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THE APPLICATIONS OF THE UNIVERSAL MORPHISMS
OF CF-TOP THE CATEGORY OF ALL FUZZY

TOPOLOGICAL SPACES

Farhan ISMAIL 1 and Abdelkrim LATRECHE* 2

Abstract

In the present work, we built a category of fuzzy topological spaces from
Chang’s definition of Fuzzy TOPological space, that we denoted CF-TOP.
Firstly, we collected universal morphisms of TOP category, listed by Sander
Mac Lane [6], then, we studied universal morphisms of CF-TOP. This study
shows that these morphisms are just generalizations of TOP category mor-
phisms, which confirms that Chang’s fuzziness to topological space is weak.
At the end of this work, we prove that TOP and CF-TOP are not isomorphic.
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1 Introduction

In the early 1940’s Samuel Eilenberg and Saunders Mac Lane [7] invented
Category theory, with the aim of bridging what may appear to be two quite
different fields: Topology and Algebra. Later, it was propagated by Alexander
Grothendieck in 1960’s. From another side, L. A. Zadeh [10] introduced the fuzzy
set in 1965, since then many researchers have used this tool to generalize different
concepts of Mathematics.
General topology is considered to be one of the first branches of pure mathemat-
ics that appeared at the end of the 19th century. However, the fuzzification of
topological space is defined by C. L. Chang [3] in 1968, that is, three years after
Zadeh’s paper.
Regarding the importance of fuzzy applications and category theory, it seems
more interesting to join both. This leads us to speaking about the applications of
the universal morphisms of the fuzzy category.
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The present work is organized as follows: in the next section, we recall some of
the basic definitions (fuzzy set and operations on it, the fuzzy topological space,
fuzzy continuous application, fuzzy topological space, universal morphisms, ... ).
Then, we collect the universal morphisms of TOPological spaces category (TOP).
In the 3rd section, we study the universal morphisms of fuzzy topological spaces
category (CF-TOP). And finally, we chose category functor (simple)[8] for clari-
fying the relation between TOP and CF-TOP categories and we proved that this
functor is not isomorphic.

2 PRELIMINARY NOTIONS

Let X be a set. A fuzzy set A in X is characterized by a membership function
µA(x) from X into [0,1]. [3]-[9]-[10]

Definition 1. [3]-[10] Let A and B be fuzzy sets in X. Then:

1. A = B ⇐⇒ µA(x) = µB(x), for all x ∈X.

2. A ⊂ B ⇐⇒ µA(x) ≤ µB(x), for all x ∈X.

3. C = A ∪B ⇐⇒ µC(x) =max{µA(x), µB(x)} for all x ∈X.

4. D = A ∩B ⇐⇒ µD(x) =min{µA(x), µB(x)} for all x ∈X.

More generally, for a family of fuzzy sets, A = {Ai, i ∈ I}, the union, C = ∪IAi,
and the intersection D = ∩IAi, are defined by:

µC(x) = supI{µAi(x)} for all x ∈X.

µD(x) = infI{µAi(x)} for all x ∈X.
The symbol ∅ will be used to denote an empty fuzzy set (µ∅(x) = 0 for all x ∈X).
For X, we have by definition µX(x) = 1, for all x ∈X.

Definition 2. [3] Let f be a function from X to Y . Let B be a fuzzy set in Y
with membership function µB(y). Then the inverse of B, written as f−1(B), is a
fuzzy set in X whose membership function is defined by:

µf−1(B)(x) = µB(f(x)) for all x ∈X.

Definition 3. [3] A fuzzy topology is a family T of fuzzy sets in X which satisfies
the following conditions:

1. ∅, X ∈ T .

2. Si A1, A2 ∈ T , then A1 ∩A2 ∈ T .

3. Si Ai ∈ T four all i ∈ I, then ∪IAi ∈ T .

T is called a fuzzy topology for X, and the pair (X,T ) is a fuzzy topological space
or (F-TOP) in short. Every member of T is called a T -open fuzzy set.
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Definition 4. [3] A function f from an F-TOP (X,T ) to an F-TOP (Y,U) is
fuzzy continuous (F-continuous) iff the inverse of each U -open fuzzy set is T -open.

Definition 5. [9]

(a) Let T be a fuzzy topology. A subfamily B of T is a base for T iff each
member of T can be expressed as the union of some members of B.

(b) A subfamily S of B is a sub-base for T iff the family of finite intersections
of members of S forms a base for T .

