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ALMOST RICCI SOLITON AND GRADIENT ALMOST RICCI
SOLITON ON 3-DIMENSIONAL LP-SASAKIAN MANIFOLDS

Uday Chand DE*! and Chiranjib DEY 2

Abstract

The object of the present paper is to study almost Ricci solitons and gradi-
ent almost Ricci solitons in 3-dimensional LP-Sasakian manifolds. We prove
that if (g,V,A) is an almost Ricci soliton on a 3-dimensional LP-Sasakian
manifold M3, then it reduces to a Ricci soliton and the soliton is shrinking
for A=2. Furthermore, if the scalar curvature is constant on M?3, then the
potential vector field is Killing. Also, if the manifold admits a gradient al-
most Ricci soliton (f, £, A), then the manifold is locally isometric to the unit
sphere S™(1).
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1 Introduction

Ricci soliton equation on a Riemannian or pseudo-Riemannian manifold (M, g),
(see Hamilton [11]) is defined by

1

where £ is the Lie derivative operator along a vector field V', called potential
vector field, )\ is a real scalar and S is the Ricci tensor. Einstein manifolds satisfy
the above equation, so that they are considered as trivial Ricci solitons. It will
be called shrinking, steady or expanding according as A > 0, A = 0 or A < 0,
respectively. Otherwise, it will be called indefinite. When the vector field V
is gradient of a smooth function f : M™ — R then the manifold will be called
gradient Ricci soliton. Ricci solitons and gradient Ricci solitons have been studied
in Riemannian manifolds, Contact manifolds, Paracontact manifolds and Kdahler
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manifolds by several authors. Recently, almost Ricci soliton was introduced by
Pigola et. al. [17], where essentially they modified the definition of Ricci soliton
by adding the condition on the parameter A to be variable function in (1).

A general notion of Lorentzian para-Sasakian (briefly LP-Sasakian) manifold
has been introduced by K. Matsumoto [12], in 1989 and several authors ([1], [13],
[14], [18], [19]) have studied Lorentzian para-Sasakian manifolds. Ricci solitons
for pseudo-Riemannian manifolds(in particular Lorentzian) have been studied by
several authors such as ([7], [9], [15], [20]). Recently, Batat et. al [3] proved
that Egorov spaces and e-spaces have Lorentzian Ricci solitons. In a recent paper
Blaga [4] studied 7-Ricci solitons on Lorentzian para-Sasakian manifolds.

The object of the present paper is to study almost Ricci solitons and gradient
almost Ricci solitons on 3-dimensional Lorentzian para-Sasakian manifolds. The
paper is organized as follows: In section 2, we recall some fundamental formulas
and properties of Lorentzian para-Sasakian manifolds. In section 3, we prove that
if (g, V, A) be an almost Ricci soliton on 3-dimensional Lorentzian para-Sasakian
manifold M, then it reduces to Ricci soliton. Besides these in this section we prove
that if the scalar curvature is constant on M, then the soliton is shrinking for
A=2 and the flow vector field is Killing. This section concludes with a interesting
corollary. Finally in section 4, it is proved that if a 3-dimensional Lorentzian
para-Sasakian manifold admits gradient almost Ricci soliton then the manifold is
locally isometric to the unit sphere S™(1).

2 Preliminaries

Let M be an n-dimensional smooth manifold and ¢, &, n are tensor fields on
M of types (1,1), (1,0) and (0,1) respectively, such that

n(E) =-1, ¢*=-IT+n¢E (2)
The above equations imply that
6E=0, nod=0. 3)
Then M admits a Lorentzian metric g of type (0,2) such that
9(X,§) =n(X), g(¢X,0Y) =g(X,Y) +n(X)n(Y) (4)

for any vector fields X, Y. Then the structure (¢, &, 7, g) is said to be Lorentzian al-
most para-contact structure. The manifold M equipped with a Lorentzian almost
para-contact structure (¢,£,n,¢g) is said to be a Lorentzian almost para-contact
manifold (briefly LAP-manifold).

