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RATIONAL FUNCTIAN AND DIFFERENTIAL
POLYNOMIAL OF A MEROMORPHIC FUNCTION

SHARING A SMALL FUNCTION

Molla Basir AHAMED∗1 and Abhijit BANERJEE2

Abstract

In this paper we have mainly dealt with the relation between a general-
ized differential polynomial and a rational function R(f) of a non-constant
meromorphic function f sharing a small function a ≡ a(z)(6≡ 0,∞). Our
results will extend recent results in [4], [5] and [9] in the direction of Brück
Conjecture. We have exhibited some examples which show that the result
of this paper may or may not be true because non-constant entire functions
and conditions obtained in the theorems cannot be removed. Other examples
have also substantiated our certain claims.
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1 Introduction Definitions and Results

Throughout the paper, by meromorphic functions we will always mean mero-
morphic functions in the complex plane C. We adopt the standard notations
of the Nevanlinna theory of meromorphic functions as explained in [10]. It will
be convenient to let E denote any set of positive real numbers of finite linear
measure, not necessarily the same at each occurrence. For a non-constant mero-
morphic function h, we denote by T (r, h) the Nevanlinna characteristic of h and
by S(r, h) any quantity satisfying S(r, h) = o{T (r, h)}, as r −→∞ and r 6∈ E.

Let f and g be two non-constant meromorphic functions and let a be a complex
number. We say that f and g share a CM, provided that f − a and g − a have
the same zeros with the same multiplicities. Similarly, we say that f and g share
a IM, provided that f − a and g − a have the same zeros ignoring multiplicities.
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In addition, we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM, and
we say that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

A meromorphic function a is said to be a small function of f provided that
T (r, a) = S(r, f), that is T (r, a) = o(T (r, f)) as r −→∞, r 6∈ E.

Throughout this paper we denote, k∗ =

{
k
2 + 1, if k is even,[
k
2

]
+ 2, if k is odd.

and

χm =

{
0, if m = 0,
1, if m ≥ 1.

At the starting point of our discussion we present the following theorem of
Mues and Steinmetz [16] proved in 1979. In 1979, Mues and Steinmetz [16]
proved the following theorem.

Theorem A. [16] Let f be a non-constant entire function. If f and f
′

share two
distinct values a, b IM then f

′ ≡ f .

The following result is due to Brück [6] who first dealt with the uniqueness
problem of an entire function sharing one value with its derivative.

Theorem B. [6] Let f be a non-constant entire function. If f and f
′

share the

value 1 CM and if N(r, 0; f
′
) = S(r, f) then

f
′ − 1

f − 1
is a nonzero constant.

In the recent past, authors such as Yang [17], Zhang [20], Yu [19], Liu-Gu
[14], Zhang-Yang [22] extended and generalized the results of Brück. In 2001
the notion of weighted sharing of values appeared in the uniqueness literature as
follows.

Definition 1.1. [11, 12] Let k be a non-negative integer or infinity. For a ∈
C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f, g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is an
a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g with
multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k) if and
only if it is an a-point of g with multiplicity n (> k), where m is not necessarily
equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k.
Also, we note that f , g share a value a IM or CM if and only if f , g share (a, 0)
or (a,∞) respectively.

If a is a small function we define that f and g share a IM or a CM or with
weight l accordingly as f − a and g− a share (0, 0) or (0,∞) or (0, l) respectively.

Though we use the standard notations and definitions of the value distribution
theory available in [10], we explain some definitions and notations which are used
in the paper.

Definition 1.2. [13]Let p be a positive integer and a ∈ C ∪ {∞}.
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(i) N(r, a; f |≥ p) (N(r, a; f |≥ p))denotes the counting function (reduced count-
ing function) of those a-points of f whose multiplicities are not less than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p))denotes the counting function (reduced count-
ing function) of those a-points of f whose multiplicities are not greater than
p.

Definition 1.3. [18] For a ∈ C ∪ {∞} and a positive integer p we denote by
Np(r, a; f) the sum N(r, a; f) + N(r, a; f |≥ 2) + . . . + N(r, a; f |≥ p). Clearly
N1(r, a; f) = N(r, a; f).

Definition 1.4. For a ∈ C∪{∞} and a positive integer m, we denote by N(r, a; f |
g 6= a |≥ m) the reduced counting function of those a-points of f with multiplicities
≥ m which are not the a-points of g.

Definition 1.5. [1] Let f and g be two non-constant meromorphic functions
such that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplic-
ity p, a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting

function of those 1-points of f and g where p > q, by N
1)
E (r, 1; f) the counting

function of those 1-points of f and g where p = q = 1 and by N
(2
E (r, 1; f) the

counting function of those 1-points of f and g where p = q ≥ 2, each point in
these counting functions is counted only once. In the same way we can define

NL(r, 1; g), N
1)
E (r, 1; g), N

(2
E (r, 1; g).

