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Abstract

An improved result of critical points for nondifferentiable functionals has
been generalized at a nonlinear boundary value problem involving the p-
Laplacian and the p-pseudo-Laplacian. An application for these statements
has been also proposed.
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1 Introduction

Taking into account the importance of p-Laplacian and p-pseudo-Laplacian
in mathematical models for fluid mechanics such as Newtonian, pseudoplastic or
dilatant fluids, study of flow through porous media, glacial sliding, Helle-Shaw
flow and also for solid mechanics such as mathematical models of torsional creep
(elastic or plastic) and quantum mechanics, the problems involving these operators
are always up to date.

Obtaining and / or characterizing of weak solutions for problems of mathemat-
ical physics equations involving p-Laplacian and p-pseudo-Laplacian is a subject
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matter previously discussed by the first author through several approach methods
in [7]-[13].

Some problems of critical points for nondifferentiable functionals have been
analized by the author in [7] and [13] regarding the nonlinear boundary value
problem which follows and / or its generalizations at p-Laplacian and p-pseudo-
Laplacian.

Let Ω be a bounded domain of RN with the smooth boundary ∂Ω (topological
bounda-ry). Consider the nonlinear boundary value problem{

−∆u = f (x, u) , x ∈ Ω
Bu = 0 on ∂Ω,

where B designates the boundary condition Dirichlet or Neumann and f : Ω×R→
R is a measurable function with subcritical growth, i.e.

|f (x, s)| ≤ a+ b |s|σ ∀s ∈ R, x ∈ Ω a.e., (1)

where a, b > 0, 0 ≤ σ < N+2
N−2 for N > 2 and σ ∈ [0,∞) for N = 1 or N = 2.

In a section of [13], among other statements, some notions from [2] have been
used together with improved and generalized versions of some results from [4] which
are involved in characterization of weak solutions for Dirichlet problems for p-
Laplacian and p-pseudo-Laplacian.

In this paper we continue to improve and generalize some results on Neumann
problem using conditions of Palais-Smale type suggested by Ekeland principle and
also we propose an application.

2 Fixing problem and involved notions

Let Ω be a bounded domain of RN with the smooth boundary ∂Ω (topological
boundary). Consider the nonlinear boundary value problems{

−∆pu = f (x, u) , x ∈ Ω
Bu = 0 on ∂Ω,

(2)

and {
−∆s

pu = f (x, u) , x ∈ Ω

Bu = 0 on ∂Ω,
(3)

where B designates the Dirichlet or Neumann boundary condition and f : Ω×R→
R is a measurable function with subcritical growth as above.

Set (following [2])

f (x, t) = lim
s→t

f (x, s) , f (x, t) = lim
s→t

f (x, s) .

Suppose

f , f : Ω× R→ R are N - measurable (i.e. with respect to x). (4)



On a problem of mathematical physics equations 171

We emphasize that (4) is verified in the following two cases:
1. f is independent of x;
2. f is Baire measurable and s → f (x, s) is decreasing ∀x ∈ Ω, in which case

we have

f (x, t) = max {f (x, t+) , f (x, t−)} , f (x, t) = min {f (x, t+) , f (x, t−)} .

Definitions. u from W 2,p (Ω), p > 1 is solution of (2) and (3) respectively if
Bu = 0 on ∂Ω in the sense of trace3 and

−∆pu (x) ∈
[
f (x, u (x)) , f (x, u (x))

]
in Ω a.e. (5)

and

−∆s
pu (x) ∈

[
f (x, u (x)) , f (x, u (x))

]
in Ω a.e. (6)

respectively.

3 Usage of some conditions of Palais-Smale type

3.1 Previous definitions and results

3.1.1. Ekeland principle ([5], [6], [7]). Let (X, d) be a complete metric space
and ϕ : X → (−∞,+∞] bounded from below, lower semicontinuous and proper.
For any ε > 0 and u of X with

ϕ (u) ≤ inf ϕ (X) + ε

and for any λ > 0, there exists vε in X such that

ϕ (vε) < ϕ (w) +
ε

λ
d (vε, w) ∀w ∈ X\ {vε}

and

ϕ (vε) ≤ ϕ (u) , d (vε, u) ≤ λ.

Definitions. Let X be a real normed space, E ⊂ X, f : E → R, x0 ∈
◦
E and

υ ∈ X. We set

f0 (x0; υ) := lim
x→x0
t→0+

f (x+ tυ)− f (x)

t
.