(c) A sub-base for the product fuzzy topology on (X,T ) = (∏i∈I Xi,∏i∈I Ti) is
given by S = {π−1

i θi; θi ∈ Ti, i ∈ I} ( πi the projection from X onto Xi ) so
that a base can be taken to be

B = {∩nj=1π
−1
ij θij ; θij ∈ Tij , ij ∈ I, j = 1...n, n ∈ N}.

Definition 6. [6] Let D,C be two categories, S ∶ D Ð→ C is a functor and c an
object of C, a universal arrow from c to S is a pair < r, u > consisting of an object
r of D and u ∶ c Ð→ Sr an arrow of S, such that to every pair < d, f > with d an
object of D and f ∶ cÐ→ Sd an arrow of C, there is a unique arrow f ′ ∶ r Ð→ d of
D with Sf ′ ○ u = f .

Proposition 1. [6](THE UNIVERSAL MORPHISMS OF TOP)
TOP is the category of all topological spaces and continuous maps.

(a) The element of Co-product of (X,τX) and (Y, τY ) in TOP is their disjoint
union.

(b) The element of Co-equalizer of f, g ∶ (X,τX) Ð→ (Y, τY ) in TOP is the
topological space (Y / ∼, τY /∼), where ∼ is the least equivalence relation which
contains all pairs < f(x), g(x) >, for x ∈X.

(c) The element of Push-out of f ∶ (X,τX) Ð→ (Y, τY ), g ∶ (X,τX) Ð→ (Z, τZ)
in TOP is the disjoint union (Y ⊍Z, τY ⊍Z) with the elements f(x) and g(x)
identified for each x ∈X.

(d) The element of Product of (X,τX), (Y, τY ) in TOP is their cartesian prod-
uct.

(e) The element of Equalizer of f, g ∶ (X,τX) Ð→ (Y, τY ) in TOP is the topo-
logical space (D,τD), where D = {x ∈X,f(x) = g(x)} .

(f) The element of Pull-back of f ∶ (X,τX) Ð→ (Z, τZ), g ∶ (Y, τY ) Ð→ (Z, τZ) in
TOP is the topological space (C, τC), where C = {(x, y) ∈X×Y, f(x) = g(y)}.
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3 Main results

This section is devoted to present the main results of this paper.
The fuzzy topological spaces F-TOP and fuzzy continuous mappings form a cate-
gory which we denote by CF-TOP. Now, we investigate the universal morphisms
of this category.

3.1 Co-product

Definition 7. (Disjoint union of fuzzy topological spaces)
Let (X1, τ1), (X2, τ2) be two fuzzy topological spaces, µ and µ′ denote the mem-
bership functions of the elements of τ1 and τ2 respectively.

The disjoint union of (X1, τ1), (X2, τ2) is defined as:

(X1, τ1) ⊍ (X2, τ2) = (X1 ⊍X2, τX1⊍X2).

where

X1 ⊍X2 = {X1 × {1}} ∪ {X2 × {2}}.

and

τX1⊍X2 = {θ, θ is a fuzzy set onX1 ⊍X2}.

The membership function of the elements of τX1⊍X2 is defined by:

(µ ⊍ µ′)θ ∶X1 ⊍X2 Ð→ [0,1]

(x, k) z→ (µ ⊍ µ′)θ(x, k) =
⎧⎪⎪⎨⎪⎪⎩

µϕ−1
1 (θ)

(x) if k = 1.

µ′
ϕ−1

2 (θ)
(x) if k = 2.

where
ϕ1 ∶ (X1, τ1) Ð→ (X1 ⊍X2, τX1⊍X2)

xz→ ϕ1(x) = (x,1)

and
ϕ2 ∶ (X2, τ2) Ð→ (X1 ⊍X2, τX1⊍X2)

xz→ ϕ2(x) = (x,2)

Proposition 2. The disjoint union (X1⊍X2, τX1⊍X2) is a fuzzy topological space.

Proof. (1) We have:

(µ ⊍ µ′)∅(x, k) =
⎧⎪⎪⎨⎪⎪⎩

µϕ−1
1 (∅)

(x) if k = 1.

µ′
ϕ−1

2 (∅)
(x) if k = 2.

= { µ∅(x) if k = 1.
µ′
∅
(x) if k = 2.

= 0.