Definition 1.6. [11, 12] Let f , g share a value (a, 0) . We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ from
the multiplicities of the corresponding a-points of g.
Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f)+NL(r, a; g).

The notion of weighted sharing played an important role in connection with
the further investigation of the Brück ’s result [see [3], [13], [21], [23]]. In order to
generalise and improve the results of Yu [19], recently in [7] Chen-Wang-Zhang

initiate the problem of uniqueness of f and (fn)(k), when they share a small
function.

Recently, in this direction Banerjee-Majumder [5] obtained the following two
results which improve the results of Chen-Wang-Zhang [7].

Theorem C. Let f be a non-constant meromorphic function, let k ≥ 1, q ≥ 1,

p ≥ 0 be integers and q ≥ k

2
+ 1, and let a 6≡ 0,∞ be a non-constant meromorphic

small function of f. Suppose that f − a and (f q)(k)− a share (0, p). If p =∞ and

2N(r,∞; f) +N2

(
r, 0; (f q)(k)

)
+N

(
r, 0; (f/a)

′ | f 6= 0
)

< (λ+ o(1)) T
(
r, (f q)(k)

)
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or if 2 ≤ p <∞ and

2N(r,∞; f) +N2

(
r, 0; (f q)(k)

)
+N

(
r, 0; (f/a)

′ | f 6= 0
)

+ N
(
r, 0; (f/a)

′ | f 6= 0 |≥ l
)
< (λ+ o(1)) T

(
r, (f q)(k)

)
or p = 1 and

2N(r,∞; f) +N2

(
r, 0; (f q)(k)

)
+ 2N

(
r, 0; (f/a)

′ | f 6= 0
)

< (λ+ o(1)) T
(
r, (f q)(k)

)
or p = 0 and

4N(r,∞; f) + 2N2

(
r, 0; (f q)(k)

)
+N

(
r, 0; (f q)(k) |= 1

)
+

+ 2N
(
r, 0; (f/a)

′ | f 6= 0
)
< (λ+ o(1)) T

(
r, (f q)(k)

)
for r ∈ I, where 0 < λ < 1 then

(f q)(k) − a
f − a

= c for some constant c ∈ C/{0}.

Theorem D. Let f be a non-constant meromorphic function, let k ≥ 1, q ≥ 1,

p ≥ 0 be integers and q <
k

2
+ 1, and let a 6≡ 0,∞ be a non-constant meromorphic

small function of f. Suppose that f − a and (f q)(k)− a share (0, p). If 2 ≤ p <∞
and

2N(r,∞; f) +N2

(
r, 0; (f q)(k)

)
+N

(
r, 0; (f/a)

′
)

+N
(
r, 0; (f/a)

′ |≥ l
)

< (λ+ o(1)) T
(
r, (f q)(k)

)
or p = 1 and

2N(r,∞; f) +N2

(
r, 0; (f q)(k)

)
+ 2N

(
r, 0; (f/a)

′
)

< (λ+ o(1)) T
(
r, (f q)(k)

)
or p = 0 and

4N(r,∞; f) + 2N2

(
r, 0; (f q)(k)

)
+N

(
r, 0; (f q)(k) |= 1

)
+

+ 2N
(
r, 0; (f/a)

′
)
< (λ+ o(1)) T

(
r, (f q)(k)

)
for r ∈ I, where 0 < λ < 1 then,

(f q)(k) − a
f − a

= c for some constant c ∈ C/{0}.

In this direction, very recently Harina-Husna [9], obtained a result as follows.
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Theorem E. Let f be a non-constant meromorphic function and k ≥ 1, n ≥ 1,
m ≥ 2 and p ≥ 0 be integers. Also let a ≡ a(z)(6≡ 0,∞) be a small meromorphic
function. Suppose fn − a and (f (k))m − a share (0, p).
If p ≥ 2 and

2

m
N(r,∞; f) +

2

m
N(r, 0, f (k)) +N2(r, 0, (f/a)

′
) < (λ+ o(1))T (r, f (k))

or p = 1 and

2

m
N(r,∞; f) +

2

m
N(r, 0, f (k)) + 2N(r, 0, (f/a)

′
) < (λ+ o(1))T (r, f (k))

or p = 0 and

4

m
N(r,∞; f) +

6

m
N(r, 0, f (k)) + 2N(r, 0, (f/a)

′
) < (λ+ o(1))T (r, f (k))

for r ∈ I, where 0 < λ < 1 then,

(
f (k)

)m − a
fn − a

= c for some constant c ∈ C/{0}.

