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EXISTENCE OF SOLUTIONS FOR p(z)-LAPLACIAN
DIRICHLET PROBLEM BY TOPOLOGICAL DEGREE

Mustapha AIT HAMMOU#*! Elhoussine AZROUL?and Badr LAHMI 3

Abstract

In this paper, we prove the existence of at least one solution for the
Dirichlet problem of p(x)-Laplacian

—div(|Vu[P™2Vu) = f(z,u, Vu),

by using the topological degree theory for a class of demicontinuous operators
of generalized (S;) type. The right hand side f is a Carathéodory function
satisfying some non-standard growth conditions.
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1 Introduction

The p(x)-Laplacian has been used in the modelling of electrorheological fluids
([10]) and in image processing ([1, 4]). Up to these days, a great deal of results
have been obtained for solutions to equations related to this operator.

We consider the following nonlinear degenerated elliptic problem

—div(|VulP®=2Vu) = f(z,u, Vu) inQ, (1)
u =0 on 0f2.

where Q € RY is a bounded domain, p(-) is log-Hélder continuous with values in
(1,00). By using the degree theory for p(-) = p with values in (2, N), Kim and
Hong studied in ([7]) the problem

—Apu=u+ f(z,u,Vu) inQ,
u=0 on 0f).
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In [5] Fan and Zhang presents several sufficient conditions for the existence of
solutions for the problem (1) with f independent of Vu.

The aim of this paper is to prove an existence of at least weak solution for (1)
extending and refining the results in [5, 7] by using the topological degree theory
for a class of demicontinuous operators of generalized (S;) type.

This paper is divided into four sections. In the second section, we introduce
some classes of operators of generalized (Sy) type and the topological degree.
In the third section, we present some basic properties of generalized Lebesgue-
Sobolev spaces WO1 #@) and several important properties of p(x)-Laplacian opera-
tor. Finaly, in the fourth section, we give some existence results of weak solutions
of problem (1).

2 Some classes of operators and topological degree

Let X and Y be two real Banach spaces and §2 a nonempty subset of X. The
symbol — (—) stands for strong (weak) convergence. We recall that a mapping
F:QCcX —>Yis

- bounded, if it takes any bounded set into a bounded set;
- demicontinuous, if for any (u,) C Q, u, — u implies F(u,) — F(u);

- compact if it is continuous and the image of any bounded set is relatively com-
pact.

Let X be a real reflexive Banach space with dual X*. A mapping
F:QcCX — X*issaid to be

- of class (S4), if for any (u,) C Q with u,, — w and limsup(Fuy, u, —u) <0, it
follows that u, — u;

- quasimonotone , if for any (u,) C Q with u, — u, it follows that
limsup(Fuy, u, —u) > 0.

For any operator F': 2 C X — X and any bounded operator
T:Q) C X — X* such that Q C Q1, we say that F

- satisfies condition (S4 )7, if for any (u,)Q with u, — wu, y, := Tu, — y and
limsup(Fuy, y, —y) < 0, we have u,, = u;

- has the property (QM)r, if for any (u,) C Q with u, — u, y, := Tu,, — y, we
have limsup(Fuy,y — yn) > 0.

For any Q2 C X, we consider the following classes of operators:

F1(2) = {F:Q— X*| F is bounded, demicontinuous and satifies condition

(54)},
Fr(Q) = {F:Q — X | F is demicontinuous and satifies condition(S;)r}.
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For any Q C Dp, where D denotes the domain of F', and any T € F1(Q2).
Let O be the collection of all bounded open set in X. Define

F(X):={F e Fr(G)| G eO,TeFC),

Here, T € Fi(G) is called an essential inner map to F.

Lemma 1. [7, Lemma 2.5] Suppose that T' € F1(G) is continuous and
S:Ds C X* — X is demicontinuous such that T(G) C D, where G is a bounded
open set in a real reflexive Banach space X. Then the following statement are

true:

(i) If S is quasimonotone, then I + SoT € Fr(G), where I denotes the identity
operator.

(ii) If S is of class (S+), then SoT € Fr(G)

Definition 1. Let G be a bounded open subset of a real reflexive Banach space

X, T € F1(G) be continuous and let F,S € Fr(G). The affine homotopy
H :[0,1] x G — X defined by

H(t,u) :== (1 — t)Fu+ tSu for (t,u) € [0,1] x G

is called an admissible affine homotopy with the common continuous essential
inner map T.