If we denote ®(X,Y) = g(X, ¢Y), then we have [12]

D(X,Y) = g(X,9Y) = g(¢X,Y) = ©(Y, X), ()
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where X, Y are any vector fields.
An LAP-manifold M equipped with the structure (¢, &, 7, g) is called a Lorentzian
para-contact manifold(briefly LP-manifold) if

B(X,Y) = S{(Vxm)Y + (Vyn)X), (6)

where @ is defined by (5) and V denotes the covariant differentiation operator with
respect to the Lorentzian metric g . A Lorentzian almost para-contact manifold
M is called Lorentzian para-Sasakian manifold(briefly LP-Sasakian) if it satisfies

(Vx9)Y =n(Y)X + g(X,Y)E + 2n(X)n(Y)E. (7)
Also since the vector field 7 is closed in an LP-Sasakian manifold we have
(Vxn)Y = (X,Y) =g(X,9Y), @(X,§)=0, Vx{=oX. (8)

Moreover, the eigen values of ¢ are -1, 0 and 1; and multiplicity of 0 is one. Let k
and ! be the multiplicities of -1 and 1 respectively. Then trace(¢) =1 — k. So, if
(trace(¢))? = (n — 1), then either =0 or k=0. In this case we call the structure
a trivial LP-Sasakian structure.

Also in an LP-Sasakian manifold, the following relations hold ([1], [12], [19]):

n(R(X,Y)Z) = g(Y, Z)n(X) — g(X, Z)n(Y), (9)
R(X,Y)§ =n(Y)X —n(X)Y, (10)

R(& X)Y =g(X,Y)E —n(Y)X, (11)
S(X,€) = (n—1)n(X), (12)

Ven =0, (13)

for any vector fields X, Y, Z where R is the Riemannian curvature tensor, .S is the
Ricci tensor and V is the Levi-Civita connection associated to the metric g.

Throughout this paper we assume that trace(¢) # 0, i.e., £ is not harmonic.

3 Almost Ricci soliton

The well-known Riemannain curvature tensor of a three dimensional Rieman-
nian manifold is given by

RX,)Y)Z = g(Y,2)QX — g(X,Z)QY + S(Y,Z)X — S(X,Z)Y
~5l0(V, 2)X — (X, 2)Y), (14)
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for any vector fields X,Y,Z where @ is the Ricci operator, i.e., g(QX,Y) =
S(X,Y) and r is the scalar curvature of the manifold. Replacing Y=2=¢ in the
above equation and using (10) and (12) we obtain(see [19])

QX = 5[(r=2)X + (r = 6)n(X)e]. (15)
In view of (15) the Ricci tensor is written as
S(X,Y) = %[(7‘ = 2)g(X,Y) + (r = 6)n(X)n(Y)]. (16)

Using (15) and (16) in (14), we deduce

rx vz = D zx - gx. 2y
Vg 2m(x)6 — o, 2y

+n(Y)n(Z2)X —n(X)n(2)Y}. (17)

Now before introducing the detailed proof of our main theorem, we first prove the
following result:

Lemma 3.1. Let M(¢,&,n,9) be a 3-dimensional LP-Sasakian manifold. Then
we have

&r = —(r — 6)trace(o) (18)

where r denotes the scalar curvature of M.
Proof: The equation (15) can be rewritten as:

QY = L[(r—2)¥ + (r — 6)n(¥)e].

Taking covariant derivative of the above equation with respect to an arbitrary
vector field X and recalling (8) we write

wxQy = Xy K1)

(r —6)
2 2

2
+(T;6)17(Y)¢X. (19)

n(Y)&+ 9(X, 9Y)¢

Taking inner product with respect to an arbitrary vector field Z in the above
equation, we have

(r = 6)
2

n(Y)g(¢X, Z). (20)

o(vxQv.2) = B 2)+ Bz + T g ovimz)
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Putting X = Z = ¢; (where {¢;} is an orthonormal basis for the tangent space of
M and taking >, 1 <i < 3 ) in the above equation and using the well-known
formula of Riemannian manifolds div@ = % grad r, we obtain

Er)n(Y) = =(r = 6)n(Y)trace(¢). (21)

Substituting Y = £ in the above equation we have the required result. This com-
pletes the proof.