Note 1.1. In the above Theorem E, the authors made a trivial mistake in the
proof. Actually in the Theorem 1.1 [9], the last term on the left hand side of each

of the inequalities (7), (8) and (9) a factor
1

m
should be multiplied.

For further extension and improvement of all the above mentioned theorems
to a large extent, we recall the following well known definition.

Definition 1.7. [4] Let n0j , n1j , . . . , nkj be non-negative integers. Also let g = f q.
• The expression Mj [g] = (g)n0j (g′)n1j . . . (g(k))nkj is called a differential mono-

mial generated by g of degree d(Mj) =
k∑

i=0

nij and weight ΓMj
=

k∑
i=0

(1 + i)nij.

• The sum P[g] =
t∑

j=1

bjMj [g] is called a differential polynomial generated by g of

degree d(P) = max{d(Mj) : 1 ≤ j ≤ t} and weight ΓP = max{ΓMj
: 1 ≤ j ≤ t},

where T (r, bj) = S(r, g) for j = 1, 2, . . . , t.

• The numbers d(P) = min{d(Mj) : 1 ≤ j ≤ t} and k the highest order of the
derivative of g in P[g] are called respectively the lower degree and order of P[g].

• P[g] is called homogeneous if d(P) = d(P).

• P[g] is called a linear differential polynomial generated by g if d(P) = 1.
Otherwise P[g] is called non-linear differential polynomial. We denote by Q =
max{ΓMj

− d(Mj) : 1 ≤ j ≤ t}.

In the meantime the present authors [4], extended the above theorems to
differential polynomial and elaborately studied the sharing condition under the
light of weighted sharing. Below we demonstrate the theorem in [4].
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Theorem F. [4] Let f be a non-constant meromorphic function and n(≥ 1), and
p(≥ 0) be integers. Also let a ≡ a(z)(6≡ 0,∞) be a meromorphic small function.
Suppose further that P[f ] is a differential polynomial generated by f such that P[f ]
contains at least one derivative. Suppose that fn − a and P[f ]− a share (0, p).
If p =∞ and

2N(r,∞; f) +N2(r, 0;P[f ]) +N(r, 0; (fn/a)′) < (λ+ o(1))T (r, f (k)),

or p ≥ 2 and

2N(r,∞; f) +N2(r, 0;P[f ]) +N2(r, 0; (fn/a)′) < (λ+ o(1))T (r, f (k),

or p = 1 and

2N(r,∞; f) +N2(r, 0;P[f ]) +N(r, 0; (fn/a)′) +N(r, 0; (fn/a)′|(fn/a) 6= 0)

< (λ+ o(1))T (r, f (k)),

or p = 0 and

4N(r,∞; f) +N2(r, 0;P[f ]) + 2N(r, 0;P[f ]) +N(, 0; (fn/a)′) +

+ N(r, 0; (fn/a)′|(fn/a) 6= 0) < (λ+ o(1))T (r, f (k))

for r ∈ I, where 0 < λ < 1, then
P[f ]− a
fn − a

= c, for some non-zero constant c.

Now since f in [5] and fn in [4, 9] are both polynomials and (fn)(k) in [5]
and (f (k))m in [9] are both special forms of a linear differential polynomial, from
the above observation it will be a natural inquisition to investigate the possible
answer of the following question:

Question 1.1. Is it possible to replace, f or fn more generally, by a non-zero
rational function R(f) and (f q)(k), (f (k))m or P[f ] by the differential polynomial
P[f q] in the Theorems C, D, E and F in order to get the similar conclusions?

Henceforth we defined R(f) as in Lemma 2.3, di (1 ≤ i ≤ u) and cj (1 ≤ j ≤ l)

are the roots of the the polynomial Pn(z) =
n∑

i=0

aiz
i and 1 ≤ u ≤ n and Pm(z) =

m∑
j=0

bjz
j and 1 ≤ l ≤ m respectively, where u and l are two positive integers. Let

c0 6= cj(j = 1, .., l) be a non-zero constant.

Let us define u∗ =

{
u, if none of di is zero,
u− 1, if if one of the of di is zero.

and

l∗ =

{
χm, if m=0,
lχm, if m ≥ 1.

Finding out the possible answer to the Question 1.1 is the motivation of the
paper. In this paper, we have obtained a combined result which improves and
extends all the Theorems A - E by giving an affirmative answer of the above
question. Actually we will place the improved version of all the above theorems
under a single umbrella. The following are the main results of this paper.



