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Abstract

We consider a Cauchy problem associated to a integro-differential inclusion of frac-
tional order defined by Caputo-Katugampola derivative and by a set-valued map with
nonconvex values and we prove that the set of selections corresponding to the solu-
tions of the problem considered is a retract of the space of integrable functions on
unbounded interval.
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1 Introduction

In the last years one may see a strong development of the theory of differential equations
and inclusions of fractional order ([2, 7, 9, 10, 11] etc.). The main reason is that fractional
differential equations are very useful tools in order to model many physical phenomena.

Recently, a generalized Caputo-Katugampola fractional derivative was proposed in [8]
by Katugampola and further he proved the existence of solutions for fractional differential
equations defined by this derivative. This Caputo-Katugampola fractional derivative ex-
tends the well known Caputo and Caputo-Hadamard fractional derivatives. Also, in some
recent papers [1, 12], several qualitative properties of solutions of fractional differential
equations defined by Caputo-Katugampola derivative were obtained.

This paper is devoted to the following Cauchy problem

Dα,ρ
c x(t) ∈ F (t, x(t), V (x)(t)) a.e. ([0,∞)), x(0) = x0, (1)
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where α ∈ (0, 1], ρ > 0, Dα,ρ
c is the Caputo-Katugampola fractional derivative, F :

[0,∞) × R × R → P(R) is a set-valued map, V : C([0,∞),R) → C([0,∞),R) is a
nonlinear Volterra integral operator defined by V (x)(t) =

∫ t
0 k(t, s, x(s))ds with k(., ., .) :

[0,∞)×R×R→ R a given function and x0 ∈ R.

The aim of the present paper is to prove that the set of selections of the multifunction
F that correspond to the solutions of problem (1) is a retract of L1

loc([0,∞),R). Our main
hypothesis is that the multifunction is Lipschitz with respect to the second and third
variable and the proof uses a well known selection theorem due to Bressan and Colombo
([3]) which gives continuous selections for multifunctions that are lower semicontinuous
and with decomposable values.

We note that a similar result for a fractional differential inclusion defined by the
classical Caputo fractional derivative may be found in our previous paper [4]. Afterwards,
this result was generalized to fractional integro-differential inclusions defined by the same
Caputo derivative in [6]. The present paper extends and unifies all these results in the
case of the more general problem (1).

The paper is organized as follows: in Section 2 we recall some preliminary results that
we need in the sequel and in Section 3 we prove our result.

2 Preliminaries

In what follows I ⊂ R is a given interval, L(I) is the σ-algebra of all Lebesgue mea-
surable subsets of I and (X, |.|) is a real separable Banach. C(I,X) denotes the space of
continuous functions x : I → X with the norm |x|C = supt∈I |x(t)| and L1(I,X) denotes

the space of integrable functions x : I → X with the norm |x|1 =
∫ T

0 |x(t)|dt.
The distance between a point x ∈ X and a subset A ⊂ X is defined by d(x,A) =

inf{|x− a|; a ∈ A} and Pompeiu-Hausdorff distance between the closed subsets A,B ⊂ X
is defined by dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A}.
P(X) denotes the family of all nonempty subsets of X and with B(X) the family of

all Borel subsets of X. For A ⊂ I with χA(.) : I → {0, 1} we describe the characteristic
function of A. Finally, for any A ⊂ X cl(A) is its closure.

By definition a subset D ⊂ L1(I,X) is decomposable if for any u, v ∈ D and any subset
A ∈ L(I) one has uχA + vχB ∈ D, where B = I\A.

We use the notation D(I,X) for the family of all decomposable closed subsets of
L1(I,X).

In the next two results (S, d) is a separable metric space. By definition a set-valued
map H : S → P(X) is said to be lower semicontinuous (l.s.c.) if for any closed subset
G ⊂ X, the subset {s ∈ S; H(s) ⊂ G} is closed. The next two lemmas are proved in [3].