(µ ⊍ µ′)X1⊍X2(x, k) =
⎧⎪⎪⎨⎪⎪⎩

µϕ−1
1 (X1⊍X2)

(x) if k = 1.

µ′
ϕ−1

2 (X1⊍X2)
(x) if k = 2.

= { µX1(x) if k = 1.
µ′X2

(x) if k = 2.
= 1.

So ∅, X1 ⊍X2 ∈ τX1⊍X2 .
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(2) If θ1, θ2 ∈ τX1⊍X2 , then θ1 ∩ θ2 is a fuzzy set on X ⊍X ′, λθ1∩θ2 denotes the
membership function of θ1 ∩ θ2. By definition(1) we have :

λθ1∩θ2 ∶ X ⊍X ′ Ð→ [0,1]
(x, k) z→ λθ1∩θ2(x, k) =min{λθ1(x, k), λθ2(x, k)}

We have two cases:

case (1): If k = 1, we have:
λθ1∩θ2(x,1) =min{λθ1(x,1), λθ2(x,1)}

=min{(µ ⊍ µ′)θ1(x,1), (µ ⊍ µ′)θ2(x,1)}
=min{µϕ−1

1 (θ1)
(x), µϕ−1

1 (θ2)
(x)}

= µϕ−1
1 (θ1)∩ϕ

−1
1 (θ2)

(x) = µϕ−1
1 (θ1∩θ2)

(x).

case (2): If k = 2, using the same method with k = 1 we prove that:

λθ1∩θ2(x,2) = µ′ϕ−1
1 (θ1∩θ2)

(x).

So λθ1∩θ2(x, k) =
⎧⎪⎪⎨⎪⎪⎩

µϕ−1
1 (θ1∩θ2)

(x) if k = 1.

µ′
ϕ−1

2 (θ1∩θ2)
(x) if k = 2.

then θ1 ∩ θ2 ∈ τX1⊍X2 .

(3) If θh ∈ τX1⊍X2 , ∀h ∈ △, then ∪h∈△θh is a fuzzy set on X ⊍ X ′, λ∪h∈△θh

denotes the membership function of ∪h∈△θh. By definition(1) we have :

λ∪h∈△θh ∶X ⊍X ′ Ð→ [0,1]
(x, k) z→ λ∪h∈△θh(x, k) = suph∈△{λθh(x, k)}

We have two cases:

case (1): If k = 1, then:
λ∪h∈△θh(x,1) = suph∈△{λθh(x,1)} = suph∈△{(µ ⊍ µ′)θh(x,1)}

= µ
∪h∈△ϕ

−1
1 (θh)

(x) = µϕ−1
1 (∪h∈△θh)

(x).

case (2): If k = 2, using the same method with k = 1 we prove that:

λ∪h∈△θh(x,2) = µ
′

ϕ−1
2 (∪h∈△θh)

(x)

So λ∪h∈△θh(x, k) =
⎧⎪⎪⎨⎪⎪⎩

µϕ−1
1 (∪h∈△θh)

(x) if k = 1.

µ′
ϕ−1

2 (∪h∈△θh)
(x) if k = 2.

then ∪h∈△θh ∈ τX1⊍X2 .

Proposition 3. The applications ϕ1, ϕ2 are F-continuous.
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Proof. First, let’s prove that ϕ1 is F-continuous.
Let θ ∈ τX1⊍X2 , from the definition (2), the inverse of θ by ϕ1 is a fuzzy set in X1,
λϕ−1

1 (θ)
denotes the membership function of ϕ−1

1 (θ), then:

λϕ−1
1 (θ)

(x) = λθ ϕ1(x) = (µ ⊍ µ′)θ(x,1) = µϕ−1
1 (θ)

(x).

Using the same method we prove that ϕ2 is F-continuous.

Theorem 1. Let f ∶ (X1, τ1) Ð→ (C, τC), g ∶ (X2, τ2) Ð→ (C, τC) be two F-
continuous applications (µ′′ denotes the membership function of the elements of
τC), then there exists an F-continuous application
h ∶ (X1 ⊍X2, τX1⊍X2) Ð→ (C, τC) such that f = h ○ ϕ1 and g = h ○ ϕ2.

Proof. Let’s define h by :

h ∶ (X1 ⊍X2, τX1⊍X2) Ð→ (C, τC) (1)

(x, k) z→ h(x, k) = { f(x) if k = 1.
g(x) if k = 2.