Rational function and differential polynomial ... 7

Theorem 1.1. Let f be a non-constant meromorphic function, let k ≥ 1, n ≥ 1,
p ≥ 0 and q ≥ 1 be integers such that q ≥ k∗ and a 6≡ 0,∞ be a meromorphic
small function of f. Let P[f q] be a differential polynomial containing at least one
derivative. Suppose R(f)− a and P[f q]− a share (0, p) with N(r, 0; (R(f)/a)′) 6=
S(r, f). If p =∞ and

2N(r,∞; f) +

l∗∑
j=0

χjN(r, cj ; f |≥ 2) +

u∗∑
i=1

N(r, di; f |≥ 2) (1)

+ N2 (r, 0;P[f q]) +N
(
r, 0; (R(f)/a)

′ | R(f) 6= 0
)
< (λ+ o(1)) T (r,P[f q])

or, if 2 ≤ p <∞ and

2N(r,∞; f) +

l∗∑
j=0

χjN(r, cj ; f |≥ 2) +

u∗∑
i=1

N(r, di; f |≥ 2) +N2 (r, 0;P[f q])

+ N
(
r, 0; (R(f)/a)

′ | R(f) 6= 0
)

+N
(
r, 0; (R(f)/a)

′ | R(f) 6= 0 |≥ p
)

(2)

< (λ+ o(1)) T (r,P[f q])

or, if p = 1 and

2N(r,∞; f) +

l∗∑
j=0

χjN(r, cj ; f |≥ 2) +

u∗∑
i=1

N(r, di; f |≥ 2) (3)

+ N2 (r, 0;P[f q]) + 2N
(
r, 0; (R(f)/a)

′ | R(f) 6= 0
)

< (λ+ o(1)) T (r,P[f q])

or, if p = 0 and

4N(r,∞; f) +
l∗∑
j=0

χjN(r, cj ; f |≥ 2) +
u∗∑
i=1

N(r, di; f |≥ 2) (4)

+ 2N2 (r, 0;P[f q]) +N (r, 0;P[f q] |= 1) + 2N
(
r, 0; (R(f)/a)

′ | R(f) 6= 0
)

< (λ+ o(1)) T (r,P[f q])

for r ∈ I, where 0 < λ < 1, then
P[f q]− a
R(f)− a

= c for some constant c ∈ C/{0}.

Theorem 1.2. Let f be a non-constant meromorphic function, let k ≥ 1, n ≥ 1,
p ≥ 0 and q ≥ 1 be integers such that q < k∗ and a 6≡ 0,∞ be a meromorphic
small function of f. Let P[f q] be a differential polynomial containing at least one
derivative. Suppose R(f)− a and P[f q]− a share (0, p) with N(r, 0; (R(f)/a)′) 6=
S(r, f). If 2 ≤ p <∞ and

2N(r,∞; f) +

l∗∑
j=0

χjN(r, cj ; f |≥ 2) +

u∑
i=1

N(r, di; f |≥ 2) (5)

+ N2 (r, 0;P[f q]) +N
(
r, 0; (R(f)/a)

′
)

+N
(
r, 0; (R(f)/a)

′ |≥ p
)

< (λ+ o(1)) T (r,P[f q])
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or, if p = 1 and

2N(r,∞; f) +
l∗∑
j=0

χjN(r, cj ; f |≥ 2) +
u∑

i=1

N(r, di; f |≥ 2) (6)

+ N2 (r, 0;P[f q]) + 2N
(
r, 0; (R(f)/a)

′
)

< (λ+ o(1)) T (r,P[f q])

or,if p = 0 and

4N(r,∞; f) +

l∗∑
j=0

χjN(r, cj ; f |≥ 2) +

u∑
i=1

N(r, di; f |≥ 2) (7)

+ 2N2 (r, 0;P[f q]) +N (r, 0;P[f q] |= 1) + 2N
(
r, 0; (R(f)/a)

′
)

< (λ+ o(1)) T (r,P[f q])

for r ∈ I, where 0 < λ < 1, then
P[f q]− a
R(f)− a

= c for some constant c ∈ C/{0}.

The following examples show that a 6= 0 is necessary in Theorem 1.1 and
Theorem 1.2.

Example 1.1. For n,m ∈ N, let R(f) =
fn

fm − 1
and P[f4] =

1

4

(
f4
)′ (

f4
)2

,

where f = ez. Here we see that f is a non-constant non-entire meromorphic

function and q ≥ k∗ as q = 4, k = 1. Clearly R(f) =
enz

emz − 1
and P[f4] =

e12z share (0,∞). All the conditions (1) - (4) in Theorem 1.1 are satisfied, but

P[f4]

R(f)
=
e(n−12)z

emz − 1
6= c, where c is a non-zero constant.