We consider a 3-dimensional LP-Sasakian manifold M admitting an almost
Ricci soliton defined by(1). Using (16) in (1) we write

(£vg)(Y,Z2) = 2A =7+ 2)g9(Y, Z) — (r = 6)n(Y)n(Z). (22)
Differentiating the above equation with respect to X and making use (8) we obtain

(Vx£vg)(Y,Z2) = [2(XA) = (X7)]g(Y, Z) = (Xr)n(Y)n(Z)
—(r = 6){g(X, oY )n(2) + n(Y)g(X,¢Z)}.  (23)

Now we recall the following well-known formula(Yano [21]):
(£vVxg=VxLvg—Vyx9Y,Z) = —g(£vV)(X,Y), Z)—g((£vV)(X, Z),Y),
for any vector fields X,Y, Z on M. From this we can easily deduce:
(VxLvg)(Y, Z) = g(£vV)(X,Y), Z) + g((£vV)(X, 2),Y). (24)
Since £V is symmetric tensor of type (1,2), it follows from (24) that
9(£vV)(X,Y), Z)
= L (Vxkva) (¥, 2) + L (Vr £vg) (X, 2) = 5(Vz by (X.Y). (25

Using (23) in (25) we get

29((£vV)(X,Y), 2) = [2(XA) = (Xn)]g(Y, Z2) — (Xr)n(Y)n(Z)
+2(YA) = (Yr)]g(X, Z2) = (Yr)n(X)n(Z)
—[2(22) = (2n)]g(X,Y) + (Zr)n(X)n(Y)

—2(r = 6)g(X, oY )n(2). (26)

After substituting X =Y = ¢; in the above equation and removing Z from both
sides, where {e;} is an orthonormal basis of the tangent space at each point of the
manifold and taking > ,, 1 <i < 3, we have

(LvV)(ei,ei) = =DA = (§r)§ — 2(r — 6)trace()S, (27)

where Xa = g(Da, X), D denotes the gradient operator with respect to g.
Now differentiating(1) and using it in (24) we can easily determine

g((va)(Xa Y)’Z) = (VZS)(Xa Y) - (VXS)(Y> Z) - (VYS)(Xa Z)' (28)
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Taking X =Y = e; (where {e;} is an orthonormal frame) in (28) and summing
over ¢ we obtain

(£vV)(es,€) =0, (29)
for all vector fields Z. Associating (27) and (29) yields
DX+ (&r)€ + 2(r — 6)trace(¢)€ = 0. (30)
Using (18) in the above equation we obtain
DX =0. (31)
This implies that A is constant. This leads to the the following theorem:

Theorem 1. An almost Ricci soliton on 3-dimensional LP-Sasakian manifolds
reduces to Ricci soliton.

Following the above theorem and removing Z from both sides of (26) yields
20LyV)(X,Y) = —(Xn)Y = (Xr)n(Y)§ = (Yr)X — (Yr)n(X)¢
+9(X,Y)Dr +n(X)n(Y)Dr —2(r — 6)g(X, ¢Y)¢. (32)
Setting Y = ¢ in the above equation and using (18) we obtain
2(£LyV)(X,€) = (r — 6)trace(d)(X +n(X)E). (33)
Taking covariant derivative of (33) along an arbitrary vector field Y we get

2(Vy £y V)(X, ) + 2(LvV)(X,¢Y) = (Yr)trace(d)(X +n(X)E)
+(r = 6)trace(p){(Vyn)(X)§ +n(X)eY}.  (34)

If, we apply the following formula:
(LvR)(X,Y)Z = (Vx£LyV)(Y,Z) = (Vy Ly V)(X, Z)
in the above equation we have
20LvR)(X,Y)S = (Xr)trace(9)(Y +n(Y)E) — (Yr)trace(d)(X +n(X)E)

+(r — 6)trace(¢){n(Y)pX —n(X)pY}. (35)