Lemma 1. Consider F ∗ : I×S → P(X) a set-valued map with closed values, L(I)⊗B(S)-
measurable and F ∗(t, .) is l.s.c. for any t ∈ I.

Then the set-valued map H : S → D(I,X) defined by

H(s) = {f ∈ L1(I,X); f(t) ∈ F ∗(t, s) a.e. (I)}
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is l.s.c. with nonempty closed values if and only if there exists a continuous mapping
q : S → L1(I,X) such that

d(0, F ∗(t, s)) ≤ q(s)(t) a.e. (I), ∀s ∈ S.

Lemma 2. Let F : S → D(I,X) be a l.s.c. set-valued map with closed decomposable
values and let ψ : S → L1(I,X), φ : S → L1(I,R) be continuous mappings such that the
set-valued map H : S → D(I,X) given by

H(s) = cl{f(.) ∈ F (s); |f(t)− ψ(s)(t)| < φ(s)(t) a.e. (I)}

has nonempty values.
Then H admits a continuous selection, i.e. there exists h : S → L1(I,X) continuous

with h(s) ∈ H(s) ∀s ∈ S.

Let ρ > 0.

Definition 1. ([8]) a) The generalized left-sided fractional integral of order α > 0 of a
Lebesgue integrable function f : (0,∞)→ R is defined by

Iα,ρf(t) =
ρ1−α

Γ(α)

∫ t

0
(tρ − sρ)α−1sρ−1f(s)ds, (2)

provided the right-hand side is pointwise defined on (0,∞) and Γ(.) is the (Euler’s) Gamma
function defined by Γ(α) =

∫∞
0 tα−1e−tdt.

b) The generalized fractional derivative, corresponding to the generalized left-sided frac-
tional integral in (2) of a function f : [0,∞)→ R is defined by

Dα,ρf(t) = (t1−ρ
d

dt
)n(In−α,ρ)(t) =

ρα−n+1

Γ(n− α)
(t1−ρ

d

dt
)n
∫ t

0

sρ−1f(s)

(tρ − sρ)α−n+1
ds

if the integral exists and n = [α].
c) The Caputo-Katugampola generalized fractional derivative is defined by

Dα,ρ
c f(t) = (Dα,ρ[f(s)−

n−1∑
k=0

f (k)(0)

k!
sk])(t)

We note that if ρ = 1, the Caputo-Katugampola fractional derivative becames the well
known Caputo fractional derivative. On the other hand, passing to the limit with ρ→ 0+,
the above definition yields the Hadamard fractional derivative.

In what follows ρ > 0 and α ∈ [0, 1]

Lemma 3. For a given integrable function f(.) : [0, T ] → R, the unique solution of the
initial value problem

Dα,ρ
c x(t) = f(t) a.e. ([0, T ]), x(0) = x0,

is given by

x(t) = x0 +
ρ1−α

Γ(α)

∫ t

0
(tρ − sρ)α−1sρ−1f(s)ds
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For the proof of Lemma 3, see [8]; namely, Lemma 4.2.

Definition 2. A function x ∈ C([0,∞),R) is called a solution of problem (1) if there
exists a function f ∈ L1

loc([0,∞),R) with f(t) ∈ F (t, x(t), V (x)(t)) a.e. ([0,∞)) such that
Dα,ρ
c x(t) = f(t) a.e. ([0,∞)) and x(0) = x0.

In this case (x(.), f(.)) is called a trajectory-selection pair of problem (1).

Next we shall use the following notations.

f̃(t) = x0 + ρ1−α

Γ(α)

∫ t
0 (tρ − sρ)α−1sρ−1f(s)ds, f ∈ L1

loc([0,∞),R)

T (x0) = {f ∈ L1
loc([0,∞),R); f(t) ∈ F (t, f̃(t), V (f̃)(t)) a.e. [0,∞)}.