Example 1.2. Let R(f) =
fn

Pm(f)
, where Pm(z) =

m∑
j=0

bmz
m, bmb0 6= 0 and for

n, k ∈ N P[f ] =
1

i5k

(
f (iv)

)3 (
f (k)

)5
(f)n−8, where f = eiz. Here we see that

f is a non-constant meromorphic function and q < k∗ as q = 1 = k. Clearly

R(f) =
einz

Pm(eiz)
and P[f ] = einz share (0,∞). All the conditions (5) - (7) in

Theorem 1.2 are satisfied, but
P[f ]

R(f)
= Pm(eiz) 6= c, where c is a non-zero constant.

The following examples show that the conditions (1) - (7) in Theorem 1.1 and
Theorem 1.2 are sufficient but not necessary.

Example 1.3. Let R(f) = f q and P[f q] =
1

qN
(f q)

′
, where f = eNz, N ∈ Z−{0}

and q ≥ 2. Here q ≥ k∗ as k = 1. Let a ≡ a(z) be any small function for f . Then
clearly R(f)− a = eNqz − a and P[f q]− a = eNqz − a share (0,∞) and f satisfies

all the conditions (1) - (4) in Theorem 1.1. Also
P[f q]− a
R(f)− a

= 1.
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Example 1.4. Let R(f) =
2f2 − 1

f2
and P[f2] =

1

2
(f2)′, where f = ez and

a( 6= 0,∞) and q ≥ 2. Here k = 1 and hence q ≥ k∗ and it is clear that R(f)−1 =
e2z − 1

e2z
and P[f2]− 1 = e2z − 1 share (0,∞). We see that all the conditions (1) -

(4) in Theorem 1.1 are satisfied. But
P[f2]− 1

R(f)− 1
= e2z 6= c, where c is a non-zero

constant.

Example 1.5. Let R(f) = (f2 − 1)2 and P[f ] = 4(f ′)2, where f =
ez − 1

ez + 1
. Here

we see that f is a non-constant non-entire meromorphic function. Here q < k∗ as
q = 1 = k. Let a ≡ a(z) be a small function for f . Clearly R(f)−a and P[f q]−a
share (0,∞). But none of the conditions (5) - (7) in Theorem 1.2 is satisfied,

although
P[f q]− a
R(f)− a

= 1.

The following examples show that Theorem 1.1 and Theorem 1.2 may or may
not be valid for the condition N(r, 0; (R(f)/a)′) = S(r, f).

Example 1.6. Let R(f) =
2f

f + 1
and P[f q] =

1

2
f ′ +

1

2
f ′′, where f = ez. Here

q = 1, k = 2 and hence q < k∗ and note that R(f)− 1 =
ez − 1

ez + 1
and P[f q]− 1 =

ez − 1 share (0,∞). We see that all the conditions (5) - (7) in Theorem 1.2 are

satisfied. But
P[f q]− 1

R(f)− 1
= ez + 1 6= c, where c is a non-zero constant.

Example 1.7. Let R(f) = f and P[f q] =
1

2N
f ′ +

1

2N4
f (4), where f = eNz, N ∈

Z− {0}. Here q < k∗ as q = 1 and k = 4. Let a ≡ a(z) be any small function for
f . Then clearly R(f) − a and P[f q] − a share (0,∞). We see that f satisfies all

the conditions (5) - (7) in Theorem 1.2. Also
P[f q]− a
R(f)− a

= 1.

Example 1.8. Let R(f) =
f + 1

f − 1
and P[f q] = f ′, where f(z) = ez + 1. Here

q < k∗ as q = 1, k = 1. Also R(f) − b =
(1− b)ez + 2

ez
and P[f q] − b = ez − b,

where b is a complex number such that b2 − b − 2 = 0. Then R(f) − b and
P[f q])− b share (0,∞). All the conditions (5) - (7) in Theorem 1.2 are satisfied

but
P[f q]− 2

R(f)− 2
= −ez 6= C, where C is a non-zero constant.

Next we shall show by the following examples that all the conditions (1) - (7)
in Theorem 1.1 and Theorem 1.2 cannot be removed.

Example 1.9. Let R(f) = f and P[f q] = f ′, where f =
z

e−z + 1
. Here q < k∗ as

q = 1, k = 1. Then R(f) − 1 =
z − e−z − 1

e−z + 1
and P[f q] − 1 =

e−z(z − e−z − 1)

(e−z + 1)2
.
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Therefore R(f) − 1 and P[f q] − 1 share (0,∞) and none of the conditions (5) -

(7) in Theorem 1.2 is satisfied and hence
P[f q]− 1

R(f)− 1
=

e−z

(e−z + 1)
6= C, where C is

a non-zero constant.

Example 1.10. Let R(f) = f and P[f q] = f ′, where f =
4

1− 5e−2z
. Here q < k∗

as q = 1, k = 1. Then R(f)− 2 =
2(1 + 5e−2z)

1− 5e−2z
and P[f q]− 2 = −2(1 + 5e−2z)2

(1− 5e−2z)2
.

