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Abstract

We consider a Cauchy problem associated to a integro-differential inclusion of frac-
tional order defined by Caputo-Katugampola derivative and by a set-valued map with
nonconvex values and we prove that the set of selections corresponding to the solu-
tions of the problem considered is a retract of the space of integrable functions on
unbounded interval.
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1 Introduction

In the last years one may see a strong development of the theory of differential equations
and inclusions of fractional order ([2, 7, 9, 10, 11] etc.). The main reason is that fractional
differential equations are very useful tools in order to model many physical phenomena.

Recently, a generalized Caputo-Katugampola fractional derivative was proposed in [§]
by Katugampola and further he proved the existence of solutions for fractional differential
equations defined by this derivative. This Caputo-Katugampola fractional derivative ex-
tends the well known Caputo and Caputo-Hadamard fractional derivatives. Also, in some
recent papers [1, 12], several qualitative properties of solutions of fractional differential
equations defined by Caputo-Katugampola derivative were obtained.

This paper is devoted to the following Cauchy problem

D&Px(t) € F(t,z(t),V(z)(t)) a.e. ([0,00)), x(0)=xo, (1)
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where a € (0,1], p > 0, D"” is the Caputo-Katugampola fractional derivative, F :
[0,00) x R x R — P(R) is a set-valued map, V C’([O oo) R) —> C([O x),R) is a
nonlinear Volterra integral operator defined by V (z fo (t,s,z(s))ds with k(.,.,.) :
[0,00) x R x R — R a given function and zy € R

The aim of the present paper is to prove that the set of selections of the multifunction
F that correspond to the solutions of problem (1) is a retract of L}, ([0, 00), R). Our main
hypothesis is that the multifunction is Lipschitz with respect to the second and third
variable and the proof uses a well known selection theorem due to Bressan and Colombo
([3]) which gives continuous selections for multifunctions that are lower semicontinuous
and with decomposable values.

We note that a similar result for a fractional differential inclusion defined by the
classical Caputo fractional derivative may be found in our previous paper [4]. Afterwards,
this result was generalized to fractional integro-differential inclusions defined by the same
Caputo derivative in [6]. The present paper extends and unifies all these results in the
case of the more general problem (1).

The paper is organized as follows: in Section 2 we recall some preliminary results that
we need in the sequel and in Section 3 we prove our result.

2 Preliminaries

In what follows I C R is a given interval, £(I) is the o-algebra of all Lebesgue mea-
surable subsets of I and (X, |.|) is a real separable Banach. C(I, X) denotes the space of
continuous functions z : I — X with the norm |z|c = sup,¢;|z(t)] and L*(I, X) denotes
the space of integrable functions x : I — X with the norm |z|; = fOT | (t)|dt.

The distance between a point € X and a subset A C X is defined by d(x,A) =
inf{|z — al;a € A} and Pompeiu-Hausdorff distance between the closed subsets A, B C X
is defined by dg (A, B) = max{d*(A, B),d"(B, A)}, d*(A, B) = sup{d(a, B); a € A}.

P(X) denotes the family of all nonempty subsets of X and with B(X) the family of
all Borel subsets of X. For A C I with xa(.) : I — {0,1} we describe the characteristic
function of A. Finally, for any A C X cl(A) is its closure.

By definition a subset D C L'(I, X) is decomposable if for any u,v € D and any subset
A € L(I) one has uxa +vxp € D, where B = I\ A.

We use the notation D(I,X) for the family of all decomposable closed subsets of
LI, X).

In the next two results (S,d) is a separable metric space. By definition a set-valued
map H : § — P(X) is said to be lower semicontinuous (l.s.c.) if for any closed subset
G C X, the subset {s € S; H(s) C G} is closed. The next two lemmas are proved in [3].