The upper limit exists obviously. f0 (x0; υ) is by definition Clarke derivative (or
the generalized directional derivative) of the function f at x0 in the direction υ.

3DefineW 1,p (Γ) with p ∈ (1,+∞), Γ regular differential manifold, for instance, Γ = ∂Ω, Ω open
of C1 class with ∂Ω bounded. In this situation, there exists a unique linear continuous operator

γ : W 1,p (Ω) → W
1− 1

p
,p

(∂Ω), the trace, such that γ is surjective and u ∈ W 1,p (Ω) ∩ C
(
Ω
)

=⇒
γ (u) = u |∂Ω. This gives a sense to u |∂Ω for any u in W 1,p (Ω). Moreover γ−1 (0) = W 1,p

0 (Ω).
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Thus by definition

f0 (x0; υ) = inf
V ∈∨(x0)

r∈(0,+∞)

 sup
x∈V
t∈(0,r)

f (x+ tυ)− f (x)

t

 . (7)

Let X be a real normed space, E ⊂ X, f : E → R and x0 ∈
◦
E. The functional

ξ from X∗ is by definition Clarke subderivative (or generalized gradient) of f in x0

if

f0 (x0; υ) ≥ ξ (υ) ∀υ ∈ X. (8)

The set of these generalized gradients is designated by ∂f (x0).

Some call even ∂f(x0) as the Clarke subderivative at x0.

x0 is a critical point (in the sense of Clarke subderivative) for the real function
f if 0 ∈ ∂f (x0). In this case f (x0) is a critical value (in the sense of Clarke
subderivative) for f .

3.1.2. Let f be Lipschitz around x0 with the constant L. Then

1. the function v → f0 (x0; v) is with values in R, positive homogeneous,
subadditive on X and ∣∣f0 (x0; v)

∣∣ ≤ L ‖v‖ ∀v ∈ X;

2. f0 (x0;−v) = (−f)0 (x0; v) ∀v ∈ X, λ ≥ 0 =⇒ (λf)0 (x0; v) = λf0 (x0; v)
∀v ∈ X;

3. v → f0 (x0; v) is Lipschitz on X with the constant L ([12]).

3.1.3. Let f be locally Lipschitz on X. The function Φ : X ×X → R,

Φ (x; v) = f0 (x0; v)

is upper semicontinuous ([3]).

3.1.4. If f is Lipschitz around x0, L the constant, then

1. ∂f (x0) is nonempty, convex, ∗-weak compact (for X complete) and

‖ξ‖ ≤ L ∀ξ ∈ ∂f (x0) ;

2. f0 (x0; v) = sup
ξ∈∂f(x0)

ξ (v) ∀v ∈ X ([3]).

3.1.5. Let X be a real reflexive space and f : X → R locally Lipschitz.

1. For every x0 at X, there is ξ0 in ∂f (x0) such that

‖ξ0‖ = inf {‖ξ‖ : ξ ∈ ∂f (x0)} .

2. The function µ : X → R

µ (x) = inf {‖ξ‖ : ξ ∈ ∂f (x)}

is lower semicontinous ([2], p. 105).
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3.1.6. Let E be a convex subset of a real Banach space and f : E → R convex.

If f is Lipschitz around x0 ∈
◦
E , then for every v of X we have

f0 (x0; v) = f ′ (x0; v)

and the set of the subderivatives in x0 coincides with the set of Clarke subderivatives
in x0 ([3]).

3.1.7. Local extremum. Let f be Lipschitz around x0. If x0 is a point of
local extremum for f we have

0 ∈ ∂f (x0) .

3.2 Some Palais-Smale type conditions

Present now some results following some ideas of [4], improved and general-
ized. These results contain conditions of Palais-Smale type suggested by Ekeland
principle.

Let X be a complete metric space, ϕ : X → R and c ∈ R.
ϕ satisfies (PS)*

c,+ condition when, for every sequences (un)n≥1, un ∈ X, (εn)n≥1

and (δn)n≥1, εn, δn ∈ R+, εn → 0 and δn → 0, if

ϕ (un)→ c (9)

and
∀u ∈ X d (un, u) ≤ δn =⇒ ϕ (un) ≤ ϕ (u) + εnd (un, u) , (10)

then
(un)n≥1 has a convergent subsequence.