Therefore R(f)−2 and P[f q]−2 share (0, 0) . Since the condition (7) in Theorem

1.2 is not satisfied and hence
P[f q]− 2

R(f)− 2
= −(1 + 5e−2z)

(1− 5e−2z)
6= C, where C is a non-

zero constant.

2 Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F , G be two non-constant meromorphic functions. Henceforth we shall denote by
H the following function.

H =

(
F
′′

F ′
− 2F

′

F − 1

)
−

(
G
′′

G′
− 2G

′

G− 1

)
. (8)

Lemma 2.1. [23] Let f be a non-constant meromorphic function and let p and
k be two positive integers. Then

Ns

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Ns+k(r, 0; f) + S(r, f),

Ns

(
r, 0; f (k)

)
≤ Ns+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2.2. [2] Let f , g share (1, 0). Then

NL(r, 1; f) ≤ N(r, 0; f) +N(r,∞; f) + S(r),

where S(r) = o{T (r)} and T (r) = max{T (r, f), T (r, g)}

Lemma 2.3. [15] Let f be a non-constant meromorphic function and let

R(f) =

n∑
i=0

aif
i

m∑
j=0

bjf j

be an irreducible rational function in f with constant coefficients {ai} and {bj}
with an 6= 0 and bm 6= 0. Then

T (r,R(f)) = max{n,m}T (r, f) +O(1).
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Lemma 2.4. Let f be a meromorphic function and P [f ] be a differential polyno-
mial. Then

m

(
r,

P [f q]

(f q)d̄(P )

)
≤
(
d̄(P )− d(P )

)
m

(
r,

1

f q

)
+ S(r, f).

Proof. The Lemma can be proven the same way as in [8].

Lemma 2.5. Let f be a meromorphic function and P[f q] be a differential poly-
nomial. Then we have

N

(
r,∞;

P[f q]

(f q)d̄(P)

)
≤

(
ΓP − d̄(P)

)
N(r,∞; f) +

(
d̄(P)− d(P)

)
N(r, 0; f q| ≥ k + 1)

+QN(r, 0; f q| ≥ k + 1) + d̄(P)N(r, 0; f q| ≤ k) + S(r, f).

Proof. The Lemma can be proven the same way as in the proof of [4, Lemma
2.5].

Lemma 2.6. Let P[f q] be a differential polynomial. Then

T (r,P[f q]) ≤ ΓPT (r, f q) + S(r, f).

Proof. The Lemma can be proven in line of the proof [4, Lemma 2.6].

Lemma 2.7. Let f be a non-constant meromorphic function and P[fn] be a dif-
ferential polynomial. Then S(r,P[f q]) can be replaced by S(r, f).

Proof. From Lemma 2.7 it is clear that T (r,P[f q] = O(T (r, f)) and so the Lemma
follows.

3 Proofs of the theorems

Proof of Theorem 1.1. Let F =
R(f)

a
and G =

P[f q]

a
. Then F − 1 =

R(f)− a
a

and G− 1 =
P[f q]− a

a
. Since R(f)− a and P[f q]− a share (0, p) it follows that

F , G share (1, p) except the zeros and poles of a. Now we consider the following
cases.
Case 1 Let H 6≡ 0.
Subcase 1.1 Let l ≥ 1
From (8) it can be easily calculated that the possible poles of H occur at (i)
multiple zeros of F and G, (ii) those 1 points of F and G whose multiplicities
are different related to F and G, (iii) those common poles of F and G whose
multiplicities are different, (iv) zeros of F

′
(G
′
) which are not the zeros of F (F−1)

(G(G− 1)).
Let z0, a zero of f with multiplicity r ≥ 2 such that a(z0) 6= 0,∞. Then since
G contains at least one derivative then z0 would be a zero of G with multiplicity
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at least 2q − k. Since q ≥ k∗, it follows that z0 will be a multiple zero of G too.
Since H has only simple poles we get

N(r,∞;H) (9)

≤ N(r,∞; f) +

l∗∑
j=0

χjN(r, cj ; f |≥ 2) +N∗(r, 1;F,G) +

u∗∑
i=1

N(r, di; f |≥ 2)

+N(r, 0;G |≥ 2) +N0(r, 0;F
′
) +N0(r, 0;G

′
) +N(r, 0; a) +N(r,∞; a),

where N0(r, 0;F
′
) is the reduced counting function of those zeros of F

′
which are

not the zeros of F (F − 1) and N0(r, 0;G
′
) is similarly defined. Let z1 be a simple

zero of F − 1 but a(z1) 6= 0,∞. Then z1 is a simple zero of G − 1 and a zero of
H. So

N(r, 1;F |= 1) ≤ N(r, 0;H) +N(r,∞; a) +N(r, 0; a) ≤ N(r,∞;H) + S(r, f).(10)

Hence

N(r, 1;G) (11)

≤ N(r, 1;F |= 1) +N(r, 1;F |≥ 2)

≤ N(r,∞; f) +
l∗∑
j=0

χjN(r, cj ; f |≥ 2) +
u∗∑
i=1

N(r, di; f |≥ 2) +N(r, 0;G |≥ 2)

+N∗(r, 1;F,G) +N(r, 1;F |≥ 2) +N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f).