3 The result

In order to prove our result we need the following assumptions.

Hypothesis. i) The set-valued map F (., .) : [0,∞)×R×R→ P(R) is L([0,∞))⊗B(R×
R) measurable and has nonempty closed values.

ii) For almost all t ∈ I, the set-valued map F (t, ., .) is L(t)-Lipschitz in the sense that
there exists L(.) ∈ L1

loc([0,∞),R+) with

dH(F (t, x1, y1), F (t, x2, y2)) ≤ L(t)(|x1 − x2|+ |y1 − y2|) ∀ x1, x2, y1, y2 ∈ R.

iii) There exists a locally integrable function q(.) ∈ L1
loc([0,∞),R) such that

dH({0}, F (t, 0, V (0)(t))) ≤ q(t) a.e. ([0,∞)).

iv) k(., ., .) : [0,∞)×R×R→ R is a function such that ∀x ∈ R, (t, s)→ k(t, s, x) is
measurable.

v) |k(t, s, x)− k(t, s, y)| ≤ L(t)|x− y| a.e. (t, s) ∈ [0,∞)× [0,∞), ∀x, y ∈ R.

We use next the following notations

M(t) := L(t)(1 +

∫ t

0
L(u)du), t ∈ I, Iα,ρM := sup

t∈[0,∞)
|Iα,ρM(t)|. (3)

q0(h)(t) = |h(t)|+ q(t) + L(t)|(|h̃(t)|+
∫ t

0
L(s)|h̃(s)|ds), t ∈ I (4)

Let us note that

d(h(t), F (t, h̃(t), V (h̃)(t)) ≤ q0(h)(t) a.e. (I) (5)

and for any u1, u2 ∈ L1(I,R)

|q0(h1)− q0(h2)|1 ≤ (1 + |Iα,ρM(T )|)|h1 − h2|1;

therefore, the mapping q0 : L1(I,R)→ L1(I,R) is continuous.
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Also define

TI(x0) = {h ∈ L1(I,R); h(t) ∈ F (t, h̃(t), V (h̃)(t)) a.e. (I)}.

Ik = [0, k], k ≥ 1, |h|1,k =

∫ k

0
|h(t)|dt, h ∈ L1(Ik,R).

The proof of the next result may be found in [4].

Lemma 4. Suppose that Hypothesis is verified and consider φ : L1(I,R) → L1(I,R) a
continuous function with φ(h) = h for all h ∈ TI(x0). If h ∈ L1(I,R), we put

Ψ(h) = {h ∈ L1(I,R); h(t) ∈ F (t, φ̃(h)(t), V (φ̃(h))(t)) a.e. (I)},

Φ(h) =

{
{h} if h ∈ TI(x0),
Ψ(h) otherwise.

Then the set-valued map Φ : L1(I,R) → P(L1(I,R)) is l.s.c. with nonempty closed
and decomposable values.

Theorem 1. Assume that Hypothesis is satisfied, Iα,ρM < 1 and x0 ∈ R.

Then there exists G : L1
loc([0,∞),R)→ L1

loc([0,∞),R) continuous with the properties

(i) G(h) ∈ T (x0), ∀h ∈ L1
loc([0,∞),R),

(ii) G(h) = h, ∀h ∈ T (x0).

Proof. The idea of the proof consists in the construction, for every k ≥ 1, of a sequence
of continuous functions gk : L1(Ik,R)→ L1(Ik,R) satisfying the following conditions

(I) gk(h) = h, ∀h ∈ TIk(x0)

(II) gk(h) ∈ TIk(x0), ∀h ∈ L1(Ik,R)

(III) gk(h)(t) = gk−1(h|Ik−1
)(t), t ∈ Ik−1

If this construction is realized, we introduce G : L1
loc([0,∞),R)→ L1

loc([0,∞),R) with

G(h)(t) = gk(h|Ik)(t), k ≥ 1.