It is clear that : f = h ○ ϕ1 andg = h ○ ϕ2.
Let θk ∈ τC , by definition(2) and (1) we have:

λh−1(θk)(x, k) = λθkh(x, k) = µ
′′

θk
h(x, k) = { µ′′θkf(x) if k = 1.

µ′′θkg(x) if k = 2.

As f , g are F-continuous then:

λh−1(θk)(x, k) = { µf−1(θk)(x) if k = 1.

µ′g−1(θk)
(x) if k = 2.

= { µ
(h○ϕ1)

−1(θk)(x) if k = 1.

µ′
(h○ϕ2)

−1(θk)
(x) if k = 2.

=
⎧⎪⎪⎨⎪⎪⎩

µϕ−1
1 (h

−1(θk))
(x) if k = 1.

µ′
ϕ−1

2 (h
−1(θk))

(x) if k = 2.

which gives h−1(θk) ∈ τX1⊍X2 , so h is F-continuous.

Corollary 1. The element of Co-product of (X1, τ1), (X2, τ2) ∈ CF-TOP is a
fuzzy topological space (X1, τ1) ⊍ (X2, τ2) (defined above).

Proof. By proposition(2) (X1 ⊍X2, τX1⊍X2) ∈ CF-TOP. Also by proposition(3)
ϕ1, ϕ2 are F- continuous.
By theorem (1), if f ∶ (X1, τ1) Ð→ (C, τC), g ∶ (X2, τ2) Ð→ (C, τC) are F-
continuous applications, then there exists an F-continuous application h defined
by (1), that verifies f = h ○ ϕ1, g = h ○ ϕ2.
Let h′ ∶ (X1 ⊍X2, τX1⊍X2) Ð→ (C, τC) be another F-continuous application where
f = h′ ○ ϕ1 and g = h′ ○ ϕ2. We have:

(h′ ○ ϕ1)(x) = h′(ϕ1(x)) = h′(x,1) = f(x).
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and
(h′ ○ ϕ2)(x) = h′(ϕ2(x)) = h′(x,2) = g(x).

therefore h is unique.

3.2 Co-equalizer

Definition 8. Let (X,τX) be a fuzzy topological space, µ denotes the membership
function of the elements of τX , ∼ is the equivalence relation on X and
P ∶X Ð→X/ ∼ is the natural projection map, we define τX/∼ by:

τX/∼ = {θ , θ is a fuzzy set onX/ ∼}.

The membership function of the elements of τX/∼ is defined by:

µθ ∶X/ ∼Ð→ [0,1]
xz→ µθ(x) = µP−1(θ)(x)

Proposition 4. The space (X/ ∼, τX/∼) is a fuzzy topological space.

Proof. (1) We have:
µ∅(x) = µP−1(∅)(x) = µ∅(x) = 0.

µX/∼(x) = µP−1(X/∼)(x) = µX(x) = 1.

So ∅, X/ ∼ ∈ τX/∼.

(2) If θ1, θ2 ∈ τX/∼, then:

λθ1∩θ2(x) =min{λθ1(x), λθ2(x} =min{µθ1(x), µθ2(x)}
=min{µP−1(θ1)(x), µP−1(θ2)(x)} = µP−1(θ1)∩P−1(θ2)(x)
= µP−1(θ1∩θ2)(x).

So θ1 ∩ θ2 ∈ τX/∼.

(3) If θk ∈ τX/∼, ∀k ∈ ∆ , then:

λ∪k∈∆θk(x) = supk∈∆{λθk(x)} = supk∈∆{µP−1(θk)(x) }
= µ

∪k∈∆P−1(θk)(x) = µP−1(∪k∈∆θk)(x).
So ∪k∈∆θk ∈ τX/∼.

Proposition 5. The application P is F-continuous.

Proof. evident (by definition of τX/∼).

Theorem 2. Let (A, τA), (B, τB) ∈ F-TOP, µ and µ′ denote the membership
functions of the elements of τA and τB respectively, ∼ is the equivalence relation
of A and P ∶ A Ð→ A/ ∼ is the associated projection. If h ∶ (A, τA) Ð→ (B, τB)
is the F-continuous application compatible with ∼, then there exists a unique F-
continuous application h′, where h = h′ ○ P . In addition:

h is F-continuousÔ⇒ h′ is F-continuous.
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Proof. Let’s define h′ by :

h′ ∶ (A/ ∼, τA/∼) Ð→ (B, τB)
xz→ h′(x) = h(x)

It is clear that h′ is unique and h = h′ ○ P .
Let Bi ∈ τB then:
λh′−1(Bi)

(x) = λBih
′(x) = µ′Bi

h(x) = µh−1(Bi)
(x) = µ

(h′○P )−1(Bi)
(x) = µP−1(h′−1(Bi))

(x).
So h′ is F-continuous.

