: 1 \leq j \leq t\right\}$, where $T\left(r, b_{j}\right)=S(r, g)$ for $j=1,2, \ldots, t$.
- The numbers $\underline{d}(\mathcal{P})=\min \left\{d\left(\mathcal{M}_{j}\right): 1 \leq j \leq t\right\}$ and k the highest order of the derivative of g in $\mathcal{P}[g]$ are called respectively the lower degree and order of $\mathcal{P}[g]$.
- $\mathcal{P}[g]$ is called homogeneous if $\bar{d}(\mathcal{P})=\underline{d}(\mathcal{P})$.
- $\mathcal{P}[g]$ is called a linear differential polynomial generated by g if $\bar{d}(\mathcal{P})=1$. Otherwise $\mathcal{P}[g]$ is called non-linear differential polynomial. We denote by $Q=$ $\max \left\{\Gamma_{\mathcal{M}_{j}}-d\left(\mathcal{M}_{j}\right): 1 \leq j \leq t\right\}$.

In the meantime the present authors [4], extended the above theorems to differential polynomial and elaborately studied the sharing condition under the light of weighted sharing. Below we demonstrate the theorem in [4].

Theorem F. [4] Let f be a non-constant meromorphic function and $n(\geq 1)$, and $p(\geq 0)$ be integers. Also let $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic small function. Suppose further that $\mathcal{P}[f]$ is a differential polynomial generated by f such that $\mathcal{P}[f]$ contains at least one derivative. Suppose that $f^{n}-a$ and $\mathcal{P}[f]-a$ share $(0, p)$. If $p=\infty$ and

$$
2 \bar{N}(r, \infty ; f)+N_{2}(r, 0 ; \mathcal{P}[f])+\bar{N}\left(r, 0 ;\left(f^{n} / a\right)^{\prime}\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right)
$$

or $p \geq 2$ and

$$
2 \bar{N}(r, \infty ; f)+N_{2}(r, 0 ; \mathcal{P}[f])+N_{2}\left(r, 0 ;\left(f^{n} / a\right)^{\prime}\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right.
$$

or $p=1$ and

$$
\begin{aligned}
& 2 \bar{N}(r, \infty ; f)+N_{2}(r, 0 ; \mathcal{P}[f])+\bar{N}\left(r, 0 ;\left(f^{n} / a\right)^{\prime}\right)+\bar{N}\left(r, 0 ;\left(f^{n} / a\right)^{\prime} \mid\left(f^{n} / a\right) \neq 0\right) \\
<\quad & (\lambda+o(1)) T\left(r, f^{(k)}\right)
\end{aligned}
$$

or $p=0$ and

$$
\begin{aligned}
& 4 \bar{N}(r, \infty ; f)+N_{2}(r, 0 ; \mathcal{P}[f])+2 \bar{N}(r, 0 ; \mathcal{P}[f])+\bar{N}\left(, 0 ;\left(f^{n} / a\right)^{\prime}\right)+ \\
+\quad & \bar{N}\left(r, 0 ;\left(f^{n} / a\right)^{\prime} \mid\left(f^{n} / a\right) \neq 0\right)<(\lambda+o(1)) T\left(r, f^{(k)}\right)
\end{aligned}
$$

for $r \in I$, where $0<\lambda<1$, then $\frac{\mathcal{P}[f]-a}{f^{n}-a}=c$, for some non-zero constant c.
Now since f in [5] and f^{n} in [4, 9] are both polynomials and $\left(f^{n}\right)^{(k)}$ in [5] and $\left(f^{(k)}\right)^{m}$ in [9] are both special forms of a linear differential polynomial, from the above observation it will be a natural inquisition to investigate the possible answer of the following question:

Question 1.1. Is it possible to replace, f or f^{n} more generally, by a non-zero rational function $\mathcal{R}(f)$ and $\left(f^{q}\right)^{(k)},\left(f^{(k)}\right)^{m}$ or $\mathcal{P}[f]$ by the differential polynomial $\mathcal{P}\left[f^{q}\right]$ in the Theorems C, D, E and F in order to get the similar conclusions?

Henceforth we defined $\mathcal{R}(f)$ as in Lemma $2.3, d_{i}(1 \leq i \leq u)$ and $c_{j}(1 \leq j \leq l)$ are the roots of the the polynomial $P_{n}(z)=\sum_{i=0}^{n} a_{i} z^{i}$ and $1 \leq u \leq n$ and $P_{m}(z)=$ $\sum_{j=0}^{m} b_{j} z^{j}$ and $1 \leq l \leq m$ respectively, where u and l are two positive integers. Let $c_{0} \neq c_{j}(j=1, . ., l)$ be a non-zero constant.

Let us define $u^{*}=\left\{\begin{array}{ll}u, & \text { if none of } d_{i} \text { is zero, } \\ u-1, & \text { if if one of the of } d_{i} \text { is zero. }\end{array}\right.$ and $l^{*}= \begin{cases}\chi_{m}, & \text { if } \mathrm{m}=0, \\ l_{\chi_{m}}, & \text { if } m \geq 1 .\end{cases}$

Finding out the possible answer to the Question 1.1 is the motivation of the paper. In this paper, we have obtained a combined result which improves and extends all the Theorems $A-E$ by giving an affirmative answer of the above question. Actually we will place the improved version of all the above theorems under a single umbrella. The following are the main results of this paper.