Lemma 1. Consider F* : I xS — P(X) a set-valued map with closed values, L(I)®@B(S)-
measurable and F*(t,.) is l.s.c. for any t € I.
Then the set-valued map H : S — D(I,X) defined by

H(s)={f e LYI,X); f(t) € F*(t,s) ae (I)}
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s l.s.c. with nonempty closed values if and only if there exists a continuous mapping
q:S — LY(I,X) such that

d(0,F*(t,s)) < q(s)(t) a.e. (I), Vs€eS.

Lemma 2. Let F : S — D(I,X) be a l.s.c. set-valued map with closed decomposable
values and let ¢ : S — LY(I,X), ¢ : S — LY (I,R) be continuous mappings such that the
set-valued map H : S — D(I, X) given by

H(s) = cl{f(.) € F(s); [f(t) =o(s)@)] < (s)(t) a.e. (1)}

has nonempty values.
Then H admits a continuous selection, i.e. there exists h : S — LY(I,X) continuous
with h(s) € H(s) Vse€S.

Let p > 0.

Definition 1. ([8]) a) The generalized left-sided fractional integral of order o > 0 of a
Lebesgue integrable function f : (0,00) — R is defined by

11—«

t
p -1 _p—1
g = s [ -t s, 2
I'(a) Jo
provided the right-hand side is pointwise defined on (0,00) and I'(.) is the (Euler’s) Gamma
function defined by I'(a) = fooo to—le=tdt.
b) The generalized fractional derivative, corresponding to the generalized left-sided frac-
tional integral in (2) of a function f :]0,00) — R is defined by

woptey — (rirdyn oy P sy [ 7(s)
Doef(0) = (e = e ey [T Y

if the integral exists and n = [a].
¢) The Caputo-Katugampola generalized fractional derivative is defined by
~ /M(0)

DEPF(t) = (D*[f(s) = 3 T s (1)
k=0

3

We note that if p = 1, the Caputo-Katugampola fractional derivative becames the well
known Caputo fractional derivative. On the other hand, passing to the limit with p — 0+,
the above definition yields the Hadamard fractional derivative.

In what follows p > 0 and « € [0, 1]

Lemma 3. For a given integrable function f(.) : [0,T] — R, the unique solution of the
initial value problem

s given by
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For the proof of Lemma 3, see [8]; namely, Lemma 4.2.

Definition 2. A function x € C([0,00),R) is called a solution of problem (1) if there
exists a function f € L}, ([0,00), R) with f(t) € F(t,z(t),V(x)(t)) a.e. ([0,00)) such that

D Px(t) = f(t) a.e. ([0,00)) and x(0) = zo.

In this case (z(.), f(.)) is called a trajectory-selection pair of problem (1).
Next we shall use the following notations.

plfa

F#) = w0+ iy Jo 17 = 57)°7 57 f()ds, f € L (10,00, R)

loc

T(x0) = {f € Lj,.([0,00),R);  f(t) € F(t, f(£),V(f)(1)) a.e.[0,00)}.

3 The result

In order to prove our result we need the following assumptions.

Hypothesis. i) The set-valued map F\(.,.) : [0,00) x RxR — P(R) is L(]0,00)) @ B(R X
R) measurable and has nonempty closed values.

ii) For almost allt € I, the set-valued map F(t,.,.) is L(t)-Lipschitz in the sense that
there exists L(.) € L} ([0,00), Ry) with

loc
du(F(t,z1,y1), F(t,22,92)) < L(t)(Jo1 — 22| + |[y1 — v2l) ¥V 21, 22,91,92 € R.

iii) There exists a locally integrable function q(.) € L} ([0,00),R) such that

loc
dr ({0}, F(t,0,V(0)(1))) < q(t) a.e. ([0,00)).

iv) k(.,.,.) : [0,00) x R x R — R is a function such that Vx € R, (t,s) — k(t,s,x) is
measurable.
v) [k(t,s,2) = k(t,s,y)| < L(t)|x —y| ae. (2 5) €[0,00) x[0,00), Va,y € R.