Remark 1 (Lemma 2.5 [7]). The above affine homotopy satisfies condition (S4)r.
As in[7], we introduce a suitable topological degree for the class F(X):

Theorem 1. Let
M={(F,Gh)|GeO,TEe fr'“l((_}),F € S"T((_}),h ¢ F(0G)}.

There exists a unique degree function d : M — Z that satisfies the following
properties:

1. (Existence) if d(F,G,h) # 0 , then the equation Fu = h has a solution in
G,

2. (Additivity) Let F € Fp(G). If G and Go are two disjoint open subset of
G such that h ¢ F(G\ (G1 UG53)), then we have

d(Fa G7 h) = d(F7 Glah) +d(Fa G2ah)a

3. (Homotopy invariance) Suppose that
H :[0,1] x G — X is an admissible affine homotopy with a common contin-
uous essential inner map and h : [0,1] — X is a continuous path in X such
that h(t) ¢ H(t,0G) for all t € [0,1] ,then the value of d(H(t,.),G, h(t)) is
constant for all t € [0,1],
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4. (Normalization) For any h € G, we have

d(I,G,h) =1,

5. (Boundary dependence) If F,S € Fr(G) coincide on 0G and h ¢ F(0G),
then
d(F,G,h) =d(S,G,h).

Remark 2. [7, Definition 3.3] The above degree is defined as follows:
d(F,G,h) = dp(F|g,,Go, h),

where dp is the Berkovits degree [2] and Gq is any open subset of G with
F~Y(h) C Gy and F is bounded on Gy.

3 The spaces I/VO1 P (x)(Q) and properties of p(x)—Laplacian
operator

3.1 The spaces W, " (Q)

We introduce the setting of our problem with some auxiliary results of the
variable exponent Lebesgue and Sobolev spaces LP(*)(Q) and VVO1 P (x)(Q). For
convenience, we only recall some basic facts with will be used later, we refer to
[6, 9, 13] for more details.

Let © be an open bounded subset of RY, N > 2, with a Lipschitz boundary
denoted by 9€). Denote

C+ () ={heC() ;Ielg h(z) > 1}.

For any h € C+(2), we define
ht :=max{h(z),z € Q},h~ := min{h(z),r € Q}.

For any p € C, () we define the variable exponent Lebesgue space
Lp(“)(Q) = {u; u:Q — R is measurable and / \u(ac)\p(x) dx < 400}
Q

endowed with Luzemburg norm
u

’u‘p(x) = inf{)‘ > 0/pp(:c)()\) < 1}'

where

poay() = [ Ju(e)") da. vu€ (@),
Q

(LP@(Q), ] . p(z)) is a Banach space [9, Theorem 2.5], separable and reflexive
9, Corollary 2.7]. Its conjugate space is L' (#)(Q) where 1/p(z) + 1/p/(x) = 1 for
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all z € Q. For any u € LP®)(Q) and v € LV *)(Q), Hélder inequality holds
[9, Theorem 2.1]

/uv dx
Q

Notice that if (u,) and u € LP()(Q) then the following relations hold true (see [6])

1 1
< (p_ + p/_> |l p(2) [V pr (@) < 20Upa) V] (2)- (2)

|u]p(x) < 1(: 1;> 1) g pp(x)(u) < 1(: 1;> 1),

+

[ulpe) > 1 = [ulh ) < ppiay(u) < Julyy, (3)
ey <1 = [ul) <y () < [ul?,), (4)
nh_)ngo [, — ulp) =0 = nh_}nolo Pp(z) (Un —u) = 0. (5)
From (3) and (4), we can deduce the inequalities
[tlp@) < Pp(ay () + 1, (6)
Pty () < [ul? -+ [uf? - (7)

If p1,p2 € CL(Q),p1(x) < pa(x) for any = € Q, then there exists the continuous
embedding LPQ(z)(Q) N Lm(ﬂﬁ)(Q).
Next, we define the variable exponent Sobolev space Wwip(z) (Q) as

WP (Q) = {u e LP@(Q)/|Vu| € LPD(Q)}.
It is a Banach space under the norm

We also define I/VO1 P (')(Q) as the subspace of WP1)(Q) which is the closure of
C3°(€2) with respect to the norm || . ||. If the exponent p(.) satisfies the log-
Holder continuity condition, i.e. there is a constant « > 0 such that for every
x,y € Q,x #y with |z —y| < % one has

(%

Ip(z) — p(y)| < (8)