Theorem 1.1. Let f be a non-constant meromorphic function, let $k \geq 1, n \geq 1$, $p \geq 0$ and $q \geq 1$ be integers such that $q \geq k^{*}$ and $a \not \equiv 0, \infty$ be a meromorphic small function of f. Let $\mathcal{P}\left[f^{q}\right]$ be a differential polynomial containing at least one derivative. Suppose $\mathcal{R}(f)-a$ and $\mathcal{P}\left[f^{q}\right]-a$ share $(0, p)$ with $\bar{N}\left(r, 0 ;(\mathcal{R}(f) / a)^{\prime}\right) \neq$ $S(r, f)$. If $p=\infty$ and

$$
\begin{align*}
& 2 \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+\sum_{i=1}^{u^{*}} \bar{N}\left(r, d_{i} ; f \mid \geq 2\right) \tag{1}\\
+ & N_{2}\left(r, 0 ; \mathcal{P}\left[f^{q}\right]\right)+\bar{N}\left(r, 0 ;(\mathcal{R}(f) / a)^{\prime} \mid \mathcal{R}(f) \neq 0\right)<(\lambda+o(1)) T\left(r, \mathcal{P}\left[f^{q}\right]\right)
\end{align*}
$$

or, if $2 \leq p<\infty$ and

$$
\begin{align*}
& 2 \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+\sum_{i=1}^{u^{*}} \bar{N}\left(r, d_{i} ; f \mid \geq 2\right)+N_{2}\left(r, 0 ; \mathcal{P}\left[f^{q}\right]\right) \\
+ & \bar{N}\left(r, 0 ;(\mathcal{R}(f) / a)^{\prime} \mid \mathcal{R}(f) \neq 0\right)+\bar{N}\left(r, 0 ;(\mathcal{R}(f) / a)^{\prime}|\mathcal{R}(f) \neq 0| \geq p\right) \tag{2}\\
< & (\lambda+o(1)) T\left(r, \mathcal{P}\left[f^{q}\right]\right)
\end{align*}
$$

or, if $p=1$ and

$$
\begin{align*}
& 2 \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+\sum_{i=1}^{u^{*}} \bar{N}\left(r, d_{i} ; f \mid \geq 2\right) \tag{3}\\
+ & N_{2}\left(r, 0 ; \mathcal{P}\left[f^{q}\right]\right)+2 \bar{N}\left(r, 0 ;(\mathcal{R}(f) / a)^{\prime} \mid \mathcal{R}(f) \neq 0\right) \\
< & (\lambda+o(1)) T\left(r, \mathcal{P}\left[f^{q}\right]\right)
\end{align*}
$$

or, if $p=0$ and

$$
\begin{align*}
& 4 \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+\sum_{i=1}^{u^{*}} \bar{N}\left(r, d_{i} ; f \mid \geq 2\right) \tag{4}\\
+ & 2 N_{2}\left(r, 0 ; \mathcal{P}\left[f^{q}\right]\right)+N\left(r, 0 ; \mathcal{P}\left[f^{q}\right] \mid=1\right)+2 \bar{N}\left(r, 0 ;(\mathcal{R}(f) / a)^{\prime} \mid \mathcal{R}(f) \neq 0\right) \\
< & (\lambda+o(1)) T\left(r, \mathcal{P}\left[f^{q}\right]\right)
\end{align*}
$$

for $r \in I$, where $0<\lambda<1$, then $\frac{\mathcal{P}\left[f^{q}\right]-a}{\mathcal{R}(f)-a}=c$ for some constant $c \in \mathbb{C} /\{0\}$.
Theorem 1.2. Let f be a non-constant meromorphic function, let $k \geq 1, n \geq 1$, $p \geq 0$ and $q \geq 1$ be integers such that $q<k^{*}$ and $a \not \equiv 0, \infty$ be a meromorphic small function of f. Let $\mathcal{P}\left[f^{q}\right]$ be a differential polynomial containing at least one derivative. Suppose $\mathcal{R}(f)-a$ and $\mathcal{P}\left[f^{q}\right]-a$ share $(0, p)$ with $\bar{N}\left(r, 0 ;(\mathcal{R}(f) / a)^{\prime}\right) \neq$ $S(r, f)$. If $2 \leq p<\infty$ and

$$
\begin{align*}
& 2 \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+\sum_{i=1}^{u} \bar{N}\left(r, d_{i} ; f \mid \geq 2\right) \tag{5}\\
+ & N_{2}\left(r, 0 ; \mathcal{P}\left[f^{q}\right]\right)+\bar{N}\left(r, 0 ;(\mathcal{R}(f) / a)^{\prime}\right)+\bar{N}\left(r, 0 ;(\mathcal{R}(f) / a)^{\prime} \mid \geq p\right) \\
< & (\lambda+o(1)) T\left(r, \mathcal{P}\left[f^{q}\right]\right)
\end{align*}
$$

or, if $p=1$ and

$$
\begin{align*}
& 2 \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+\sum_{i=1}^{u} \bar{N}\left(r, d_{i} ; f \mid \geq 2\right) \tag{6}\\
+ & N_{2}\left(r, 0 ; \mathcal{P}\left[f^{q}\right]\right)+2 \bar{N}\left(r, 0 ;(\mathcal{R}(f) / a)^{\prime}\right) \\
< & (\lambda+o(1)) T\left(r, \mathcal{P}\left[f^{q}\right]\right)
\end{align*}
$$

or, if $p=0$ and

$$
\begin{align*}
& 4 \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+\sum_{i=1}^{u} \bar{N}\left(r, d_{i} ; f \mid \geq 2\right) \tag{7}\\
+ & 2 N_{2}\left(r, 0 ; \mathcal{P}\left[f^{q}\right]\right)+N\left(r, 0 ; \mathcal{P}\left[f^{q}\right] \mid=1\right)+2 \bar{N}\left(r, 0 ;(\mathcal{R}(f) / a)^{\prime}\right) \\
< & (\lambda+o(1)) T\left(r, \mathcal{P}\left[f^{q}\right]\right)
\end{align*}
$$

