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Abstract

The curvature properties of three-dimensional f-Kenmotsu manifolds have
been studied.
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1 Introduction

In 1972, K. Kenmotsu [9] introduced and studied a new class of almost contact
metric manifolds, later known as Kenmotsu manifolds. Z. Olszak and R. Rosca
[11] have studied f-Kenmotsu manifolds, an almost contact metric manifold which
is normal and locally conformal almost cosymplectic. Further, they gave a geo-
metric interpretation of f-Kenmotsu manifold and proved that a Ricci symmetric
f-Kenmotsu manifold is an Finstein manifold. Recently, f-Kenmotsu manifolds
have been studied by many authors in several ways to a different extent such as
[12, 14, 15].

The projective curvature tensor is an important tensor from the differential
geometric point of view. Let M be a (2n+1)-dimensional Riemannian manifold. If
there exists a one to one correspondence between each coordinate neighbourhood
of M and a domain in Fuclidean space such that any geodesic of the Riemannian
manifold corresponds to a straight line in the Euclidean space, then M is said to
be locally projectively flat. For n > 1, M is locally projectively flat if and only if
the well known projective curvature tensor P vanishes, the projective curvature
tensor is defined by [1, 13]

P(X,Y)Z:R(X,Y)Z—%[S(Y,Z)X—S(X,Z)Y], (1)
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where XY, Z € x(M), R is the curvature tensor and S is the Ricci tensor with
respect to the Levi-Civita connection.

A Ricci soliton (g, V, A) on a Riemannian manifold (M, g) is a generalization
of an Einstein metric such that [5,7,10]

(£vg+25 +2)9)(X,Y) = 0, 2)

where S is the Ricci tensor, £y is the Lie derivative operator along the vector
field V on M and A is a real number. The Ricci soliton is said to be shrinking,
steady and expanding accordingly as \ is negative, zero and positive, respectively.
Ricci solitons, in the context of general relativity, have been studied by M. Ali
and Z. Ahsan [2 — 4].

Motivated by the above studies, in this paper we study some curvature prop-
erties of 3-dimensional f-Kenmotsu manifolds. The paper is organized as follows:
In Section 2, we give a brief account of an f-Kenmotsu manifold. In Section 3,
we show that a projectively flat 3-dimensional f-Kenmotsu manifold is an Ein-
stein manifold of constant curvature —(f? + f’). Section 4 is devoted to study
¢-projectively semisymmetric 3-dimensional f-Kenmotsu manifolds. In Section 5,
we discuss projectively semisymmetric 3-dimensional f-Kenmotsu manifolds. In
Section 6, we show that a 3-dimensional f-Kenmotsu manifold satisfying the con-
dition P -.S = 0 is an Einstein manifold. Moreover, the fact that a 3-dimensional
f-Kenmotsu manifold satisfying the condition S - R = 0 is an n-Einstein manifold
is shown in Section 7. In Section 8, we show that a 3-dimensional f-Kenmotsu
manifold admitting Ricci soliton is an n-Einstein manifold and the Ricci soliton
is shrinking, steady and expanding if r +2f > 0, r +2f = 0 and r + 2f < 0,
respectively. Finally, we give an example of 3-dimensional f-Kenmotsu manifold.

2 f-Kenmotsu manifolds

Let M be a real (2n+ 1)-dimensional differentiable manifold endowed with an
almost contact metric structure (¢, &, 7, g) which satisfies

¢’ =-T+n®¢ nE) =1, (3)
P =0, nop=0, nX)=gX5), (4)
9(9X,9Y) = g(X,Y) —n(X)n(Y) (5)

for all vector fields X, Y € x(M), where [ is the identity of the tangent bundle
TM, ¢ is a tensor field of (1,1) type, n is a 1-form, £ is a vector field and g is a
metric tensor field. We say that (M, ¢,£,n,¢g) is an f-Kenmotsu manifold if the
Levi-Civita connection of g satisfies

(Vxo)(Y) = flg(¢X,Y)E —n(Y)oX], (6)

where f € C°°(M) is strictly positive and df Anp = 0. If f =0, then the manifold
is cosymplectic [8]. An f-Kenmotsu manifold is said to be regular if f2 + f’ # 0,