~ —loglz —y| ’

then we have the Poincaré inequality (see [8, 11]), i.e. the exists a constant C' > 0
depending only on €2 and the function p such that

1,p(.
[ulye) < CIVulya), Yu € Wy * (). (9)
In particular, the space I/VO1 P (')(Q) has a norm | . | given by

|ul1 p(z) = [Vuly) for all u € WOLP@)(Q)’
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which is equivalent to || . ||. In addition, we have the compact embedding
W&’p(')(ﬂ) s LPO(Q)(see [9]). The space (Wol’p(x)(ﬂ),| - |1,p()) is a Banach

space, separable and reflexive (see [6, 9]). The dual space of I/VO1 P (m)(Q), denoted
W‘l’p/(w)(ﬂ), is equipped with the norm

N

0] 1, (@) = IF{[v0 L2y + D Vil }
=1

where the infinimum is taken on all possible decompositions v = vy — divF with
vo € LP@)(Q) and F = (vy, ..., vn) € (LP@(Q))N.
3.2 Properties of p(x)—Laplacian operator
We discuss the p(x)—Laplacian operator
—Ap(myu = —div(|Vu['") 72 V).

Consider the following functional:

1
e PR p(ﬂ)) l’p(w) Q
J(u) /Qp(x)|Vu| der, we Wy (Q).

We know that (see [3]), J € Cl(W&’p(I)(Q), R), and the p(x)—Laplacian operator
is the derivative operator of J in the weak sense.
We denote L =J" : Wol’p(x)(Q) — WL #)(Q), then

(Lu,v) = / Vu[P) -2V uVudz, for all u,v € W™ (Q).
Q

Theorem 2. [3, Theorem 3.1]

(i) L: Wol’p(x)(ﬂ) — WL @)(Q) is a continuous, bounded and strictly monotone
operator;

(ii) L is a mapping of class (S4);

(iii) L is a homeomorphism.

4  Existence of solutions

In this section, we study the Dirichlet boundary value problem (1) based on
the degree theory in Section 2, where Q@ C RN, N > 2, is a bounded domain with
a Lipschitz boundary 99, p € C, (Q) satisfy the log-Hélder continuity condition
(8),1<p <p(x)<pt <ocoand f: QxR xRY = R is a real-valued function

such that:

(f1) f satisfies the Carathéodory condition, that is, f(.,7,() is measurable on 2
for all (n,¢) € R xRY and f(x,.,.) is continuous on R x RY for a.e. = € Q.
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(f2) f has the growth condition

[f (@, m. Q)] < k() + ] 4 ¢4

for a.e. x € Q and all (n,¢) € R x RY, where c is a positive constant,
ke '@(Q)and 1 < ¢ <q(z)<q" <p.

Definition 2. We call that u € Wol’p(cc) (Q) is a weak solution of (1) if
/ |VuP®) =2y Vods = / f(z,u, Vu)vdz, Vv e Wol’p(x)(ﬂ).
Q Q

Lemma 2. Under assumptions (f1) and (f2), the operator
S Wol’p(x)(Q) — WLP'@)(Q) setting by

(Su,v) /f x,u, Vu)vdr, Yu,v € WO p( )(Q)

1s compact.

Proof. Let ¢ : Wol’p(m)(ﬂ) — LP@)(Q) be an operator defined by
pu(x) := —f(x,u, Vu) for u € Wol’p(x)(Q) and z € Q.

We first show that ¢ is bounded and continuous.

For each u € WO1 P (z)(Q), we have the growth condition (f2), the inequalities (6)
and (7) that

Ul () < pp(a)(Pu) +1
= / |f (2, u(x u(m)\p/(’”) +1

< const(pp (s ) + Pra) (W) + pr(z)(Vu)) + 1
< const(\ky + W + July ) + !VU\?&) + [Vl ) + 1,

p(fL"

where r(z) = (¢(z) — 1)p/(x) < p(x). By the continuous embedding LP(*) — L")
and the Poincaré inequality (9), we have

(1t ay < const([kl gy + [ulf ey + [ul] ) + 1

This implies that ¢ is bounded on VVO1 P(@) (Q).