Note that N(r,∞;G) = N(r,∞; f) + S(r, f).
By the Second Fundamental Theorem and (11), we get

T (r,G) (12)

≤ N(r,∞;G) +N(r, 0;G) +N(r, 1;G)−N0(r, 0;G
′
) + S(r,G)

≤ 2N(r,∞; f) +
l∗∑
j=0

χjN(r, cj ; f |≥ 2) +N2(r, 0;G) +
u∗∑
i=1

N(r, di; f |≥ 2)

+N∗(r, 1;F,G) +N(r, 1;F |≥ 2) +N0(r, 0;F
′
) + S(r, f).

Subcase 1.1.1. While p =∞, we have N∗(r, 1;F,G) = S(r, f).
So we have

N∗(r, 1;F,G) +N(r, 1;F |≥ 2) +N0

(
r, 0;F

′
)

(13)

≤ N
(
r, 0;F ′ | F 6= 0

)
+ S(r, f).

Hence from (12) we have

T (r,P[f q])

≤ 2 N(r,∞; f) +

l∗∑
j=0

χjN(r, cj ; f |≥ 2) +

u∗∑
i=1

N(r, di; f |≥ 2) +N2 (r, 0;P[f q])

+N
(
r, 0; (R(f)/a)

′ | R(f) 6= 0
)

+ S(r, f).
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which contradicts (1).
Subcase 1.1.2. While 2 ≤ p <∞, (13) changes to

N(r, 1;F |≥ p+ 1) +N(r, 1;F |≥ 2) +N0

(
r, 0;F

′
)

≤ N
(
r, 0;F

′ | F 6= 0 |≥ p
)

+N
(
r, 0;F

′ | F 6= 0
)

+ S(r, f).

So from (12) we have

T (r,P[f q])

≤ 2 N(r,∞; f) +
l∗∑
j=0

χjN(r, cj ; f |≥ 2) +
u∗∑
i=1

N(r, di; f |≥ 2) +N2 (r, 0;P[f q])

+N
(
r, 0; (R(f)/a)

′ | R(f) 6= 0
)

+N
(
r, 0; (R(f)/a)

′ | R(f) 6= 0 |≥ p
)

+S(r, f),

which contradicts (2).
Subcase 1.1.3. While p = 1, (13) changes to

N∗(r, 1;F,G) +N(r, 1;F |≥ 2) +N0(r, 0;F
′
)

≤ 2 N(r, 0;F
′ | F 6= 0) + S(r, f)

Similarly as above we have

T (r,P[f q])

≤ 2 N(r,∞; f) +
l∗∑
j=0

χjN(r, cj ; f |≥ 2) +
u∗∑
i=1

N(r, di; f |≥ 2) +N2(r, 0;P[f q])

+2 N(r, 0;R(f)
′ | R(f) 6= 0) + S(r, f),

which contradicts (3)
Subcase 1.2 Let p = 0.
Here proceeding in the same way as in [4, Subcase 1.2, Proof of Theorem 1.1], we
obtain

T (r,G)

≤ 4N(r,∞; f) +

l∗∑
j=0

χjN(r, cj ; f |≥ 2) +

u∗∑
i=1

N(r, di; f |≥ 2) + 2N2(r, 0;G)

+N (r, 0;G |= 1) + 2 N
(
r, 0;F

′ | F 6= 0
)

+ S(r, f).

i.e.,

T (r,P[f q])

≤ 4 N(r,∞; f) +
l∗∑
j=0

χjN(r, cj ; f |≥ 2) +
u∗∑
i=1

N(r, di; f |≥ 2) + 2 N2(r, 0;P[f q])

+N (r, 0;P[f q] |= 1) + 2 N(r, 0; (R/a)
′ | R(f) 6= 0) + S(r, f).
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This contradicts (4).
Case 2 Let H ≡ 0.
On integration we get from (8)