for $r \in I$, where $0<\lambda<1$, then $\frac{\mathcal{P}\left[f^{q}\right]-a}{\mathcal{R}(f)-a}=c$ for some constant $c \in \mathbb{C} /\{0\}$.
The following examples show that $a \neq 0$ is necessary in Theorem 1.1 and Theorem 1.2.
Example 1.1. For $n, m \in \mathbb{N}$, let $\mathcal{R}(f)=\frac{f^{n}}{f^{m}-1}$ and $\mathcal{P}\left[f^{4}\right]=\frac{1}{4}\left(f^{4}\right)^{\prime}\left(f^{4}\right)^{2}$, where $f=e^{z}$. Here we see that f is a non-constant non-entire meromorphic function and $q \geq k^{*}$ as $q=4, k=1$. Clearly $\mathcal{R}(f)=\frac{e^{n z}}{e^{m z}-1}$ and $\mathcal{P}\left[f^{4}\right]=$ $e^{12 z}$ share $(0, \infty)$. All the conditions (1) - (4) in Theorem 1.1 are satisfied, but $\frac{\mathcal{P}\left[f^{4}\right]}{\mathcal{R}(f)}=\frac{e^{(n-12) z}}{e^{m z}-1} \neq c$, where c is a non-zero constant.
Example 1.2. Let $\mathcal{R}(f)=\frac{f^{n}}{P_{m}(f)}$, where $P_{m}(z)=\sum_{j=0}^{m} b_{m} z^{m}, b_{m} b_{0} \neq 0$ and for $n, k \in \mathbb{N} \mathcal{P}[f]=\frac{1}{i^{5 k}}\left(f^{(i v)}\right)^{3}\left(f^{(k)}\right)^{5}(f)^{n-8}$, where $f=e^{i z}$. Here we see that f is a non-constant meromorphic function and $q<k^{*}$ as $q=1=k$. Clearly $\mathcal{R}(f)=\frac{e^{i n z}}{P_{m}\left(e^{i z}\right)}$ and $\mathcal{P}[f]=e^{i n z}$ share $(0, \infty)$. All the conditions (5) - (7) in Theorem 1.2 are satisfied, but $\frac{\mathcal{P}[f]}{\mathcal{R}(f)}=P_{m}\left(e^{i z}\right) \neq c$, where c is a non-zero constant.

The following examples show that the conditions (1) - (7) in Theorem 1.1 and Theorem 1.2 are sufficient but not necessary.
Example 1.3. Let $\mathcal{R}(f)=f^{q}$ and $\mathcal{P}\left[f^{q}\right]=\frac{1}{q N}\left(f^{q}\right)^{\prime}$, where $f=e^{N z}, N \in \mathbb{Z}-\{0\}$ and $q \geq 2$. Here $q \geq k^{*}$ as $k=1$. Let $a \equiv a(z)$ be any small function for f. Then clearly $\mathcal{R}(f)-a=e^{N q z}-a$ and $\mathcal{P}\left[f^{q}\right]-a=e^{N q z}-a$ share $(0, \infty)$ and f satisfies all the conditions (1) - (4) in Theorem 1.1. Also $\frac{\mathcal{P}\left[f^{q}\right]-a}{\mathcal{R}(f)-a}=1$.

Example 1.4. Let $\mathcal{R}(f)=\frac{2 f^{2}-1}{f^{2}}$ and $\mathcal{P}\left[f^{2}\right]=\frac{1}{2}\left(f^{2}\right)^{\prime}$, where $f=e^{z}$ and $a(\neq 0, \infty)$ and $q \geq 2$. Here $k=1$ and hence $q \geq k^{*}$ and it is clear that $\mathcal{R}(f)-1=$ $\frac{e^{2 z}-1}{e^{2 z}}$ and $\mathcal{P}\left[f^{2}\right]-1=e^{2 z}-1$ share $(0, \infty)$. We see that all the conditions $(1)-$ (4) in Theorem 1.1 are satisfied. But $\frac{\mathcal{P}\left[f^{2}\right]-1}{\mathcal{R}(f)-1}=e^{2 z} \neq c$, where c is a non-zero constant.
Example 1.5. Let $\mathcal{R}(f)=\left(f^{2}-1\right)^{2}$ and $\mathcal{P}[f]=4\left(f^{\prime}\right)^{2}$, where $f=\frac{e^{z}-1}{e^{z}+1}$. Here we see that f is a non-constant non-entire meromorphic function. Here $q<k^{*}$ as $q=1=k$. Let $a \equiv a(z)$ be a small function for f. Clearly $\mathcal{R}(f)-a$ and $\mathcal{P}\left[f^{q}\right]-a$ share $(0, \infty)$. But none of the conditions (5) - (7) in Theorem 1.2 is satisfied, although $\frac{\mathcal{P}\left[f^{q}\right]-a}{\mathcal{R}(f)-a}=1$.

The following examples show that Theorem 1.1 and Theorem 1.2 may or may not be valid for the condition $\bar{N}\left(r, 0 ;(\mathcal{R}(f) / a)^{\prime}\right)=S(r, f)$.
Example 1.6. Let $\mathcal{R}(f)=\frac{2 f}{f+1}$ and $\mathcal{P}\left[f^{q}\right]=\frac{1}{2} f^{\prime}+\frac{1}{2} f^{\prime \prime}$, where $f=e^{z}$. Here $q=1, k=2$ and hence $q<k^{*}$ and note that $\mathcal{R}(f)-1=\frac{e^{z}-1}{e^{z}+1}$ and $\mathcal{P}\left[f^{q}\right]-1=$ $e^{z}-1$ share $(0, \infty)$. We see that all the conditions (5) - (7) in Theorem 1.2 are satisfied. But $\frac{\mathcal{P}\left[f^{q}\right]-1}{\mathcal{R}(f)-1}=e^{z}+1 \neq c$, where c is a non-zero constant.