Corollary 2. The element of Co-equalizer of f, g ∶ (X,τ) Ð→ (X ′, τ ′) in CF-TOP
is the fuzzy topological space (X ′/ ∼, τX′/∼), where ∼ is the least equivalence relation
which contains all pairs < f(x), g(x) >, such that x ∈X.

Proof. Let h ∶ (X ′, τ ′) Ð→ (C, τC) be an F-continuous application where
h ○ f = h ○ g. For the existence of a unique h′, by theorem (2) it is sufficient to
prove that h is compatible with ∼:
Let x1, x2 ∈X ′, x1 ∼ x2 ⇐⇒ ∃a ∈X, x1 = f(a) ∧ x2 = g(a).
and h(x1) = h(f(a)) = (h○f)(a) = (h○g)(a) = h(g(a)) = h(x2), so h is compatible
with ∼.
Finally, h is unique by theorem (2).

3.3 Push-out

Definition 9. Let (A, τA), (B, τB) ∈ F-TOP, µ and µ′ denote the membership
functions of the elements of τA and τB respectively, ∼ equivalence relation on
A ⊍B (note X0 = (A ⊍B)/ ∼ ), we define τX0 by:

τX0 = {θ , θ is a fuzzy set on X0}.

The membership function of the elements of τX0 is defined by:

(µ ⊍ µ′)θ ∶X0 Ð→ [0,1]

(x, k) z→ (µ ⊍ µ′)θ(x, k) =
⎧⎪⎪⎨⎪⎪⎩

µϕ−1
1 (P

−1(θ))(x) if k = 1.

µ′
ϕ−1

2 (P
−1(θ))

(x) if k = 2.

where
P ∶ A ⊍B Ð→X0

(x, k) z→ P (x, k) = (x, k)

ϕ1 ∶ (A, τA) Ð→ (A ⊍B, τA⊍B)
xz→ ϕ1(x) = (x,1)

and
ϕ2 ∶ (B, τB) Ð→ (A ⊍B, τA⊍B)

xz→ ϕ2(x) = (x,2)

Proposition 6. The space (X0, τX0) is a fuzzy topological space.
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Proof. The proof is based on the proofs of proposition (2) and proposition (4).

Proposition 7. The following applications:

α ∶ (A, τA) Ð→ (X0, τX0)
xz→ α(x) = (x,1)

β ∶ (B, τB) Ð→ (X0, τX0)
xz→ β(x) = (x,2)

are F-continuous.

Proof. First, let’s prove that α is F-continuous.
For θ ∈ τX0 , we have:

λα−1(θ)(x) = λθα(x) = λθ(x,1) = (µ ⊍ µ′)θ(x,1) = µϕ−1
1 (P

−1(θ))(x).

It is clear that α = P ○ ϕ1, then:

λα−1(θ)(x) = µ(P○ϕ1)
−1(θ)(x) = µα−1(θ)(x).

So α is F-continuous.
Using the same method we prove that β is F-continuous.

Theorem 3. Let f ∶ (A, τA) Ð→ (C, τC), g ∶ (A, τA) Ð→ (B, τB) be two F-
continuous applications. The element of Push-out of < f, g > is (X0, τX0), where
X0 = (B ⊍C)/ ∼ and ∼ is the least equivalence relation which contains all pairs
< (ϕ1 ○ f)(c), (ϕ2 ○ g)(c) >, such that c ∈ A.

Proof. By proposition (6) (X0, τX0) ∈ F-TOP. Also, by proposition (7) α, β are
F-continuous.
Let (Y, τY ) ∈ F-TOP, and U ∶ (B, τB) Ð→ (Y, τY ), V ∶ (C, τC) Ð→ (Y, τY ) are two
F-continuous applications, where V ○ f = U ○ g.
The proof of the existence of a unique F-continuous application
h ∶ (X0, τX0) Ð→ (Y, τY ) where U = h ○ α, V = h ○ β requires the following steps:

Step1: The Co-product of (B, τB), (C, τC) is a disjoint union (B ⊍ C, τB⊍C), then
for {α, β} there exists an F-continuous application
π ∶ (B ⊍C, τB⊍C) Ð→ (X0, τX0) whereα = π ○ ϕ1, β = π ○ ϕ2.