Changing in (10) un and u with each other, (PS)*
c,− condition is obtained.

Finally, (PS)*
c condition means (PS)*

c,++(PS)*
c,-.

In the case of X being a real Banach space - when the the conclusion required
by the hypothesis

” (un)n≥1 has a convergent subsequence”

is replaced by

” (un)n≥1 has a weakly convergent subsequence”,

we get respectively the conditions

(PS)*
c,w,+, (PS)*

c,w,-,(PS)*
c,w.

Suppose X is a real Banach space and ϕ locally Lipschitz. ϕ satisfies [PS]*c,+

condition (obvious definition for [PS]*c,-, [PS]*c) when the properties (9) and (10)
imply

c is critical value of ϕ (for Clarke subderivative).



174 Irina Meghea and Cristina Stefania Stamin

The definition is, according to 3.1.4 coherent. We have

(PS)*
c,+ =⇒ [PS]*c,+,

but the converse relation is not true (consider ϕ : R → R Lipschitz, periodic and
c = inf ϕ (R) or c = supϕ (R)).

Finally, enounce a last version of Palais-Smale condition due to Chang ([2]).
Let X be a real Banach space, ϕ : X → R locally Lipschitz and c ∈ R. ϕ satisfies
(PS)ch

c condition when, for every sequence (un)n≥1 from X, if

ϕ (un)→ c (11)

and
µ (un) := inf {‖ξn‖ : ξn ∈ ∂ϕ (un)} → 0, (12)

then
(un)n≥1 has a convergent subsequence.

The definition is correct, ∂ϕ (un) 6= ∅ ∀n (3.1.4, see also 3.1.5). One can state
3.2.1. Let X be a real Banach space and ϕ : X → R locally Lipschitz and

convex. Then
ϕ verifies (PS)ch

c =⇒ ϕ verifies (PS)*
c,-

� Let (un) be a sequence from X and (εn), (δn) sequences from R+, εn → 0,
δn → 0 such that

ϕ (un)→ c

and
‖un − u‖ ≤ δn =⇒ ϕ (u) ≤ ϕ (un) + εn ‖un − u‖ ∀u ∈ X. (13)

We must prove, by finding a convergent subsequence of (un),

µ (un) := inf {‖ξn‖ : ξn ∈ ∂ϕ (un)} → 0. (14)

Take u := un + tυ, ‖υ‖ = 1, 0 < t ≤ δn. Since ‖un − u‖ ≤ δn, (13) gives

ϕ (un + tυ)− ϕ (un)

t
≤ εn

and passing to the limit for t→ 0+ we get (3.1.6)

ϕ0 (un; υ) = ϕ′ (un; υ) ≤ εn.

Consequently ξ (υ) ≤ εn ∀ξ ∈ ∂ϕ (un) (3.1.4) and hence, changing υ in −υ, one

gets
‖ξ‖ ≤ εn ∀ξ ∈ ∂ϕ (un) . (15)

Let ξn be in ∂ϕ (un) such that ‖ξn‖ = µ (un) (see 3.1.4). Then, taking (15) into
account, obtain

µ (un) ≤ εn,

which yields (10) by passing to the limit. �
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Remark 1. The last statement represents that the author recovered from Propo-
sition 3, [4], p.475. The proof of this ([4], p.483) contains among other things
the implicit statement that υ → Φ0 (u0; υ) is not a subnorm, but even a linear
functional.

We are now going to some propositions of [4].

3.2.2. Let X be a complete metric space, ϕ : X → R lower bounded, lower
semiconti-nuous and c := inf ϕ (X). c is attained when ϕ verifies (PS)*

c,+.

� Let (υn)n≥1, υn ∈ X be a minimizing sequence for ϕ such that, for every n,
εn := ϕ (υn) − c > 0, hence εn → 0. Apply Ekeland principle 3.1.1 with ε = εn,
λ = 1, one finds (un)n≥1 a sequence in X with the properties

ϕ (un) ≤ ϕ (υn) ,

ϕ (un) ≤ ϕ (u) + εnd (un, u) ∀u ∈ X.

Since c ≤ ϕ (un), we have ϕ (un) → c; apply (PS)*
c,+ and let (ukn)n≥1 be a con-

vergent subsequence, ukn → u0. But ϕ (u0) ≤ lim
n→∞

ϕ (ukn) = c, this imposes

ϕ (u0) = c. �
3.2.3. Let X be a real Banach space, ϕ : X → R lower bounded, locally

Lipschitz and c := inf ϕ (X).