Example 1.7. Let $\mathcal{R}(f)=f$ and $\mathcal{P}\left[f^{q}\right]=\frac{1}{2 N} f^{\prime}+\frac{1}{2 N^{4}} f^{(4)}$, where $f=e^{N z}, N \in$ $\mathbb{Z}-\{0\}$. Here $q<k^{*}$ as $q=1$ and $k=4$. Let $a \equiv a(z)$ be any small function for f. Then clearly $\mathcal{R}(f)-a$ and $\mathcal{P}\left[f^{q}\right]-a$ share $(0, \infty)$. We see that f satisfies all the conditions (5) - (7) in Theorem 1.2. Also $\frac{\mathcal{P}\left[f^{q}\right]-a}{\mathcal{R}(f)-a}=1$.
Example 1.8. Let $\mathcal{R}(f)=\frac{f+1}{f-1}$ and $\mathcal{P}\left[f^{q}\right]=f^{\prime}$, where $f(z)=e^{z}+1$. Here $q<k^{*}$ as $q=1, k=1$. Also $\mathcal{R}(f)-b=\frac{(1-b) e^{z}+2}{e^{z}}$ and $\mathcal{P}\left[f^{q}\right]-b=e^{z}-b$, where b is a complex number such that $b^{2}-b-2=0$. Then $\mathcal{R}(f)-b$ and $\left.\mathcal{P}\left[f^{q}\right]\right)-b$ share $(0, \infty)$. All the conditions (5) - (7) in Theorem 1.2 are satisfied but $\frac{\mathcal{P}\left[f^{q}\right]-2}{\mathcal{R}(f)-2}=-e^{z} \neq C$, where C is a non-zero constant.

Next we shall show by the following examples that all the conditions (1) - (7) in Theorem 1.1 and Theorem 1.2 cannot be removed.
Example 1.9. Let $\mathcal{R}(f)=f$ and $\mathcal{P}\left[f^{q}\right]=f^{\prime}$, where $f=\frac{z}{e^{-z}+1}$. Here $q<k^{*}$ as $q=1, k=1$. Then $\mathcal{R}(f)-1=\frac{z-e^{-z}-1}{e^{-z}+1}$ and $\mathcal{P}\left[f^{q}\right]-1=\frac{e^{-z}\left(z-e^{-z}-1\right)}{\left(e^{-z}+1\right)^{2}}$.

Therefore $\mathcal{R}(f)-1$ and $\mathcal{P}\left[f^{q}\right]-1$ share $(0, \infty)$ and none of the conditions (5) (7) in Theorem 1.2 is satisfied and hence $\frac{\mathcal{P}\left[f^{q}\right]-1}{\mathcal{R}(f)-1}=\frac{e^{-z}}{\left(e^{-z}+1\right)} \neq C$, where C is a non-zero constant.
Example 1.10. Let $\mathcal{R}(f)=f$ and $\mathcal{P}\left[f^{q}\right]=f^{\prime}$, where $f=\frac{4}{1-5 e^{-2 z}}$. Here $q<k^{*}$ as $q=1, k=1$. Then $\mathcal{R}(f)-2=\frac{2\left(1+5 e^{-2 z}\right)}{1-5 e^{-2 z}}$ and $\mathcal{P}\left[f^{q}\right]-2=-\frac{2\left(1+5 e^{-2 z}\right)^{2}}{\left(1-5 e^{-2 z}\right)^{2}}$. Therefore $\mathcal{R}(f)-2$ and $\mathcal{P}\left[f^{q}\right]-2$ share (0,0). Since the condition (7) in Theorem 1.2 is not satisfied and hence $\frac{\mathcal{P}\left[f^{q}\right]-2}{\mathcal{R}(f)-2}=-\frac{\left(1+5 e^{-2 z}\right)}{\left(1-5 e^{-2 z}\right)} \neq C$, where C is a nonzero constant.

2 Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F, G be two non-constant meromorphic functions. Henceforth we shall denote by H the following function.

$$
\begin{equation*}
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) . \tag{8}
\end{equation*}
$$

Lemma 2.1. [23] Let f be a non-constant meromorphic function and let p and k be two positive integers. Then

$$
\begin{gathered}
N_{s}\left(r, 0 ; f^{(k)}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N_{s+k}(r, 0 ; f)+S(r, f), \\
N_{s}\left(r, 0 ; f^{(k)}\right) \leq N_{s+k}(r, 0 ; f)+k \bar{N}(r, \infty ; f)+S(r, f) .
\end{gathered}
$$

Lemma 2.2. [2] Let f, g share (1,0). Then

$$
\bar{N}_{L}(r, 1 ; f) \leq \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+S(r),
$$

where $S(r)=o\{T(r)\}$ and $T(r)=\max \{T(r, f), T(r, g)\}$
Lemma 2.3. [15] Let f be a non-constant meromorphic function and let

$$
\mathcal{R}(f)=\frac{\sum_{i=0}^{n} a_{i} f^{i}}{\sum_{j=0}^{m} b_{j} f^{j}}
$$

be an irreducible rational function in f with constant coefficients $\left\{a_{i}\right\}$ and $\left\{b_{j}\right\}$ with $a_{n} \neq 0$ and $b_{m} \neq 0$. Then

$$
T(r, \mathcal{R}(f))=\max \{n, m\} T(r, f)+O(1) .
$$

Lemma 2.4. Let f be a meromorphic function and $P[f]$ be a differential polynomial. Then

$$
m\left(r, \frac{P\left[f^{q}\right]}{\left(f^{q}\right)^{\bar{d}(P)}}\right) \leq(\bar{d}(P)-\underline{d}(P)) m\left(r, \frac{1}{f^{q}}\right)+S(r, f) .
$$