The continuity of gk(.) and (III) allows to deduce that G(.) is continuous. Taking into
account (II), for each h ∈ L1

loc([0,∞),R), we get

G(h)|Ik(t) = gk(h|Ik)(t) ∈ TIk(x0), ∀k ≥ 1,

which shows that G(h) ∈ T (x0).

Consider ε > 0 and m ≥ 0. We define εm = m+1
m+2ε. If h ∈ L1(I1,R) and m ≥ 0 we put

q1
0(h)(t) = |h(t)|+ q(t) + L(t)(|h̃(t)|+

∫ t

0
L(s)|h̃(s)|ds), t ∈ I1

and

q1
m+1(h) = (Iα,ρM)m(

1

ραΓ(α+ 1)
|q1

0(h)|1,1 + εm+1).
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Since the map q1
0(.) = q0(.) is continuous, we find that q1

m : L1(I1,R)→ L1(I1,R) is also
continuous.

Set g1
0(h) = h. In what follows, we show that for any m ≥ 1 there exists g1

m :
L1(I1,R)→ L1(I1,R) continuous with the properties

g1
m(h) = h, ∀h ∈ TI1(x0), (a1)

g1
m(h)(t) ∈ F (t, ˜g1

m−1(h)(t), V ( ˜g1
m−1(h))(t)) a.e. (I1), (b1)

|g1
1(h)(t)− g1

0(h)(t)| ≤ q1
0(h)(t) + ε0 a.e. (I1), (c1)

|g1
m(h)(t)− g1

m−1(h)(t)| ≤M(t)q1
m−1(h) a.e. (I1), m ≥ 2. (d1)

If h ∈ L1(I1,R), we define

Ψ1
1(h) = {f ∈ L1(I1,R); f(t) ∈ F (t, h̃(t), V (h̃(t))(t)) a.e.(I1)},

Φ1
1(h) =

{
{h} if h ∈ TI1(x0),
Ψ1

1(h) otherwise.

We apply Lemma 4 (with φ(h) = h) and we deduce that Φ1
1 : L1(I1,R) → D(I1,R) is l.

s. c. Using (5) we obtain that the set

H1
1 (h) = cl{f ∈ Φ1

1(u); |f(t)− h(t)| < q1
0(h)(t) + ε0 a.e. (I1)}

is not empty for any h ∈ L1(I1,R). We apply Lemma 2 to obtain a selection g1
1 of H1

1

which is continuous and verifies (a1)-(c1).

Assume that g1
i (.), i = 1, . . .m satisfying (a1)-(d1) are already constructed. Therefore,

from Hypothesis 1 and (b1), (d1) we infer

d(g1
m(h)(t), F (t, g̃1

m(h)(t), V (g̃1
m(h))(t)) ≤ L(t)(| ˜g1

m−1(h)(t)− g̃1
m(h)(t)|+∫ t

0 L(s)| ˜g1
m−1(h)(s)− g̃1

m(h)(s)|ds) ≤M(t)(Iα,ρM)q1
m(h) = M(t)(q1

m+1(h)−
sm) < M(t)q1

m+1(h),

(6)

where sm := (Iα,ρM)m(εm+1 − εm) > 0.

For h ∈ L1(I1,R), we put

Ψ1
m+1(h) = {f ∈ L1(I1,R); f(t) ∈ F (t, g̃1

m(h)(t), V (g̃1
m(h))(t)) a.e. (I1)},

Φ1
m+1(h) =

{
{h} if h ∈ TI1(x0),
Ψ1
m+1(h) otherwise.

Again, Lemma 4 (applied for φ(h) = g1
m(h)) allows to conclude that Φ1

m+1(.) is l.s.c. with
nonempty closed decomposable values. At the same time, from (6), if h ∈ L1(I1,R), the
set

H1
m+1(h) = cl{f ∈ Φ1

m+1(h); |f(t)− g1
m+1(h)(t)| < M(t)q1

m+1(h) a.e. (I1)}
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is nonempty. As above, via Lemma 2, we obtain a selection g1
m+1 of H1

m+1 continuous
with (a1)-(d1).