Three dimensional f-Kenmotsu manifolds 111

where f/ = £f.
In an f-Kenmotsu manifold, from (6) we have
Vx§ = fIX —n(X)g]. (7)
The condition df An = 0 holds if dim M > 5. This does not hold in general if
dim M = 3 [14]
(Vxn)Y = flg(X,Y) = n(X)n(Y)]. (8)

In a 3-dimensional Riemannian manifold, we have
R(X,Y)Z =g(Y,2)QX — g(X,2)QY + S(Y, 2)X — S(X, 2)Y (9)

r
2

In a 3-dimensional f-Kenmotsu manifold, we have

[9(Y, 2)X — g(X, Z)Y].

R(X,Y)Z = (5 +2f*+2f)[g(Y, 2)X — g(X, Z)Y] (10)
(5 + 3024 30[g(¥. Zn(X)E — 9(X, 2n(¥ ) +n(YIn(Z)X ~n(X)n(Z)Y ],
S(LY) = (5+ 2+ g Y) = G+3£2 43/ mX)n(¥), (1)

where R, S, Q) and r are the Riemann curvature tensor, the Ricci tensor, the Ricci
operator and the scalar curvature, respectively.
Now from (10), we find

R(X, V)¢ =—(f2+ fIn(Y)X —n(X)Y], (12)
RE&X)Y =—(f*+ )X, Y)E —n(YV)X], (13)
R(X, 6= —(f*+ X —n(X)g], (14)
N(R(X,Y)Z) = —(f*+ f)lg(Y. Z)n(X) — g(X, Z)n(Y)). (15)

And from (11), we get
S(X,€) = =2(f* + f)n(X), (16)
Q€ = =2(f* + f)¢. (17)

Definition 1. An f-Kenmotsu manifold is said to be an n-FEinstein manifold if
the Ricci tensor S of type (0,2) is of the form

S(X,Y) = ag(X,Y) + bn(X)n(Y), (18)

where a and b are smooth functions on M. In particular, if b = 0, then the
manifold is said to be an Finstein manifold.
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3 Projectively flat 3-dimensional f-Kenmotsu mani-
folds

Let M be a projectively flat 3-dimensional f-Kenmotsu manifold, that is,
P = 0. Then from (1), it follows that

R(X,Y)Z = %[S(Y, 2)X — S(X, 2)Y). (19)

Taking inner product of (19) with £ and using (4), we have

%[s(Y, (X)) — S(X, Z)n(Y)]. (20)

Putting X = ¢ in (20) and using (3), (13) and (16), we get

glR(X,Y)Z,¢] =

S(Y,2) = =2(f*+ [)g(Y, 2). (21)
Now using (21) in (19), we obtain
RX,Y)Z=~(f*+ 9V, 2)X - 9(X, 2)Y] (22)
which can be written as
glR(X,Y)Z,U) = —(f* + flg(Y, Z2)g(X,U) — 9(X, Z)g(Y,U)].  (23)
Thus we can state the following:

Theorem 1. A projectively flat 3-dimensional f-Kenmotsu manifold is an Fin-
stein manifold of constant curvature —(f? + f') and consequently it is locally
isometric to the Hyperbolic space H3[—(f% + f')].

4 ¢-projectively semisymmetric 3-dimensional
f-Kenmotsu manifolds

Definition 2. A 3-dimensional f-Kenmotsu manifold is said to be ¢-projectively
semisymmetric if [6]
PX,)Y)-¢=0

for all X,Y € x(M).

Let M be a ¢-projectively semisymmetric 3-dimensional f-Kenmotsu mani-
fold. Therefore P(X,Y) - ¢ = 0 turns into

(P(X,Y) - $)Z = P(X,Y)$pZ — pP(X,Y)Z =0 (24)

for any vector fields X,Y, Z € x(M). From (1), we write

P(X,Y)67 = ROX,Y)0Z ~ J[S(Y,62)X ~ S(X,02)Y] (25)
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and

¢P(X,Y)Z = ¢R(X,Y)Z — %[S(Y, 2)6X — S(X, Z)¢Y].