Proof. The Lemma can be proven the same way as in [8].
Lemma 2.5. Let f be a meromorphic function and $\mathcal{P}\left[f^{q}\right]$ be a differential polynomial. Then we have

$$
\begin{aligned}
& N\left(r, \infty ; \frac{\mathcal{P}\left[f^{q}\right]}{\left(f^{q}\right)^{\bar{d}(\mathcal{P})}}\right) \\
\leq & \left(\Gamma_{\mathcal{P}}-\bar{d}(\mathcal{P})\right) \bar{N}(r, \infty ; f)+(\bar{d}(\mathcal{P})-\underline{d}(\mathcal{P})) N\left(r, 0 ; f^{q} \mid \geq k+1\right) \\
& +Q \bar{N}\left(r, 0 ; f^{q} \mid \geq k+1\right)+\bar{d}(\mathcal{P}) N\left(r, 0 ; f^{q} \mid \leq k\right)+S(r, f) .
\end{aligned}
$$

Proof. The Lemma can be proven the same way as in the proof of [4, Lemma 2.5].

Lemma 2.6. Let $\mathcal{P}\left[f^{q}\right]$ be a differential polynomial. Then

$$
T\left(r, \mathcal{P}\left[f^{q}\right]\right) \leq \Gamma_{P} T\left(r, f^{q}\right)+S(r, f)
$$

Proof. The Lemma can be proven in line of the proof [4, Lemma 2.6].
Lemma 2.7. Let f be a non-constant meromorphic function and $\mathcal{P}\left[f^{n}\right]$ be a differential polynomial. Then $S\left(r, \mathcal{P}\left[f^{q}\right]\right)$ can be replaced by $S(r, f)$.

Proof. From Lemma 2.7 it is clear that $T\left(r, \mathcal{P}\left[f^{q}\right]=O(T(r, f))\right.$ and so the Lemma follows.

3 Proofs of the theorems

Proof of Theorem 1.1. Let $F=\frac{\mathcal{R}(f)}{a}$ and $G=\frac{\mathcal{P}\left[f^{q}\right]}{a}$. Then $F-1=\frac{\mathcal{R}(f)-a}{a}$ and $G-1=\frac{\mathcal{P}\left[f^{q}\right]-a}{a}$. Since $\mathcal{R}(f)-a$ and $\mathcal{P}\left[f^{q}\right]-a$ share $(0, p)$ it follows that F, G share $(1, p)$ except the zeros and poles of a. Now we consider the following cases.
Case 1 Let $H \not \equiv 0$.
Subcase 1.1 Let $l \geq 1$
From (8) it can be easily calculated that the possible poles of H occur at (i) multiple zeros of F and G, (ii) those 1 points of F and G whose multiplicities are different related to F and G, (iii) those common poles of F and G whose multiplicities are different, (iv) zeros of $F^{\prime}\left(G^{\prime}\right)$ which are not the zeros of $F(F-1)$ $(G(G-1))$.
Let z_{0}, a zero of f with multiplicity $r \geq 2$ such that $a\left(z_{0}\right) \neq 0, \infty$. Then since G contains at least one derivative then z_{0} would be a zero of G with multiplicity
at least $2 q-k$. Since $q \geq k^{*}$, it follows that z_{0} will be a multiple zero of G too. Since H has only simple poles we get

$$
\begin{align*}
& \bar{N}(r, \infty ; H) \tag{9}\\
\leq & \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+\bar{N}_{*}(r, 1 ; F, G)+\sum_{i=1}^{u^{*}} \bar{N}\left(r, d_{i} ; f \mid \geq 2\right) \\
& +\bar{N}(r, 0 ; G \mid \geq 2)+\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)+\bar{N}(r, 0 ; a)+\bar{N}(r, \infty ; a),
\end{align*}
$$

where $\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)$ is the reduced counting function of those zeros of F^{\prime} which are not the zeros of $F(F-1)$ and $\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)$ is similarly defined. Let z_{1} be a simple zero of $F-1$ but $a\left(z_{1}\right) \neq 0, \infty$. Then z_{1} is a simple zero of $G-1$ and a zero of H. So
$N(r, 1 ; F \mid=1) \leq \bar{N}(r, 0 ; H)+N(r, \infty ; a)+N(r, 0 ; a) \leq \bar{N}(r, \infty ; H)+S(r, f)$.
Hence

$$
\begin{align*}
& \bar{N}(r, 1 ; G) \tag{11}\\
\leq & N(r, 1 ; F \mid=1)+\bar{N}(r, 1 ; F \mid \geq 2) \\
\leq & \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+\sum_{i=1}^{u^{*}} \bar{N}\left(r, d_{i} ; f \mid \geq 2\right)+\bar{N}(r, 0 ; G \mid \geq 2) \\
& +\bar{N}_{*}(r, 1 ; F, G)+\bar{N}(r, 1 ; F \mid \geq 2)+\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)+S(r, f) .
\end{align*}
$$