Step2: Let’s define the new application U ⊍ V by:

U ⊍ V ∶ (B ⊍C, τB⊍C) Ð→ (Y, τY )

(x, k) z→ (U ⊍ V )(x, k) = { U(x) if k = 1.
V (x) if k = 2.

If U ⊍ V is compatible with ∼ then there exists a unique F-continuous ap-
plication h ∶ (X0, τX0) Ð→ (Y, τY ) where: U ⊍ V = h ○ π (theorem (2)).
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Let (x, k), (x′, k′) ∈ B ⊍C that:
(x, k) ∼ (x′, k′) Ô⇒ ∃a ∈ A, (x, k) = (ϕ1 ○ g)(a) and (x′, k′) = (ϕ2 ○ f)(a).

(U ⊍V )(x, k) = (U ⊍V )(ϕ1○g)(a) = (U ⊍V )(g(a),1) = U(g(a)) = (U ○g)(a).

(U⊍V )(x′, k′) = (U⊍V )(ϕ2○f)(a) = (U⊍V )(f(a),2) = V (f(a)) = (V ○f)(a).

But V ○ f = U ○ g, then U ⊍ V is compatible with ∼.

Step3: Prove that U = h ○ α,V = h ○ β.
(h ○α)(x) = (h ○ (π ○ϕ1))(x) = (h ○π)(x,1) = (U ⊍V )(x,1) = U(x), ∀x ∈ B.
(h○β)(x) = (h○(π ○ϕ2))(x) = (h○π)(x,2) = (U ⊍V )(x,2) = V (x), ∀x ∈ C.

3.4 Product

Definition 10. Let (X1, δ1), (X2, δ2) be two F-TOP, µ and µ′ denote the mem-
bership functions of the elements of δ1 and δ2 respectively. We define τX1×X2

by:

τX1×X2 = {θ , θ = ∪i∈I(θ1)i×(θ2)i is a fuzzy set onX1×X2, (θ1)i ∈ δ1, (θ2)i ∈ δ2, ∀i ∈ I}.

The membership function of the elements of τX1×X2 is defined by:

(µ × µ′)θ(x, y) = supi∈I{min{µ(θ1)i(x), µ
′

(θ2)i
(y)}}, for all (x, y) ∈X1 ×X2.

Proposition 8. [9] The space (X1 ×X2, τX1×X2) is a fuzzy topological space.

Proposition 9. [9] The projections P1, P2 are F-continuous, where :

P1 ∶ (X1 ×X2, τX1×X2) Ð→ (X1, δ1)
(x, y) z→ P1(x, y) = x

P2 ∶ (X1 ×X2, τX1×X2) Ð→ (X2, δ2)
(x, y) z→ P2(x, y) = y

Theorem 4. [9] Let (Y, τY ) be an F-TOP and let f be a function from Y to
X1 ×X2. Then f is F-continuous iff P1 ○ f , P2 ○ f are F-continuous.

Corollary 3. Let (X1, δ1), (X2, δ2) ∈ CF-TOP. The element of product of (X1, δ1),
(X2, δ2) are the fuzzy topological space (X1 ×X2, τX1×X2) (defined above).

Proof. If f ∶ (C, δ3) Ð→ (X1, δ1), g ∶ (C, δ3) Ð→ (X2, δ2) be two F-continuous
applications, then there exists a unique F-continuous application defined by:

h ∶ (C, δ3) Ð→ (X1 ×X2, τX1×X2)
xz→ h(x) = (f(x), g(x))

where f = P1 ○ h and g = P2 ○ h.
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It is clear that : f = P1 ○ h and g = P2 ○ h.
By theorem (4), h is F-continuous.

Proof of the uniqueness of h:
Let h′ be another F-continuous application where: h′ ∶ (C, δ) Ð→ (X1×X2, τX1×X2)
and f = P1 ○ h′, g = P2 ○ h′.
We suppose that: h′(x) = (a, b).
a = P1(a, b) = (P1 ○ h′)(x) = f(x), b = P2(a, b) = (P2 ○ h′)(x) = g(x).
Then h′(x) = (f(x), g(x)) = h(x), so h is unique.