Now combining (24), (25) and (26), we have

R(X,Y)¢Z — ¢R(X,Y)Z — %[S(Y, $2)X — S(X,$2Z)Y]

—%[S(Y, Z)pX — S(X, Z)¢Y] = 0.
Taking X = ¢ in (27) and then using (4), (11), (13) and (16), we get
r=—6(f>+1), g(Y.0Z)#0.
Using this value of 7 in (11), we obtain
S(Y,Z) = =2(f* + [)9(Y, Z).

Thus in view of (10), (28) and (29), we have the following:

113

(26)

(27)

Theorem 2. In a 3-dimensional f-Kenmotsu manifold M, the following condi-

tions are equivalent:
(a) ¢p-projectively semisymmetric,
(b) the scalar curvature r = —6(f2 + f'),
(c) the manifold M is of constant curvature,

(d) M is an Einstein manifold.

5 Projectively semisymmetric 3-dimensional
f-Kenmotsu manifolds

In this section, we suppose that a 3-dimensional f-Kenmotsu manifold is pro-

jectively semisymmetric, that is,
(R(X,Y)- P)(U,V)W =0

for any vector fields X, Y, U,V and W € x(M). This implies that

R(X,Y)P(U,V)W — P(R(X,Y)U, V)W — P(U,R(X,Y)V)W

_P(U,V)R(X,Y)W = 0.
Putting U = W =Y = ¢ in (30), we have

(30)
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which in view of (1), (13) and (14) reduces to
P, V)R(X,§)§ =0
which by using (14) gives
PEV)X =0, as f24f #0.
This implies that
R(EV)X — 5[S(V, X)é ~ (6, X)V] =0 (31)
By virtue of (11), (13) and (16), (31) takes the form
(5 + 32+ 31)g(V. X)§ = n(X)n(V)e] = 0. (32)
Now by replacing X by ¢X, V by ¢V in (32) and using (5), we get
r=—6(f>+f). (33)
Using this value of r in (11), we obtain
S(Y,Z) = =2(f* + f)9(Y, 2). (34)
Thus in view of (10), (33) and (34), we have the following:

Theorem 3. In a 3-dimensional f-Kenmotsu manifold M, the following condi-
tions are equivalent:

(a) projectively semisymmetric,
(b) the scalar curvature r = —6(f% + f'),
(c) the manifold M is of constant curvature,

(d) M is an Einstein manifold.

6 3-dimensional f-Kenmotsu manifolds satisfying P -

S=0

In this section, we study a 3-dimensional f-Kenmotsu manifold satisfying the
condition P -S = 0. Therefore we have

for any vector fields X,Y,U and V € x(M). This implies that

S(P(X,Y)U,V) + S(U,P(X,Y)V) = 0. (35)
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Putting U = ¢ in (35), we have
S(P(X,Y)&, V) + S(E P(X,Y)V) =0
which by using the fact that P(X,Y)¢ = 0 reduces to
S(¢, P(X,Y)V) =0. (36)

In view of (16), (36) becomes

g[R(X,Y)V, €] — %[S(Y, Vn(X) — S(X,V)n(Y)] = 0. (37)
Taking Y = ¢ in (37) and using (3), (13) and (16), we obtain

S(Y,Z) = =2(f* + f)9(Y, Z).

Thus we have the following:

Theorem 4. A 3-dimensional f-Kenmotsu manifold satisfying P-S = 0 is an
Finstein manifold.

7 3-dimensional f-Kenmotsu manifolds satisfying S -
R=0

In this section, we study a 3-dimensional f-Kenmotsu manifold satisfying the
condition

(S(X,Y) - R)(U, V)W =0
for any vector fields X, Y, U,V and W € x(M). Therefore we have

(X\sY)R(U, V)W + R(XrsY)U, V)W + R(U, (XpsY)V)W (38)

+R(U,V)(XpsY)W =0,
where the endomorphism XagY is defined by

(XpsY)W = S(Y, W)X — S(X,W)Y. (39)
Taking Y = ¢ in (38) and using (39), we have
202+ f)In(RU, V)W) X +9(U)R(X, V)W +n(V)R(U, X)W