To show that ¢ is continuous, let u, — w in Wol’p(x)(Q). Then u, — u in LP@®)(Q)
and Vu, — Vu in (LP®)(Q))N. Hence there exist a subsequence (uy) of (u,) and
measurable functions h in LP®)(Q) and g in (LP®)(Q))V such that

ug(z) = u(z) and Vug(x) — Vu(z),

|ug ()| < h(z) and [Vug ()] < [g(z)|
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for a.e. = € Q) and all £ € N. Since f satisfies the Carathodory condition, we
obtain that

fz,up(x), Vug(z)) = f(z,u(z), Vu(x)) a.e. z € Q.
it follows from (f2) that
|f (@, u(@), Vug(2))] < k(@) + [h(2)| "D~ + [g(a) 171

for a.e. x € 2 and for all £ € N.
Since

B A1+ Jg(@) 19! € 1)@,

and taking into account the equality

P (@) (S — ) = /Q | (@ ux(2), Vur() = (o, u(z), V()P da,
the dominated convergence theorem and the equivalence (5) implies that
puy, — du in LY ()(Q).

Thus the entire sequence (¢u,,) converges to ¢u in Lp/(x)(Q).

Since the embedding I : VVO1 P (x)(Q) — LP®)(Q) is compact, it is known that the
adjoint operator I* : LP'@)(Q) — W17 (#)(Q) is also compact. Therefore, the
composition [*o¢ : ng P (x)(Q) — WP @)(Q) is compact. This completes the
proof. O

Theorem 3. Under assumptions (f1) and (f2), problem (1) has a weak solution
w in War® Q)
0 :

Proof. Let S : Wol’p(x)(Q) — WL @)(Q) be as in Lemma 2 and
L: Wol’p(x)(Q) — W=LP(#)(Q), as in subsection 3.2, setting by

(Lu,v) = / IVuP®) =2V uVodz, for all u,v e Wol’p(m)(Q).
Q

Then u € VVO1 P (Z)(Q) is a weak solution of (1) if and only if
Lu=—Su (10)

Thanks to the properties of the operator L seen in Theorem 2 and in view of
Minty-Browder Theorem (see [14], Theorem 26A), the inverse operator
T:=L"1:wEQ) - Wol’p(x)(Q) is bounded, continuous and satisfies condi-
tion (S ). Moreover, note by Lemma 2 that the operator S is bounded, continuous
and quasimonotone.

Consequently, equation (10) is equivalent to

u="Tv and v+ SoTv = 0. (11)
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To solve equation (11), we will apply the degree theory introducing in section 2.
To do this, we first claim that the set

B :={ve W@ Qv+ tSoTv = 0 for some ¢ € [0,1]}
is bounded. Indeed, let v € B. Set u := T'v, then |Tv| p(z) = |Vulp()
If |Vulyz) < 1, then [Tv]y (4 is bounded.
If [Vul,(5) > 1, then we get by the implication (3), the growth condition (fa), the
Holder inequality (2), the inequality (7)and the Young inequality the estimate
|TU|€7p(x) = |Vu|§&) < Pp(a)(Vu)

= (Lu,u) = (v,Tv)

= —t(SoTv,Tv)

= t/f(x,u,Vu)udac

const( / h()u(w)d + pyiay (r) + /|Vu|q<$)_1|u|d:n)
Q

IN

+ - 1 1
< ConSt(2|k’p’(x)‘u|p(z) + \u|g($) + ’u|g(x) + q/ipq(x)(vu) + qipq(x) (u))

+
< const(|ulpe) + |U’ + Julf ) + Wu|g(x)>'

q(z) q(z)

From the Poincaré inequality (9) and the continuous embedding LP(*) «— [4(*),
we can deduct the estimate

\TU\IL;(:B) < const(|T|y p(z) + \Tvylp(x ).

It follows that {Tw|v € B} is bounded.
Since the operator S is bounded, it is obvious from (11) that the set B is bounded
in W17 (®)(Q). Consequently, there exists R > 0 such that

V] 1 () < Rforallv € B.
This says that
v+ tSoTv # 0 for all v € 9BR(0) and all ¢t € [0, 1].
From Lemma (1) it follows that
I+ SoT € Fr(Bg(0)) and I = LoT € Fp(Bg(0)).
Consider a homotopy H : [0,1] x Br(0) — W~12@)(Q) given by
H(t,v) := v+ tSoTw for (t,v) € [0,1] x Bg(0).

Applying the homotopy invariance and normalization property of the degree d
stated in Theorem(1), we get

d([ + SOT7 BR(O)7 0) - d(Ia BR(O>7 0) - 17
and hence there exists a point v € Br(0) such that
v+ SoTv =0.

We conclude that u = T is a weak solution of (1). This completes the proof. [
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