Note that $\bar{N}(r, \infty ; G)=\bar{N}(r, \infty ; f)+S(r, f)$.
By the Second Fundamental Theorem and (11), we get

$$
\begin{align*}
& T(r, G) \tag{12}\\
\leq & \bar{N}(r, \infty ; G)+\bar{N}(r, 0 ; G)+\bar{N}(r, 1 ; G)-N_{0}\left(r, 0 ; G^{\prime}\right)+S(r, G) \\
\leq & 2 \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+N_{2}(r, 0 ; G)+\sum_{i=1}^{u^{*}} \bar{N}\left(r, d_{i} ; f \mid \geq 2\right) \\
& +\bar{N}_{*}(r, 1 ; F, G)+\bar{N}(r, 1 ; F \mid \geq 2)+\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)+S(r, f)
\end{align*}
$$

Subcase 1.1.1. While $p=\infty$, we have $\bar{N}_{*}(r, 1 ; F, G)=S(r, f)$.
So we have

$$
\begin{align*}
& \bar{N}_{*}(r, 1 ; F, G)+\bar{N}(r, 1 ; F \mid \geq 2)+\bar{N}_{0}\left(r, 0 ; F^{\prime}\right) \tag{13}\\
\leq & \bar{N}\left(r, 0 ; F^{\prime} \mid F \neq 0\right)+S(r, f)
\end{align*}
$$

Hence from (12) we have

$$
\begin{aligned}
& T\left(r, \mathcal{P}\left[f^{q}\right]\right) \\
\leq & 2 \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+\sum_{i=1}^{u^{*}} \bar{N}\left(r, d_{i} ; f \mid \geq 2\right)+N_{2}\left(r, 0 ; \mathcal{P}\left[f^{q}\right]\right) \\
& +\bar{N}\left(r, 0 ;(\mathcal{R}(f) / a)^{\prime} \mid \mathcal{R}(f) \neq 0\right)+S(r, f)
\end{aligned}
$$

which contradicts (1).
Subcase 1.1.2. While $2 \leq p<\infty$, (13) changes to

$$
\begin{aligned}
& \bar{N}(r, 1 ; F \mid \geq p+1)+\bar{N}(r, 1 ; F \mid \geq 2)+\bar{N}_{0}\left(r, 0 ; F^{\prime}\right) \\
\leq & \bar{N}\left(r, 0 ; F^{\prime}|F \neq 0| \geq p\right)+\bar{N}\left(r, 0 ; F^{\prime} \mid F \neq 0\right)+S(r, f) .
\end{aligned}
$$

So from (12) we have

$$
\begin{aligned}
& T\left(r, \mathcal{P}\left[f^{q}\right]\right) \\
\leq & 2 \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+\sum_{i=1}^{u^{*}} \bar{N}\left(r, d_{i} ; f \mid \geq 2\right)+N_{2}\left(r, 0 ; \mathcal{P}\left[f^{q}\right]\right) \\
& +\bar{N}\left(r, 0 ;(\mathcal{R}(f) / a)^{\prime} \mid \mathcal{R}(f) \neq 0\right)+\bar{N}\left(r, 0 ;(\mathcal{R}(f) / a)^{\prime}|\mathcal{R}(f) \neq 0| \geq p\right) \\
& +S(r, f),
\end{aligned}
$$

which contradicts (2).
Subcase 1.1.3. While $p=1$, (13) changes to

$$
\begin{aligned}
& \bar{N}_{*}(r, 1 ; F, G)+\bar{N}(r, 1 ; F \mid \geq 2)+\bar{N}_{0}\left(r, 0 ; F^{\prime}\right) \\
\leq & 2 \bar{N}\left(r, 0 ; F^{\prime} \mid F \neq 0\right)+S(r, f)
\end{aligned}
$$

Similarly as above we have

$$
\begin{aligned}
& T\left(r, \mathcal{P}\left[f^{q}\right]\right) \\
\leq & 2 \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+\sum_{i=1}^{u^{*}} \bar{N}\left(r, d_{i} ; f \mid \geq 2\right)+N_{2}\left(r, 0 ; \mathcal{P}\left[f^{q}\right]\right) \\
& +2 \bar{N}\left(r, 0 ; \mathcal{R}(f)^{\prime} \mid \mathcal{R}(f) \neq 0\right)+S(r, f)
\end{aligned}
$$

which contradicts (3)
Subcase 1.2 Let $p=0$.
Here proceeding in the same way as in [4, Subcase 1.2, Proof of Theorem 1.1], we obtain

$$
\begin{aligned}
& T(r, G) \\
\leq & 4 \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+\sum_{i=1}^{u^{*}} \bar{N}\left(r, d_{i} ; f \mid \geq 2\right)+2 N_{2}(r, 0 ; G) \\
& +N(r, 0 ; G \mid=1)+2 \bar{N}\left(r, 0 ; F^{\prime} \mid F \neq 0\right)+S(r, f)
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& T\left(r, \mathcal{P}\left[f^{q}\right]\right) \\
\leq & 4 \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+\sum_{i=1}^{u^{*}} \bar{N}\left(r, d_{i} ; f \mid \geq 2\right)+2 N_{2}\left(r, 0 ; \mathcal{P}\left[f^{q}\right]\right) \\
& +N\left(r, 0 ; \mathcal{P}\left[f^{q}\right] \mid=1\right)+2 \bar{N}\left(r, 0 ;(\mathcal{R} / a)^{\prime} \mid \mathcal{R}(f) \neq 0\right)+S(r, f) .
\end{aligned}
$$