+n(W)R(U,V)X] + S[X, R(U, V)W]E + S(X,U)R(E, V)W
+S(X,V)R(U, )W + S(X,W)R(U,V){ =0
which by taking inner product with £ and using (4) takes the form

202 + f)In(RU, VIW)n(X) + n(U)n(R(X, V)W) +n(V)n(R(U, X)W)  (40)
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+n(W)n(R(U,V)X)] + S[X, R(U, V)W| + S(X, U)n(R(&, V)W)
+S(X, V)n(R(U, W) + S(X,W)n(R(U,V)¢&) = 0.
Now taking U = W = ¢ in (40) and using (3), (12), (13) and (16), we get
S(X, V) =2(f+ fg(X, V) = 4(f* + f)n(X)n(V). (41)
Contracting (41) over X and V, we obtain
r=2(f2+f).
Thus we have the following:

Theorem 5. A 3-dimensional f-Kenmotsu manifold satisfying S - R = 0 is an
n-Einstein manifold with the scalar curvature 2(f* + f).

8 Ricci solitons in 3-dimensional f-Kenmotsu mani-
folds

Suppose that a 3-dimensional f-Kenmotsu manifold admits a Ricci soliton.
Then

(£yvg+25+2X9)(X,Y)=0
which implies that
g(VxEY) 4+ g(X,Vy€) +25(X,Y) + 2Xg(X,Y) = 0. (42)
By using (7) in (42), we have
S(X,Y) + (A + flg(X,Y) = fa(X)n(Y) = 0. (43)
Contracting (43) over X and Y yields

= (44)

Putting this value of A in (43), we obtain

S00Y) = (Do )+ faon(y) (15)

Thus we can state the following:

Theorem 6. If a 3-dimensional f-Kenmotsu manifold admits a Ricci soliton,
then the manifold is an n-Einstein manifold and its Ricci soliton is shrinking,
steady or expanding accordingly as r + 2f > 0, r+2f = 0 or r + 2f < 0,
respectively.
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Example of a 3-dimensional f-Kenmotsu manifold. We consider the 3-
dimensional manifold M = {(a:,y, z) € R3}, where (z,y, z) are the standard co-
ordinates in R3. Let eq, es and e3 be the vector fields on M given by

0 0 0
2z ¥ —_ —2z Y =
or 27 ° oy’ 0z

—z

er=e ez =

£,

which are linearly independent at each point of M and hence form a basis of T, M.
Let g be the Riemannian metric defined by

gler,e1) = glez,e2) = gles,e3) =1, g(er,e2) = gler,e3) = g(ea, e3) = 0.

Let 1 be the 1-form on M defined as n(X) = g(X, e3) = g(X, §) for all X € x (M),
and let ¢ be the (1, 1) tensor field on M defined as

per = —ez, ¢ea =e1, ¢ez =0.

By applying linearity of ¢ and g, we have
n(€) =9(&,&) =1, ¢*X = -X +n(X)¢ n(¢X) =0,

9(X,8) =n(X), g(¢X,0Y)=g(X,Y)—n(X)n(Y)

for all X|Y € x(M).
Now, by direct computations we obtain

[e1,e2] =0, [es,e1] = —2e “er, [e2,e3] =2e “ea.
The Riemannian connection V of the metric tensor g is given by

29(VxY,Z) = Xg(Y,2)+Yg(Z,X) - Zg(X.Y) —g(X,[Y, Z]) + 9(Y,[Z, X])
+9(Z,[X,Y]),
which is known as Koszul’s formula. Using Koszul’s formula, we can easily calcu-
late
Ve,e1 = —2¢ “e3, Ve, ea =0, Vees=2e “e;, Veer =0,

—z

Ve,€2 = —2€ “e3, Ve,e3 =2 “e3, Ve,e1r =0, Veea =0, Veez=0.
3
Let X =) X'e=X'er+ X+ X’e3 € x(M).
i=1

It can be easily verified that the manifold satisfies

Vx¢=fIX=n(X)¢] and (Vx¢)V = flg(¢X,Y)§ —n(Y)pX]

for £ = e3, where f = 2e™%.
Hence we conclude that M is a 3-dimensional f-Kenmotsu manifold. Also f? +
f' # 0. Hence M is a regular f-Kenmotsu manifold.
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