We conclude that

|g1
m+1(h)− g1

m(h)|1,1 ≤ (Iα,ρM)m(
1

ραΓ(α+ 1)
|q1

0(h)|1,1 + ε)

which means that the sequence {g1
m(h)}m∈N is a Cauchy sequence in the Banach space

L1(I1,R). Take g1(h) ∈ L1(I1,R) its limit. Since the mapping s→ |q1
0(h)|1,1 is continuous,

thus it is locally bounded and the Cauchy condition is satisfied by {g1
m(h)}m∈N locally

uniformly with respect to h. Therefore, g1(.) : L1(I1,R)→ L1(I1,R) is continuous.
Taking into account (a1) we find that g1(h) = h, ∀h ∈ TI1(x0) and from the hypothe-

ses that the values of F are closed and (b1) we find that

g1(h)(t) ∈ F (t, g̃1(h)(t), V (g̃1(h))(t)), a.e. (I1) ∀h ∈ L1(I1,R).

At the final step of the induction procedure we assume that gi(.) : L1(Ii,R) →
L1(Ii,R), i = 2, ..., k − 1 are constructed and satisfying (I)-(III) and we construct gk(.) :
L1(Ik,R)→ L1(Ik,R) continuous with (I)-(III).

We introduce the map gk0 : L1(Ik,R)→ L1(Ik,R)

gk0 (h)(t) = gk−1(h|Ik−1
)(t)χIk−1

+ h(t)χIk\Ik−1
(t) (7)

Since gk−1(.) is continuous and for h0, h ∈ L1(Ik,R) we have

|gk0 (h)− gk0 (h0)|1,k ≤ |gk−1(h|Ik−1
)− gk−1(h0|Ik−1

)|1,k−1 +

∫ k

k−1
|h(t)− h0(t)|dt,

and we deduce that gk0 (.) is continuous.
At the same time, the equality gk−1(h) = h, ∀h ∈ TIk−1

(x0) and (7) allows to obtain

gk0 (h) = h, ∀h ∈ TIk(x0).

For h ∈ L1(Ik,R), we define

Ψk
1(h) = {l ∈ L1(Ik,R); l(t) = gk−1(h|Ik−1

)(t)χIk−1
(t) + n(t)χIk\Ik−1

(t),

n(t) ∈ F (t, g̃k0 (h)(t), V (g̃k0 (h))(t)) a.e. ([k − 1, k])}

Φk
1(h) =

{
{h} if h ∈ TIk(x0),
Ψk

1(h) otherwise.

Once again Lemma 4 (applied for φ(h) = gk0 (h)) implies that Φk
1(.) : L1(Ik,R)→ D(Ik,R)

is l.s.c.. In addition, if h ∈ L1(Ik,R) one may write

d(gk0 (t), F (t, g̃k0 (h)(t), V (g̃k0 (h))(t)) = d(h(t), F (t, g̃k0 (h)(t),

V (g̃k0 (h)(t))χIk\Ik−1
≤ qk0 (h)(t) a.e. (Ik),

(8)
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where

qk0 (h)(t) = |h(t)|+ q(t) + L(t)(|g̃k0 (h)(t)|+
∫ t

0
L(s)|g̃k0 (h)(s)|ds).

Obviously, qk0 : L1(Ik,R)→ L1(Ik,R) is continuous. If m ≥ 0 we define

qkm+1(h) = (Iα,ρM)m(
kρα

ραΓ(α+ 1)
|qk0 (h)|1,k + εm+1)

and from the continuity of qk0 (.) we deduce the continuity of qkm : L1(Ik,R)→ L1(Ik,R).
Finally, we provide the existence of gkm : L1(Ik,R)→ L1(Ik,R) continuous such that