We use next the following notations

M(t) == L(t)(1 + / tL(u)du), tel, I“M:= sup |[I*PM(t)|. (3)
0 tel0,00)
qo(h)(lt)—\h(t)l+q(1t)+L(t>\(VL(t)lJr/0 L(s)|h(s)|ds), tel (4)

Let us note that

d(h(t), F(t,h(t), V(R)(t)) < qo(R)(¢) a.e. (1) ()
and for any uy,us € LY(I, R)

[90(h1) = go(h2)[1 < (1 + [I*PM(T)|)[P1 — hals;

therefore, the mapping qo : L'(I,R) — L*(I,R) is continuous.
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Also define

Ti(zo) = {h € LMI,R); h(t) € F(t,h(t),V(R)(t) ace. (I)}.

k
=10k, k>1, |hls= / \h(t)|dt, h e L'(I;,R).
0
The proof of the next result may be found in [4].

Lemma 4. Suppose that Hypothesis is verified and consider ¢ : L'(I,R) — L'(I,R) a
continuous function with ¢(h) = h for all h € Tr(zo). If h € L*(I,R), we put

W(h) = {h € LNI,R);  h(t) € F(t,6(h)(t), V(6()(®) a.c. (1)},

_ [ Ay ifhoe Ti(xo),
®(h) = { U(h) otherwi;e. ’

Then the set-valued map ® : L'(I,R) — P(L'(I,R)) is Ls.c. with nonempty closed
and decomposable values.

Theorem 1. Assume that Hypothesis is satisfied, [PM < 1 and xg € R.
Then there exists G : L} ([0,00),R) — L} ([0,00),R) continuous with the properties

loc loc

(i) G(h) € T(zo), YheLl ([0,00),R),

loc

(i) G(h)=h, VYhe T(xo).

Proof. The idea of the proof consists in the construction, for every k& > 1, of a sequence
of continuous functions g* : L'(I;, R) — L(Ij, R) satisfying the following conditions

(I) g*(h) = h, Vh € Tr (z0)

(I1) g*(h) € T1,(x0), Vh € LY(I;,R)

(1) g"(h)(t) = ¢* (Al _)(t), t€ L

If this construction is realized, we introduce G : L}, .([0,00), R) — L.

([0,00),R) with
G(h)(t) = ¢"(lr,)(¢), k=1

The continuity of g*(.) and (III) allows to deduce that G(.) is continuous. Taking into
account (II), for each h € L}, ([0,00),R), we get

G(h)|5,(t) = ¢"(hl1,)(t) € Ty, (z0), Wk =1,

which shows that G(h) € T (zo).
Consider € > 0 and m > 0. We define ¢, = %5. Ifh e Ll(Il, R) and m > 0 we put

Qé(h)(t)=!h(t)\+Q(t)+L(t)(|ft(t)!+/0 L(s)|h(s)lds), t€ I

and
1

q}nﬂ (h) = (Ia’pM)m(m

g5 (R)]1,1 + Emat1)-
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Since the map ¢§(.) = qo(.) is continuous, we find that ¢}, : L' (I;,R) — L'(I1, R) is also
continuous.

Set gi(h) = h. In what follows, we show that for any m > 1 there exists g}, :
LY(I;,R) — L'(I;,R) continuous with the properties

grln(h) = h’ Vh € 7;1 (x0)> (al)

gL (B)() € F(t, g1 (h)(1), V(dh (M)(®) ace. (I), (b))
G )0 — g ()] < @bt + 0 ae. (Tn), (c1)

gL (B)(E) — gy (W) (B)] < M(Dgh_y(B) ace. (I), m > 2. (da)

If h € L*(I1,R), we define
Ul(h) = {f € L'(I1,R); f(t) € F(t,h(t),V(R(t))()) a.e.(I1)},

1,y | {h} if h € Tr, (o),
1(h) = { Ul(h) otherwise.