3.5 Equalizer

Definition 11. Let (A, τA), (B, τB) ∈ F-TOP, µ′ denotes the membership func-
tions of the elements of τB, and let f, g ∶ (B, τB) Ð→ (A, τA) be two F-continuous
applications. D is a subset of B defined by: D = {x ∈ B, f(x) = g(x)}. We define
τD by:
τD = {θ , θ = F (D)∩Bi is a fuzzy set on D, Bi ∈ τB and F (D) is a fuzzy set onB
where µ′F (D)(x) = χD(x)}.
The membership function of the elements of τD is defined by:

µ′′θ ∶D Ð→ [0,1]
xz→ µ′′θ (x) =min{µ′F (D)(x), µ

′

Bi
(x)}

Proposition 10. The space (D,τD) is a fuzzy topological space.

Proof. (1) We have:
We take : (∅ = F (D) ∩ ∅) and (D = F (D) ∩B), then:
µ′′
∅
(x) =min{µ′F (D)(x) , µ

′

∅
(x)}) =min{1 , 0} = 0.

µ′′D(x) =min{µ′F (D)(x) , µ
′

B(x)} =min{1 , 1} = 1.
So ∅, D ∈ τD.

(2) If θ1, θ2 ∈ τD where θ1 = F (D)∩B1, B1 ∈ τB and θ2 = F (D)∩B2, B2 ∈ τB ∶

λθ1∩θ2(x) = λF (D)∩B1∩F (D)∩B2
(x) = λF (D)∩(B1∩B2)

(x)
= min{µ′F (D)(x), µ

′

(B1∩B2)
(x)}.

Then θ1 ∩ θ2 ∈ τD (as B1 ∩B2 ∈ τB).

(3) If θi ∈ τD, ∀i ∈ I, where: θi = F (D) ∩Bi , Bi ∈ τD, then:

λ∪i∈I(F (D)∩Bi)
(x) = λF (D)∩(∪i∈IBi)

(x) =min{µ′D(x), µ′
(∪i∈IBi)

(x)}.

Then ∪i∈Iθi ∈ τD (as ∪i∈IBi ∈ τB).

Proposition 11. e is F-continuous, where:

e ∶ (D,τD) Ð→ (B, τB)
xz→ e(x) = x
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Proof. Clear.

Corollary 4. The element of Equalizer of f, g ∶ (B, τB) Ð→ (A, τA) in CF-TOP
is the fuzzy topological space (D,τD) (defined above).

Proof. Let (C, τC) ∈ F-TOP, for h ∶ (C, τC) Ð→ (B, τB) the F-continuous applica-
tion where: f ○ h = g ○ h, then there exists a unique F-continuous application h′

defined by:
h′ ∶ (C, τC) Ð→ (D,τD)

xz→ h′(x) = h(x)
h′ is F-continuous since h is F-continuous.
Let x ∈ C: (e ○ h′)(x) = e(h′(x)) = e(h(x)) = h(x) then e ○ h′ = h.
Proof of the uniqueness of h′:
Let h′′ ∶ (C, τC) Ð→ (D,τD) be another F-continuous application where e ○h′′ = h
(e ○ h′′)(x) = (e ○ h′)(x) Ô⇒ e(h′′(x)) = e(h′(x)) Ô⇒ h′′(x) = h′(x), ∀x ∈ C.

3.6 Pull-back

Definition 12. Let (A, τA), (B, τB), (D,τD) ∈ F-TOP, µ and µ′ denote the mem-
bership functions of the elements of τA and τB respectively, and
f ∶ (B, τB) Ð→ (A, τA), g ∶ (D,τD) Ð→ (A, τA) in CF-TOP. C is a subset of
B ×D defined by: C = {(x, y) ∈ B ×D, f(x) = g(y)} ⊆ B ×D. We define τC by:
τC = {θ, θ = F (C)∩θ′ is a fuzzy set on C, θ′ ∈ τB×D and F (C) is a the fuzzy set on
B ×D , where ∶ (µ × µ′)F (C)(x, y) = χC(x, y)}.
The membership function of the elements of τC is defined by:

Γθ(x, y) =min{(µ × µ′)F (C)(x, y), supi∈I{min{µBi(x), µ′Di
(y)}}

θ′ = ∪i∈I(Bi ×Di), ∀(x, y) ∈ C.

Proposition 12. The space (C, τC) is a fuzzy topological space.