1

F − 1
≡ C

G− 1
+D, (14)

where C, D are constants and C 6= 0. We will prove that D = 0.
Subcase 1.2.a. Let D 6= 0.
Subcase 1.2.a.1. Suppose n > m. If z0 is a pole of f with multiplicity r such
that a(z0) 6= 0,∞, then it is a pole of F and G of multiplicities nr−mr and nr+k
respectively. This contradicts (14).
Subcase 1.2.a.2. Suppose n = m. If z0 is a pole of f with multiplicity r such
that a(z0) 6= 0,∞, then it is not pole of F but of G of multiplicity nr + k. This
contradicts (14) again.
Subcase 1.2.a.3. Suppose n < m. If z0 is a pole of f with multiplicity r such
that a(z0) 6= 0,∞, then it is a zero of F but a pole G of multiplicities nr + k.
This contradicts (14) again.
Subcase 1.2.a.4. if there exist some cj , j = 1, 2, . . . ,m points of f , then that
would be a pole of F but not of G this again contradicts (14).

Then it follows that

N(r,∞; f) ≤ N(r, 0; a) +N(r,∞; a) = S(r, f).

So from (14) we get

1

F − 1
=

D

(
G− 1 +

C

D

)
G− 1

. (15)

Clearly

N

(
r, 1− C

D
;G

)
= N(r,∞;F ) + S(r, f). (16)

Subcase 1.2.a.5. When n > m, then

N(r,∞;F ) ≤ N(r,∞; f) +

l∗∑
j=0

χjN(r, cj ; f) + S(r, f). (17)

Subcase 1.2.a.6. When n = m or n < m, then

N(r,∞;F ) ≤
l∗∑
j=0

χjN(r, cj ; f) + S(r, f). (18)

Subcase 1.2.a.7. If
C

D
6= 1, by the Second Fundamental Theorem and (16) and

(17) or (18), we have

T (r,G) ≤ N(r,∞;G) +N(r, 0;G) +N

(
r, 1− C

D
;G

)
+ S(r,G)

≤ N2(r, 0;G) +
l∗∑
j=0

χjN(r, cj ; f) + S(r, f).
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i.e.,

T (P[f q]) ≤ N2(r, 0;P[f q]) +

l∗∑
j=0

χjN(r, cj ; f) + S(r, f),

which contradicts (1) - (4).

Subcase 1.2.a.7. If
C

D
= 1, we get(

F − 1− 1

C

)
G ≡ − 1

C
. (19)

From (19) it follows that

N(r, 0; f q| ≥ k + 1) ≤ N(r, 0;P[f q]) ≤ N(r, 0;G) = S(r, f). (20)

Again from (19) we see that

1

(f q)d̄(P)
(
R(f)− (1 + 1

C )a
) ≡ −C

a2

P[f ]

(f q)d̄(P)
.

Hence by the First Fundamental Theorem, (20), Lemmas 2.3, 2.4 and 2.5 we get(
max{m,n}+ d̄(P)

)
T (r, f q)

= T

(
r, (f q)d̄(P)

(
R(f)− (1 +

1

C
a)

))
+ S(r, f)

= T

(
r,

1

(f q)d̄(P)
(
R(f)− (1 + 1

C a)
))

= T

(
r,

P[f ]

(f q)d̄(P)

)
+ S(r, f)

≤ m

(
r,

P[f ]

(f q)d̄(P)

)
+N

(
r,

P[f ]

(f q)d̄(P)

)
+ S(r, f)

≤
(
d̄(P)− d(P)

) [
T (r, f q)− {N(r, 0; f q| ≤ k) +N(r, 0; f q| ≥ k + 1)}

]
+
(
d̄(P)− d(P)

)
N(r, 0; f q| ≥ k + 1) +QN(r, 0; f q| ≥ k + 1)

+d̄(P)N(r, 0; f q| ≤ k) + S(r, f)

≤
(
d̄(P)− d(P)

)
T (r, f q) + d(P)N(r, 0; f q| ≤ k) + S(r, f)

i.e.,

q (max{m,n})T (r, f) ≤ S(r, f),

which is not possible.

Hence D = 0 and so
G− 1

F − 1
= C i.e,

P[f ]− a
R(f)− a

= C, where C is a non-zero

constant.
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Proof of Theorem 1.2. Let F and G be given as in the proof of Theorem 1.1.
When H 6≡ 0 we observe that (9) can be changed to

N(r,∞;H) (21)

≤ N(r,∞; f) +
l∗∑
j=0

χjN(r, cj ; f |≥ 2) +N∗(r, 1;F,G) +N(r, 0;F |≥ 2)

+N(r, 0;G |≥ 2) +N0(r, 0;F
′
) +N0(r, 0;G

′
) +N(r, 0; a) +N(r,∞; a).

We omit the rest of the proof as that is simalar to the proof of Theorem 1.1.
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