If ϕ satisfies (PS)*
c,+, then ϕ has critical points (for Clarke subderivative).

� Apply 3.2.2 combined with 3.1.7. �
3.2.4. Let X be a real Banach space, ϕ : X → R lower bounded, locally

Lipschitz and c := inf ϕ (X).

If ϕ satisfies [PS]*c,+, then c is a critical value of ϕ (for Clarke subderivative).

� Let be (εn)n≥1, εn > 0, εn → 0. For every εn take υn such that ϕ (υn) ≤ c+εn
and apply Ekeland principle 3.1.1 with λ = 1. ∃un such that ϕ (un) ≤ ϕ (υn), and

ϕ (un) ≤ ϕ (u) + εn ‖un − u‖ , ∀u ∈ X. (16)

Since ϕ (un)→ c, (16) allows us to apply the hypothesis [PS]*c,+, hence c is a critical
value. �

As an application we continue with the problems (2) and (3). But firstly

3.2.5. Let X := W 1,p (Ω) and Φ : X → R, Φ (u) = 1
p ‖u‖

p
1,p−

∫
Ω

G (u) dx−
∫
Ω

hu

dx and Φ (u) = 1
p
up

1,p−
∫
Ω

G (u) dx−
∫
Ω

hu dx, respectively, where G : R→ R is

with the period T and Lipschitz, h ∈ Lp′ (Ω) and
∫
Ω

h dx = 0.

Then, for every c from R, Φ verifies [PS]*c .

Clarification. On X = W 1,p (Ω) we can consider for this statement the following

norms: ‖u‖1,p =

(
‖u‖pLp(Ω) +

N∑
i=1

∥∥∥ ∂u∂xi∥∥∥pLp(Ω)

) 1
p

, which is equivalent to the norm

u → ‖u‖Lp(Ω) +
N∑
i=1

∥∥∥ ∂u∂xi∥∥∥Lp(Ω)
for (2). For the second case (3), equip the same
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vector space with the norm u→ u1,p =

(
N∑
i=1

∥∥∥ ∂u∂xi∥∥∥pLp(Ω)

) 1
p

, which is equivalent

to u→ |u|1,p =
N∑
i=1

∥∥∥ ∂u∂xi∥∥∥Lp(Ω)
.

� It is sufficient to prove this for [PS]*c,+. Let (un)n≥1 be a sequence from X,
(εn)n≥1 and (δn)n≥1 sequences from R+ convergent to 0. Suppose Φ (un)→ c and

‖un − u‖ ≤ δn =⇒ Φ (un) ≤ Φ (u) + εn ‖un − u‖ . (17)

Decompose X in direct sum
X = X0 ⊕X1, (18)

X1 the vector space of the constant functions, X0 = X⊥1 , the vector space of W 1,p

- functions having the mean value equal to 0. Let un = υn + cn, υn ∈ X0, cn ∈ R
and |G (s)| ≤M on R. Hence∣∣∣∣∣∣

∫
Ω

G (un) dx

∣∣∣∣∣∣ ≤
∫
Ω

|G (un)| dx ≤
∫
Ω

Mdx = Mµ (Ω)

and since
∫
Ω

cnh dx = 0, we have in the first case

Φ (un) =
1

p
‖un‖p1,p −

∫
Ω

G (un) dx−
∫
Ω

hundx =

=
1

p
‖υn + cn‖p1,p −

∫
Ω

G (υn + cn) dx−
∫
Ω

h (υn + cn) dx ≥

≥ 1

p
‖υn + cn‖pp +

1

p

N∑
i=1

∥∥∥∥∂υn∂xi

∥∥∥∥p
p

−Mµ (Ω)−
∫
Ω

hυndx− cn
∫
Ω

hdx ≥

≥ 1

p
‖υn‖pp +

1

p

N∑
i=1

∥∥∥∥∂υn∂xi

∥∥∥∥p
p

−Mµ (Ω)− ‖h‖p′ ‖υn‖1,p =

=
1

p
‖υn‖p1,p −Mµ (Ω)− ‖h‖p′ ‖υn‖1,p =⇒

Φ (un) ≥ ‖υn‖1,p
(

1

p
‖υn‖p−1

1,p − ‖h‖p′ −Mµ (Ω)