This contradicts (4).
Case 2 Let $H \equiv 0$.
On integration we get from (8)

$$
\begin{equation*}
\frac{1}{F-1} \equiv \frac{C}{G-1}+D, \tag{14}
\end{equation*}
$$

where C, D are constants and $C \neq 0$. We will prove that $D=0$.
Subcase 1.2.a. Let $D \neq 0$.
Subcase 1.2.a.1. Suppose $n>m$. If z_{0} is a pole of f with multiplicity r such that $a\left(z_{0}\right) \neq 0, \infty$, then it is a pole of F and G of multiplicities $n r-m r$ and $n r+k$ respectively. This contradicts (14).
Subcase 1.2.a.2. Suppose $n=m$. If z_{0} is a pole of f with multiplicity r such that $a\left(z_{0}\right) \neq 0, \infty$, then it is not pole of F but of G of multiplicity $n r+k$. This contradicts (14) again.
Subcase 1.2.a.3. Suppose $n<m$. If z_{0} is a pole of f with multiplicity r such that $a\left(z_{0}\right) \neq 0, \infty$, then it is a zero of F but a pole G of multiplicities $n r+k$. This contradicts (14) again.
Subcase 1.2.a.4. if there exist some $c_{j}, j=1,2, \ldots, m$ points of f, then that would be a pole of F but not of G this again contradicts (14).

Then it follows that

$$
N(r, \infty ; f) \leq \bar{N}(r, 0 ; a)+\bar{N}(r, \infty ; a)=S(r, f) .
$$

So from (14) we get

$$
\begin{equation*}
\frac{1}{F-1}=\frac{D\left(G-1+\frac{C}{D}\right)}{G-1} . \tag{15}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
\bar{N}\left(r, 1-\frac{C}{D} ; G\right)=\bar{N}(r, \infty ; F)+S(r, f) \tag{16}
\end{equation*}
$$

Subcase 1.2.a.5. When $n>m$, then

$$
\begin{equation*}
\bar{N}(r, \infty ; F) \leq \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f\right)+S(r, f) . \tag{17}
\end{equation*}
$$

Subcase 1.2.a.6. When $n=m$ or $n<m$, then

$$
\begin{equation*}
\bar{N}(r, \infty ; F) \leq \sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f\right)+S(r, f) . \tag{18}
\end{equation*}
$$

Subcase 1.2.a.7. If $\frac{C}{D} \neq 1$, by the Second Fundamental Theorem and (16) and (17) or (18), we have

$$
\begin{aligned}
T(r, G) & \leq \bar{N}(r, \infty ; G)+\bar{N}(r, 0 ; G)+\bar{N}\left(r, 1-\frac{C}{D} ; G\right)+S(r, G) \\
& \leq N_{2}(r, 0 ; G)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f\right)+S(r, f)
\end{aligned}
$$

i.e.,

$$
T\left(\mathcal{P}\left[f^{q}\right]\right) \leq N_{2}\left(r, 0 ; \mathcal{P}\left[f^{q}\right]\right)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f\right)+S(r, f),
$$

which contradicts (1) - (4).
Subcase 1.2.a.7. If $\frac{C}{D}=1$, we get

$$
\begin{equation*}
\left(F-1-\frac{1}{C}\right) G \equiv-\frac{1}{C} . \tag{19}
\end{equation*}
$$

From (19) it follows that

$$
\begin{equation*}
N\left(r, 0 ; f^{q} \mid \geq k+1\right) \leq N\left(r, 0 ; \mathcal{P}\left[f^{q}\right]\right) \leq N(r, 0 ; G)=S(r, f) \tag{20}
\end{equation*}
$$

Again from (19) we see that

$$
\frac{1}{\left(f^{q}\right)^{\bar{d}(\mathcal{P})}\left(\mathcal{R}(f)-\left(1+\frac{1}{C}\right) a\right)} \equiv-\frac{C}{a^{2}} \frac{\mathcal{P}[f]}{\left(f^{q}\right)^{\bar{d}(\mathcal{P})}} .
$$

Hence by the First Fundamental Theorem, (20), Lemmas 2.3, 2.4 and 2.5 we get

$$
\begin{aligned}
& (\max \{m, n\}+\bar{d}(\mathcal{P})) T\left(r, f^{q}\right) \\
= & T\left(r,\left(f^{q}\right)^{\bar{d}(\mathcal{P})}\left(\mathcal{R}(f)-\left(1+\frac{1}{C} a\right)\right)\right)+S(r, f) \\
= & T\left(r, \frac{1}{\left(f^{q}\right)^{\bar{d}(\mathcal{P})}\left(\mathcal{R}(f)-\left(1+\frac{1}{C} a\right)\right)}\right) \\
= & T\left(r, \frac{\mathcal{P}[f]}{\left(f^{q}\right)^{\bar{d}(\mathcal{P})}}\right)+S(r, f) \\
\leq & m\left(r, \frac{\mathcal{P}[f]}{\left(f^{q}\right)^{\bar{d}(\mathcal{P})}}\right)+N\left(r, \frac{\mathcal{P}[f]}{\left(f^{q}\right)^{\bar{d}(\mathcal{P})}}\right)+S(r, f) \\
\leq & (\bar{d}(\mathcal{P})-\underline{d}(\mathcal{P}))\left[T\left(r, f^{q}\right)-\left\{N\left(r, 0 ; f^{q} \mid \leq k\right)+N\left(r, 0 ; f^{q} \mid \geq k+1\right)\right\}\right] \\
& +(\bar{d}(\mathcal{P})-\underline{d}(\mathcal{P})) N\left(r, 0 ; f^{q} \mid \geq k+1\right)+Q \bar{N}\left(r, 0 ; f^{q} \mid \geq k+1\right) \\
& +\bar{d}(\mathcal{P}) N\left(r, 0 ; f^{q} \mid \leq k\right)+S(r, f) \\
\leq & (\bar{d}(\mathcal{P})-\underline{d}(\mathcal{P})) T\left(r, f^{q}\right)+\underline{d}(\mathcal{P}) N\left(r, 0 ; f^{q} \mid \leq k\right)+S(r, f)
\end{aligned}
$$

i.e.,

$$
q(\max \{m, n\}) T(r, f) \leq S(r, f)
$$

which is not possible.
Hence $D=0$ and so $\frac{G-1}{F-1}=C$ i.e, $\frac{\mathcal{P}[f]-a}{\mathcal{R}(f)-a}=C$, where C is a non-zero constant.