gkm(h)(t) = gk−1(h|Ik−1
)(t) ∀t ∈ Ik−1, (ak)

gkm(h) = h ∀h ∈ TIk(x0), (bk)

gkm(h)(t) ∈ F (t, ˜gkm−1(h)(t), V ( ˜gkm−1(h))(t)) a.e. (Ik), (ck)

|gk1 (h)(t)− gk0 (h)(t)| ≤ qk0 (h)(t) + ε0 a.e. (Ik), (dk)

|gkm(h)(t)− gkm−1(h)(t)| ≤M(t)qkm−1(h) a.e. (Ik), m ≥ 2. (ek)

Set

Hk
1 (h) = cl{f ∈ Φk

1(h); |f(t)− gk0 (h)(t)| < qk0 (h)(t) + ε0 a.e. (Ik)}.

Using (8), Hk
1 (h) 6= ∅ for any h ∈ L1(I1,R). Taking into account Lemma 2 and the fact

that the maps gk0 , q
k
0 are continuous we find a continuous selection gk1 of Hk

1 with (ak)-(dk).
If gki (.), i = 1, . . .m with (ak)-(ek) are already constructed, from (ek) one may write

d(gkm(h)(t), F (t, g̃km(h)(t), V (g̃km(h))(t)) ≤ L(t)(| ˜gkm−1(h)(t)− g̃km(h)(t)|+∫ t
0 L(s)| ˜gkm−1(h)(s)− g̃km(h)(s)|ds) ≤M(t)(qkm+1(h)− sm) < M(t)qkm+1(h),

(9)

where sm := (Iα,ρM)m(εm+1 − εm) > 0.
For h ∈ L1(Ik,R), we define

Ψk
m+1(h) = {l ∈ L1(Ik,R); l(t) = gk−1(h|Ik−1

)(t)χIk−1
(t)+

n(t)χIk\Ik−1
(t), n(t) ∈ F (t, g̃km(h)(t), V (g̃km(h))(t)) a.e. ([k − 1, k])},

Φk
m+1(h) =

{
{h} if h ∈ TIk(x0),
Ψk
m+1(h) otherwise.

Applying Lemma 4 we obtain that Φk
m+1(.) : L1(Ik,R) → P(L1(Ik,R)) has nonempty

closed decomposable values and is l.s.c.. As above, the set

Hk
m+1(h) = cl{f ∈ Φk

m+1(h); |f(t)− gkm+1(h)(t)| < M(t)qkm+1(h) a.e. (Ik)}

is nonempty. Again, Lemma 2 allows to obtain a continuous selection gkm+1 of Hk
m+1,

verifying (ak)-(ek).
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By (ek) one has

|gkm+1(h)− gkm(h)|1,k ≤ (Iα,ρM)m[
kρα

Γ(α+ 1)
|qk0 (h)|1,1 + ε].

Repeating the proof done in the first case we get the convergence of {gkm(h)}m∈N to some
gk(h) ∈ L1(Ik,R). Moreover, gk(.) : L1(Ik,R)→ L1(Ik,R) is continuous.

By (ak) we have that

gk(h)(t) = gk−1(h|Ik−1
)(t) ∀t ∈ Ik−1,

by (bk) g
k(h) = h ∀h ∈ TIk(x0) and, finally, since the values of F are closed, from (ck) we

deduce that

gk(h)(t) ∈ F (t, g̃k(h)(t), V (g̃k(h))(t)), a.e. (Ik) ∀h ∈ L1(Ik,R),

and the proof is complete.

Remark 1. By definition, a subspace X of a Hausdorff topological space Y is said to be
a retract of Y if there exists a continuous function h : Y → X with h(x) = x, ∀x ∈ X.

So, Theorem 1 states that for each x0 ∈ R, the set T (x0) is a retract of the Banach
space L1

loc([0,∞),R).
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