)
(19)

since ∫
Ω

hυndx ≤

∣∣∣∣∣∣
∫
Ω

hυndx

∣∣∣∣∣∣ ≤ ‖h‖p′ ‖υn‖p ≤ ‖h‖p′ ‖υn‖1,p ,
and, similarly, for the second case,

Φ (un) =
1

p

unp
1,p −

∫
Ω

G (un) dx−
∫
Ω

hundx =
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=
1

p

υn + cn
p

1,p −
∫
Ω

G (υn + cn) dx−
∫
Ω

h (υn + cn) dx ≥

≥ 1

p

υn + cn
p

1,p −Mµ (Ω)−
∫
Ω

hυndx− cn
∫
Ω

hdx ≥

≥ 1

p

υnp
1,p −Mµ (Ω)− ‖h‖p′ ‖υn‖p =

1

p

υnp
1,p −Mµ (Ω)− α

υn1,p =⇒

Φ (un) ≥
υn1,p

(
1

p

υnp−1
1,p − α−Mµ (Ω)

)
(20)

since ∫
Ω

hυndx ≤

∣∣∣∣∣∣
∫
Ω

hυndx

∣∣∣∣∣∣ ≤ ‖h‖p′ ‖υn‖p ≤ αυn1,p .

As (Φ (un))n≥1 is bounded, (19) and (20) impose:

(∫
Ω

|∇υn|2 dx
)
n≥1

bounded and

hence also
(
‖υn‖1,p

)
n≥1

and
(υn1,p

)
n≥1

respectively, bounded.

Consider the sequence (ũn)n≥1, ũn = υn + c̃n, where c̃n ≡ cn (modulo T ) and
c̃n ∈ [0, T ]. Since Φ has the period T , (17) gives

‖ũn − (u+ c̃n − cn)‖ ≤ δn =⇒ Φ (ũn) ≤ Φ (u) + εn ‖(ũn − u) + (cn − c̃n)‖ ,

i.e.
‖ũn − w‖ ≤ δn =⇒ Φ (ũn) ≤ Φ (w) + εn ‖ũn − w‖ . (21)

But (υn) and (c̃n) are bounded, hence (ũn) is bounded, consequently it has a

weak convergent subsequence (ũkn)n≥1, ũkn
weak−→ ũ (Eberlein-Šmulian), whence the

existence of a convergent subsequence of (ũkn)n≥1, by using the same notation,

ũkn −→ ũ (22)

(the same proof as in Proposition 4, [4], p. 484). In (21) take w = ũkn +δknυ, ‖υ‖ =
1, we get, −εkn ≤ 1

δkn
[Φ (ũkn + δknυ)− Φ (ũkn)] and passing to the limit we find,

since (ũkn , δkn)
(22)−→ (ũ, 0), 0 ≤ lim

n−→∞
1
δkn

[Φ (ũkn + δknυ)− Φ (ũkn)] ≤ Φ0 (ũ; υ), ≤

Φ0 (ũ; υ), ‖υ‖ = 1, whence 0 ≤ Φ0 (ũ; υ) ∀υ ∈ X (0 ≤ Φ0
(
ũ; υ
‖υ‖

)
3.1.2
= 1

‖υ‖Φ
0 (ũ; υ))

(3.1.2), i.e. 0 ∈ ∂Φ (ũ).
Moreover, c = Φ (ũ), since Φ (ukn) = Φ (ũkn − c̃kn + ckn) = Φ (ũkn) → c and

also Φ (ũkn)
(22)−→ Φ (ũ) (Φ is continuous being locally Lipschitz), c is a critical value

for Φ. �
And now
3.2.6. Nonlinear Neumann problems{

−∆pu = g (u) + h (x) , x ∈ Ω
∂u
∂n = 0 on ∂Ω,

(23)
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and {
−∆s

pu = g (u) + h (x) , x ∈ Ω
∂u
∂n = 0 on ∂Ω,

(24)

respectively with the conditions

g : R→ R bounded measurable T -periodic,

T∫
0

g (s) ds = 0 (25)

and

h bounded measurable,

∫
Ω

h dx = 0 (26)

have a solution in W 1,p (Ω) in the sense of (5) and (6) respectively.
� We are in the presence of a problem of type (2) and (3) respectively with

f (x, u) = g (u) + h (x). The conditions (25) and (26) imply (1) (σ = 0) and (4).
The associate functional is