Proof of Theorem 1.2. Let F and G be given as in the proof of Theorem 1.1. When $H \not \equiv 0$ we observe that (9) can be changed to

$$
\begin{align*}
& N(r, \infty ; H) \tag{21}\\
\leq & \bar{N}(r, \infty ; f)+\sum_{j=0}^{l^{*}} \chi_{j} \bar{N}\left(r, c_{j} ; f \mid \geq 2\right)+\bar{N}_{*}(r, 1 ; F, G)+\bar{N}(r, 0 ; F \mid \geq 2) \\
& +\bar{N}(r, 0 ; G \mid \geq 2)+\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)+\bar{N}(r, 0 ; a)+\bar{N}(r, \infty ; a)
\end{align*}
$$

We omit the rest of the proof as that is simalar to the proof of Theorem 1.1.

References

[1] Alzahary T. C., Yi H. X., Weighted value sharing and a question of I.Lahiri, Complex Vr. Theory Appl., 49(15) (2004) 1063-1078.
[2] Banerjee A., Meromorphic functions sharing one value, Int. J. Math. Math. Sci., 22 (2005) 3587-3598.
[3] Banerjee A., Uniqueness of meromorphic functions sharing a small function with their differential polynomials, Kyungpook Math. J., 49 (2009) 651-666.
[4] Banerjee A., Ahamed M. B., Meromorphic function sharing a small function with its differential polynomial, Acta Univ. Palacki. Olomuc. Fac. rer. Nat. Mathematica, 54 (2015) 33-45.
[5] Banerjee A., Majumder S., Uniqueness of meromorphic functions sharing a small function with their derivatives of their powers, J. Adv. Res. Appl. Math., 4 (2012) 51-65.
[6] Brück R., On entire functions which share one value CM with their first derivative, Results Math. 30 (1996), 21-24.
[7] Chen, A., Wang X., Zhang G., Unicity of meromorphic function sharing one small function with its derivative, Int. J. Math. Math. Sci., (2010) Art. ID 507454, doi:10.1155/2010/507454.
[8] Chuang C. T., On differential polynomials. Analysis of one complex variable (Laramie, Wyo., 1985) World Sci. Publishing, Singapore, 1987, 12 - 32.
[9] Harina P. W., Husna V., Uniqueness of a meromorphic function that share one small function and its derivative, Elec. J. Math. Anal. Appl., 4 (2016) 25-37.
[10] Hayman W. K., Meromorphic functions, The Clarendon Press, Oxford, 1964.
[11] Lahiri I., Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161 (2001) 193-206.
[12] Lahiri I., Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., 46 (2001) 241-253.
[13] Lahiri I., Sarkar A., Uniqueness of meromorphic function and its derivative, J. Inequal. Pure Appl. Math., 5(1) (2004) Art. 20 [ONLINE $h t t p: / / j i p a m . v u . e d u . a u /\rfloor$.
[14] Liu L., Gu Y., Uniqueness of meromorphic functions that share one small function with their derivatives, Kodai Math. J., 27 (2004) 272-279.
[15] Mohon'ko A. Z., On the Nevanlinna characteristics of some meromorphic functions,. Theory of Functions. Funct. Anal. Appl., 14 (1971) 83-87.
[16] Mues E., Steinmetz N., Meromorphe Funktionen die unit ihrer Ableitung Werte teilen, Manuscripta Math., 29 (1979) 195-206.
[17] Yang L. Z., Solution of a differential equation and its applications, Kodai Math. J., 22(1999) 458-464.
[18] Yi H. X., On characteristic function of a meromorphic function and its derivative, Indian J. Math., 33(2)(1991) 119-133.
[19] Yu K. W., On entire and meromorphic functions that share small functions with their derivatives J. Inequal. Pure Appl. Math., 4(1) (2003), Art. 21 [ONLINE http://jipam.vu.edu.au/].
[20] Zhang Q. C., The uniqueness of meromorphic functions with their derivatives, Kodai Math. J., 21 (1998) 179-184.
[21] Zhang Q. C., Meromorphic function that shares one small function with its derivative, J. Inequal. Pure Appl. Math., 6(4)(2005) Art. 116 [ONLINE $h t t p: / / j i p a m . v u . e d u . a u /\rfloor$.
[22] Zhang J. L., Yang L. Z., Some results related to a conjecture of R. Brück concerning meromorphic functions sharing one small function with their derivatives, Ann. Acad. Sci. Fenn. Math., 32 (2007) 141-149.
[23] Zhang J. L., Yang L. Z., Some results related to a conjecture of R. Bruck, J. Inequal. Pure Appl. Math., 8(1)(2007) Art. 18.

[^0]: ${ }^{1}$ Department of Mathematics, Kalipada Ghosh Tarai Mahavidyalaya, West Bengal, 734014, India, e-mail: bsrhmd116@gmail.com, bsrhmd117@gmail.com
 ${ }^{2 *}$ Corresponding author, Department of Mathematics, University of Kalyani, West Bengal,741235, India, e-mail: abanerjee_kal@yahoo.co.in, abanerjeekal@gmail.com