We apply Lemma 4 (with ¢(h) = h) and we deduce that ®} : L'(I;,R) — D(I1,R) is L.
s. ¢. Using (5) we obtain that the set

Hi(h) = cl{f € ®i(u); [f(t) = h(t)] < qo(h)(t) + 0 awe. (1)}

is not empty for any h € L'(I;,R). We apply Lemma 2 to obtain a selection gi of Hi
which is continuous and verifies (a1)-(c1).

Assume that g}(.), i = 1,...m satisfying (a;)-(d;) are already constructed. Therefore,
from Hypothesis 1 and (b1), (d1) we infer

g M(D): Flt:g5 (0, V(55 0)(0) < L9501 () ~ B O+
k (5)193,1(h) () = g3, (W) (s)lds) < M()(I** Mg, (h) = M(E) (gpsa ()= (©)
) < M) (1),

where s, := ([P M) (g1 — €m) > 0.
For h € L'(I,R), we put

—_—~—

Vi1 (h) = {f € L'(I1,R); f(1) € F(t, gh(W)(1), V(gh())() ace. (1)},

{h} if h € Tr, (o),

1 —
Cpa(h) —{ Wl 1 (h) otherwise.

Again, Lemma 4 (applied for ¢(h) = g, (h)) allows to conclude that ®},, (.) is Ls.c. with
nonempty closed decomposable values. At the same time, from (6), if h € L'(I1,R), the
set

Hy, 1 (h) = cl{f € Dp iy (h); [f() = guar (W ()] < M(D)qyr (h)  ace. (1)}
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is nonempty. As above, via Lemma 2, we obtain a selection g, ., of H} ., continuous

with (a1)-(dy).
We conclude that

1
pT (e +1)

|9m1(h) = g (W)|11 < (TP M)™( lao (M)l +¢€)

which means that the sequence {g.,(h)}men is a Cauchy sequence in the Banach space
LY(I1,R). Take g'(h) € L*(11,R) its limit. Since the mapping s — |gd(h)|1 1 is continuous,
thus it is locally bounded and the Cauchy condition is satisfied by {g.} (h)}men locally
uniformly with respect to h. Therefore, g'(.) : L'(I;,R) — L'(I1,R) is continuous.

Taking into account (a;) we find that g'(h) = h, Vh € Ty, (z0) and from the hypothe-
ses that the values of F' are closed and (b;) we find that

—_—~ e~

g'(h)(t) € F(t,g"(W)(t), V(g (M)(1), ae. () VheL'(I1,R).

At the final step of the induction procedure we assume that ¢°(.) : L'(l;,R) —
L'(I;,R), i = 2,....,k — 1 are constructed and satisfying (I)-(III) and we construct g*(.) :
LY(Ix,R) — L'(I},R) continuous with (I)-(III).

We introduce the map gf : L'(Ix, R) — L'(I}, R)

96 (h)(t) = g (Al ) Oxne, +hOXzAL_, (1) (7)

Since g¥~1(.) is continuous and for hg, h € L' (I}, R) we have

k
g5 (h) — g (ho)l1e < 195 (Rl _y) — " (holn,_ ) k-1 +/k ) |h(t) — ho(t)]dt,

and we deduce that gf(.) is continuous.
At the same time, the equality ¢*~!(h) = h, Yh € T7,_, (20) and (7) allows to obtain

gi(h) =h, Vh € T, (20).
For h € L'(I},R), we define

\Illf(h) {l € Ll(Ikv R)v/_l\(g gk 1(h"]k 1)(t)XIk71(t) + n(t)XIk\]k_l(t)a
(t) € F(t, g5 b (h)@). V(g5 (h)(1)) a-e. ([k — 1, k])}

3

if h e 7-[k (xo),

otherwise.

o =1{ Wi

Once again Lemma 4 (applied for ¢(h) = gf(h)) implies that ®¥(.) : L' (I}, R) — D(I}, R)
is Ls.c.. In addition, if h € L!(Ix, R) one may write

A(gh (1), (1, gh (W) (1), V (g (1) (1) = d(h(t). F (¢, g5 () (1), .
V(g (M) X10 1, < ab(h)(t)  a-e. (It),
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where

b)) = (D] + a(t) + LE) (g () (1) + /0 L(s)Igk (1) (5)|ds).