Taking Lie derivative of (10) along V' and using (22) we obtain
(LvR)(X,Y)E+ R(X,Y)LyE = (2A=4){n(Y)X —n(X)Y}
+9(Y, £vEX — g(X, £v)Y.  (36)

Now combining(35) with (36) and contracting over X we write

trace(p){(Yr) + (&r)n(Y)} — 2trace(¢)(Yr)
+(trace(¢))*(r — 6)n(Y) + 25(Y, £v€)
=8(A = 2)n(Y) +4g(Y, £v¢€). (37)
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Putting Y = £ in (37) and making use of (18) we have
—3(r — 6)(trace($))* = 8(\ — 2). (38)

If r=constant, then from Lemma(3.1) we obtain r=6.
Using r» = 6 in (38) we have A = 2. Thus we can state the following:

Theorem 2. If a 3-dimensional LP-Sasakian manifold M admitting almost Ricci
solitons has constant scalar curvature, then the soliton is shrinking for A = 2.

Moreover, using r=6 and A = 2 in (22) we get (£v¢)(Y, Z) = 0 which implies
that the potential vector field V' is a Killing vector field. Also putting the value
r =6 in (17) we find that the manifold is of constant curvature 1. Consequently
the space is locally isometric to the unit Sphere S™(1) ( see O’Neill [16]).

As V is Kllling, we also conclude that £y, = 0. Finally, Lie-differentiating the
equation n(X) = g(X, ) along V and since Lie-derivation commutes with exterior
derivation, we conclude £y ¢ = 0. Thus, V is an infinitesimal automorphism of
the contact metric structure on M. Hence we can state the following:

Corollary 3.1. If a 3-dimensional LP-Sasakian manifold M admitting almost
Ricci solitons has constant scalar curvature, then the flow vector V is Killing and
also 'V is an infinitesimal automorphism of the contact metric structure on M.
Moreover the manifold is locally isometric to the unit Sphere S™(1).

4 Gradient almost Ricci soliton

If the vector field V' is the gradient of a potential function —f, then g is called
a gradient almost Ricci soliton. Then (1) takes the form

VVf+5=M\g.
This reduces to
VyDf =—-QY + \Y. (39)

where D denotes the gradient operator of g.
Differentiating (39) covariantly in the direction of X yields

VxVyDf =-VxQY + (X\)Y + AVxY. (40)
Similarly we get

VyVxDf =-VyQX + (YAN)X + AVy X, (41)
and

VixyDf = —Q[X, Y]+ AX,Y]. (42)
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In view of (40),(41) and (42) we have

R(X.Y)Df =VxVyDf—VyVyDf - VixyDf
= —(VxQ)Y + (VyQ)X + (XN)Y — (YA X. (43)
In view of (19) we obtain
rc )y = Uy B0y O e B
ey - U viex ¢ (xgy - (X
This reduces to
g(R(X,Y)E, Df) = (Y )n(X) — (X\)n(Y). (45)
Using (10) in the above equation we obtain
n(Y)(X[f) —=n(X) (Y f) = Y )n(X) — (X)n(Y). (46)
Putting ¥ = € in (46) we have
d(f +X) ==&(f + ). (47)
Operating (47) by d and using Poincare lemma d? =0, we obtain
AIECf + Nl A dn = 0. (48)
Since in a 3-dimensional LP-Sasakian manifold 5 A dn # 0, we have
£+ X = constant. (49)
Now contracting ¥ in (44) and using (18) we obtain
S(X,Df) = %(Xr) ~2(XN). (50)

Comparing (16) and (50) we have

Laem 2000 = U B + U Dy e, G1)
Substituting X = £ and using (18) in (51) we obtain
d(f+ X = (r ; 6) trace(o)n. (52)

In view of (49) and (52) we get r=6. Moreover, using r=6 in (17) we easily find
that the manifold is of constant curvature 1. Consequently the space is locally
isometric to the unit sphere S™(1). Hence we can state the following;:

Theorem 3. If a 3-dimensional LP-Sasakian manifold admits a gradient almost
Ricci soliton (f,&,\), then the manifold is locally isometric to the unit sphere

Sn(1).
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