Proof. The proof is based on the proofs of proposition (8) and proposition (10).

Proposition 13. The projections p, q are F-continuous, where :

p ∶ (C, τC) Ð→ (B, τB)
(x, y) z→ p(x, y) = x

q ∶ (C, τC) Ð→ (D,τD)
(x, y) z→ q(x, y) = y

Proof. First, let’s prove that p is F-continuous.
Let Bi ∈ τB: λp−1(Bi)

(x, y) = µ′Bi
p(x, y) = µ′Bi

(x) = min{(µ × µ′)F (C)(x, y),
min{µ′Bi

(x), µ′D(y)}}.
Then p−1(Bi) ∈ τC , so p is F-continuous.
Using the same method we prove q is F-continuous.
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Theorem 5. Let f ∶ (B, τB) Ð→ (A, τA), g ∶ (D,τD) Ð→ (A, τA) be two F-
continuous applications and (E, τE) ∈ F-TOP, µ′′ denotes the membership func-
tion of the elements of τE, and h ∶ (E, τE) Ð→ (B, τB), k ∶ (E, τE) Ð→ (D,τD)
are two F-continuous applications where f ○h = g ○ k, r an application defined by:

r ∶ (E, τE) Ð→ (C, τC) (2)

x z→ r(x) = (h(x), k(x)).

then: h, k are F-continuousÔ⇒ r is F-continuous.

Proof. Let θ ∈ τC then θ = F (C) ∩ θ′ and θ′ = ∪i∈I(Bi ×Di) ∈ τB×D, we have:
λr−1(F (C)∩(∪i∈I(Bi×Di))

(x) = ΓF (C)∩(∪i∈I(Bi×Di))
(h(x), k(x))

=min{(µ × µ′)F (C)(h(x), k(x)),
supi∈I{min{µBih(x), µ′Di

k(x)}}}
As (µ × µ′)F (C)(h(x), k(x)) = 1, then:

λr−1(F (C)∩(∪i∈I(Bi×Di))
(x) = ΓF (C)∩(∪i∈I(Bi×Di))

(h(x), k(x))
= supi∈I{min{µBih(x), µ′Di

k(x)}}
= supi∈I{min{µ′′h−1(Bi)

(x), µ′′k−1(Di)
(x)}}

= µ′′
∪i∈I{k−1(Di)∩h−1(Bi)}

(x).
.

.
Then r is F-continuous.

Corollary 5. Let f ∶ (B, τB) Ð→ (A, τA), g ∶ (D,τD) Ð→ (A, τA) in CF-TOP.
The element of Pull-back of ⟨f, g⟩ is a fuzzy topological space (C, τC) (defined
above).

Proof. For the projections p, q it is clear that f ○ p = g ○ q.
By theorem (5), if h ∶ (E, τE) Ð→ (B, τB), k ∶ (E, τE) Ð→ (D,τD) two F-
continuous applications where f ○h = g○k, then there exists a unique F-continuous
application r defined by (2).
It is clear that k = q ○ r and h = p ○ r.
Proof of the uniqueness of r:
If r′ is another F-continuous application, where r′ ∶ (E, τE) Ð→ (C, τC) and
k = q ○ r′ , h = p ○ r′.
Suppose that r′(x) = (a, b) therefore a = p(a, b) = (p ○ r′)(x) = h(x) and
b = q(a, b) = (q ○ r′)(x) = k(x). So r = r′.

4 Interrelation between the category TOP and
CF-TOP

Many TOP and CF-TOP functors are built [1]-[2]-[4]-[5] and we choose those
that suit better our work.
The natural inclusion functor [8]:
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Identifying, as usual, subsets of a given set with the corresponding characteristic
functions, we can treat a topological space (X,T ) as an object of CF-TOP. In
this way an inclusion functor e ∶ TOP Ð→ CF-TOP arises.
This functor is not isomorphic since it is not surjective. Indeed:
Suppose that e is surjective, let (X,τ) ∈ CF-TOP, where X = {a, b} and
τ = {X,∅, θ} where:

{ µX(a) = 1.
µX(b) = 1.

, { µ∅(a) = 0.
µ∅(b) = 0.

, { µθ(a) = 0.8.
µθ(b) = 0.7.

Posed T = {X,∅,B} ∈ TOP , where e(X,T ) = (X,F (T )), but F (T ) ≠ τ ( as
µF (B) = χB ≠ µθ).
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