Obviously, ¢ : L' (I, R) — L*(I1, R) is continuous. If m > 0 we define

P

qfnﬂ(h) = ([P M)™( ) |‘1§(h)!1,k + €m+1)

Pl (a+1

and from the continuity of ¢&(.) we deduce the continuity of ¢¥, : L' (I, R) — L'(I},R).
Finally, we provide the existence of g¥ : L'(I,R) — L'(I;, R) continuous such that

GE(M)(®) = ¢ (Wl )8 VE€ Lo, (ar)
gE(R) = b ¥h € T, (o), (bs)

gE(M)(1) € F(t, gk, (W1, V(gh_ ()®) a.e. (I, ()
G5 (R)(®) — ED] < O + 20 ace. (Ie), (d)

95 (M)(®) — b (O] < MO (B) ace. (I), m>2. (ex)

Set

HE(h) = cl{f € @1(h); |f(t) = g5 (M) ()] < a5 (h)(t) + 0 a.e. (Ik)}.

Using (8), Hf(h) # 0 for any h € L'(I;,R). Taking into account Lemma 2 and the fact
that the maps g, ¢§ are continuous we find a continuous selection gf of Hf with (ay)-(dg)-
If g¥(.), i = 1,...m with (ag)-(ex) are already constructed, from (e;) one may write

—_— —_—

d(gp (h)(£), F (¢, g5, (h) (1), V (g5, () (£)) < L(#) (g1 (R)(2) — g5, () (£)] + ()
Jo L(3)lgh,_1 (B)(s) = ghu(R)(5)Ids) < M(£)(ahyy1(h) = 5m) < M(8)qhy 1 (R),

(
where s, := (I M) (g1 — €m) > 0.
For h € L'(I;,R), we deﬁne

Wh oy (h) = {1 € L' (I R): 1(t) = 05 (hly_ ) (D, ()
n(t)xaan (0, n(t) € F(t,gh(h)(0), V(gh(W)®) ace. ((k—1k)},

{h} if h € ’TI (.’Eo),
(I>m+1(h) { ok K (h) otherwisiz.

Applying Lemma 4 we obtain that ®~ ,(.) : L'(Iy,R) — P(L'(I;,R)) has nonempty
closed decomposable values and is 1.s.c.. As above, the set

Hy o1 (h) = c{f € D51 (0); 1) = ghia (M) ()] < M(D)ap 41 () ace. (1)}

is nonempty. Again, Lemma 2 allows to obtain a continuous selection gﬁl 41 of Hff1 1
verifying (ax)-(ek).
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By (eg) one has

e

m\qg(hﬂm +€J.

|9m1(B) = g (W) < (TP M)™|

Repeating the proof done in the first case we get the convergence of {g%,(h)}men to some
g*(h) € L' (I}, R). Moreover, g¥(.) : L*(I,R) — L'(I}, R) is continuous.
By (ax) we have that

g (h)(t) = ¢"(hlr,_,)(8)  Vt € Loy,

by (b) g*(h) = h VYh € Ty, (z0) and, finally, since the values of F' are closed, from (cj) we
deduce that

e~ e~

g"(h)(t) € F(t, g*(n)(1), V(g"(h)(t)), a.e. (Ir) Vh e L'(I,R),
and the proof is complete. O

Remark 1. By definition, a subspace X of a Hausdorff topological space Y is said to be
a retract of Y if there exists a continuous function h: Y — X with h(z) = x, Vo € X.

So, Theorem 1 states that for each xo € R, the set T (xo) is a retract of the Banach
space L} (]0,00),R).

loc
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