Φ (u) =
1

p
‖u‖p1,p −

∫
Ω

G (u) dx−
∫
Ω

hu dx, u ∈W 1,p (Ω) ,

and

Φ (u) =
1

p
up

1,p −
∫
Ω

G (u) dx−
∫
Ω

hu dx, u ∈W 1,p (Ω) ,

respectively, where G (u (x)) =
u(x)∫
0

g (t) dt. G is Lipschitz and has the period T

(use (25)). Since (1) and (4) are satisfied, any critical point of Φ is, according to
Proposition 16 from [13], a solution to the problems (23) and (24) respectively. But
Φ verifies [PS]*c for every c in R in particular for c = inf

u∈W 1,p(Ω)
Φ (u). This is correct

since Φ is lower bounded (justification as for (19) and (20) respectively). It only
remains to apply 3.2.5, hence c is a critical value, c = Φ (u0), u0 a critical point,
u0 is a solution for (23) or (24) respectively. �

4 Application in modelling of injection mould filling

Using the last result, we give another solution to the problem studied in [1].
The physical problem according to [1] is the following:
The polymer is injected, over a period of time t0 < t < t1 at some point x1 ∈ Ω.

The basic domain Ω needs not be simply connected.
Some further notations:
Ωt = the part of Ω which is filled by fluid at time t;
ϕ = pressure;
υ = fluid velocity (averaged over -h≤ z ≤ h);
Γ0 = ∂Ωt ∩ Ω, and Γ1 = ∂Ωt ∩ ∂Ω.
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Clearly, Γ0 is the flow front. It is assumed that ∂Ω is solid (except for air vents).
The equation for ϕ is:

∆pϕ = 0 on Ωt\ {x1}

where p = 1
n + 1, n a material constant.

Further, ϕ = constant (chosen 0) on Γ0 and ∂ϕ
∂n = 0 on Γ1.

It follows that the fluid front Γ0 meets ∂Ω at right angles (provided that ϕ is
smooth up to the boundary and ∇ϕ 6= 0). Note also that ϕ must have a singularity
at x1.

In the above approach, the development with time of the domain Ωt filled by
fluid, is controlled by ϕ, which is determined from an elliptic partial differential
equation. Note that, in this physically oriented description, all considered curves,
functions and vector fields are assumed to be ’smooth’, so that each of the crucial
expressions has a well-defined pointwise meaning.

The mathematical problem:

The desired solution ϕ of the instantaneous flow problem can be obtained as
the solution ϕ∗ of a convex extremum problem [1] by an appropriate and rather
obvious choice of that problem.

First a remark about smoothness and uniqueness. The function ϕ∗ satisfies a
priori the p-harmonic equation and the boundary conditions only in a generalized
(weak) sense, whereas one would like to have a classical (smooth) solution to the
physical problem. Now a classical solution is also a weak solution of the boundary-
value problem, and the weak solution is unique, since the problem has a unique
solution. Therefore the function ϕ∗, defined by this problem, is what we are looking
for. We must, however, refrain from a complete discussion of the smoothness of
ϕ∗.

Taking Ωt instead of Ω in (23), we are placed under the conditions of Proposition
3.2.6 and we provided, via this result, another proof of the existence of the problem
mentioned.

This is a preliminary study for the solution of such a problem.
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[9] Meghea, I., Two solutions for a problem of partial differential equations,
U.P.B. Scientific Bulletin, Series A, 72 (2010), no. 3, 41-58.

[10] Meghea, I., Some results of Fredholm alternative type for operators of λJϕ−S
form with applications, U.P.B. Scientific Bulletin, Series A, 72 (2010), no. 4,
21-32.

[11] Meghea, I., Weak solutions for the pseudo-Laplacian ∆s
p using a perturbed

variational principle and via surjectivity results, BSG Proceedings 17 (2010),
140-150.

[12] Meghea, I., Weak solutions for p-Laplacian and for p-pseudo-Laplacian using
surjectivity theorems, BSG Proceedings 18 (2011), 67-76.

[13] Meghea, I., Variational approaches to characterize weak solutions of some
problems of mathematical physics equations, Abstract and Applied Analysis,
Volume 2016, Article ID 2071926, 10 pages.


