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MINIMUM COST FLOW IN A NETWORK WITH AN UNDERESTIMATED ARC
CAPACITY
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Abstract

There are lot of real world problems that can be modeled and solved as min-
imum cost flow problems. SomeƟmes in this problems minor changes may occur
as, for instance, the capacity of an arc may vary in Ɵme. In this paper we study
the case in which the capacity of a given arc is augmented by a given value a. Sup-
posing that a minimum cost flow has been already established in a networkG, we
focus on the problem of finding a minimum cost flow in a network having the same
structure as G and the same arc costs and capaciƟes excepƟng one: the capacity
of a given arc (k, l) which has been increased by a units. We describe a method
for obtaining a minimum cost flow in the modified network inO(am) Ɵme starƟng
from the minimum cost flow in the original network.

2000MathemaƟcs Subject ClassificaƟon: 90B10, 90C90.
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1 IntroducƟon

Network flow problems form a group of network opƟmizaƟon problems with wides-
pread and diverse applicaƟons. Over the past 60 years researchers have made conƟnu-
ous improvements to algorithms for solving several classes of problems. From the late
1940s through the 1950s, researchers designed many of the fundamental algorithms
for network flow, including methods for maximum flow and minimum cost flow prob-
lems. In the next decades, there are many research contribuƟons concerning improving
the computaƟonal complexity of network flow algorithms by using enhanced data struc-
tures, techniques of scaling the problem data etc.

The minimum cost flow problem, which combines the shortest paths with the maxi-
mum flows, is one of the complex problems in network flow theory and it has been stud-
ied extensively. The importance of theminimum cost flow problem is also due to the fact
that it arises in almost all industries, including agriculture, communicaƟons, defense, ed-
ucaƟon, energy, health care, medicine, manufacturing, retailing and transportaƟon. And

1Faculty of MathemaƟcs and InformaƟcs, Transilvania University of Braşov, Romania, e-mail:
laura_ciupala@yahoo.com



128 Laura Ciupală

in these real world applicaƟons it is possible that the structure of the network changes
in Ɵme.

Let G = (N,A) be a directed graph, defined by a set N of n nodes and a set A
of m arcs. Each arc (x, y) ∈ A has a capacity c(x, y) and a cost b(x, y). We associate
with each node x ∈ N a number v(x) which indicates its supply or demand depending
on whether v(x) > 0 or v(x) < 0. In the directed network G = (N,A, c, b, v), the
minimum cost flow problem is to determine the flow f(x, y) on each arc (x, y) ∈ A
which

minimize
∑

(x,y)∈A

b(x, y)f(x, y) (1)

subject to ∑
y|(x,y)∈A

f(x, y)−
∑

y|(y,x)∈A

f(y, x) = v(x), ∀x ∈ N (2)

0 ≤ f(x, y) ≤ c(x, y), ∀(x, y) ∈ A. (3)

A flow f saƟsfying condiƟons 2 and 3 is a feasible flow.
The value

∑
(x,y)∈A b(x, y)f(x, y) is the cost of the flow.

A pseudoflow is a funcƟon f : A → ℜ+ saƟsfying only condiƟons 3. For any pseud-
oflow f the imbalance of node x is defined as e(x) = f(N, x)− f(x,N), for all x ∈ N .
If e(x) > 0 for some node x, we refer to e(x) as the excess of node x; if e(x) < 0, we
refer to−e(x) as the deficit of node x. If e(x) = 0 for some node x, we refer to node x
as balanced. Consequently, a flow is a parƟcular case of psedoflow.

The residual networkG(f) = (N,A(f)) corresponding to a pseudoflow f is defined
as follows. For each arc (x, y) ∈ A one creates two arcs (x, y) and (y, x). The arc (x, y)
has the cost b(x, y) and the residual capacity r(x, y) = c(x, y) − f(x, y) and the arc
(y, x) has the cost b(y, x) = −b(x, y) and the residual capacity r(y, x) = f(x, y). The
residual network consists only of those arcs with posiƟve residual capacity.

We shall assume that theminimum cost flowproblem saƟsfies the following assump-
Ɵons:

1. All data (cost, supply/demand and capacity) are integral.

2. The network contains no directed negaƟve cost cycle of infinite capacity.

3. All arc costs are nonnegaƟve.

4. The supplies/demands at the nodes saƟsfy the condiƟon
∑

x∈N v(x) = 0 and the
minimum cost flow problem has a feasible soluƟon.

5. The network contains an uncapacitated directed path (i.e. each arc in the path has
infinite capacity) between every pair of nodes.

All these assumpƟons can bemadewithout any loss of generality (for details see [1]).
The classical algorithms for determining a minimum cost flow, that have been devel-

oped between 1950 and 1960 and can be found in [1], are of two types:
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1. those that maintain feasible soluƟons and strive toward opƟmality
2. those that maintain infeasible soluƟons that saƟsfy opƟmality condiƟons and

strive toward feasibility.
The most known classical algorithms of the first type are cycle-canceling algorithm

and out-of-kilter algorithm. The cycle-canceling algorithm maintains a feasible flow at
every iteraƟon, augments flow along negaƟve cycle in the residual network and termi-
nates when there is no more negaƟve cycle in the residual network, which means that
the flow is a minimum cost flow. The out-of-kilter algorithm maintains a feasible flow at
every iteraƟon and augments flow along shortest path in order to reach the opƟmality.

The most known classical algorithms of the second type are the successive short-
est path algorithm and primal-dual algorithm. The successive shortest path algorithm
maintains an opƟmal pseudoflow and augments the flow along shortest paths from ex-
cess nodes to deficit nodes in the residual network in order to convert the pseudoflow
into a flow. The primal-dual algorithm also maintains an opƟmal pseudoflow and solves
maximum flow problems in order to convert it into a flow.

StarƟng from the classical algorithms for minimum cost flow, several polynomial-
Ɵme algorithms have been developed. Most of them have been obtained by using the
scaling technique. By capacity scaling, by cost scaling or by capacity and cost scaling, the
following polynomial-Ɵme algorithms have been developed: capacity scaling algorithm,
cost scaling algorithm, double scaling algorithm, repeated capacity scaling algorithm and
enhanced capacity scaling algorithm. Another way to obtain polynomial-Ɵme algorithms
is by improving the running Ɵme of the cycle-canceling algorithm by imposing different
rules for selecƟng the negaƟve cycles, for instance selecƟng the negaƟve cycle withmax-
imum improvement or the negaƟve cycle with minimum cost.

Another approach for solving minimum cost flow problems is to use linear program-
ming methodologies because these problems are linear programs. In this manner relax-
aƟon algorithm and simplex method for minimum cost flow have been developed.

2 Determining aminimum cost flow in a networkwith an under-
esƟmated arc capacity

There are wide spread real world problems that can be modeled and solved as min-
imum cost flow problems in appropriate networks. SomeƟmes in these problems an
input data change occurs. For instance, an usual change in real life applicaƟons can im-
ply an augmentaƟon of the capacity of one arc in the corresponding network, in which
a minimum cost flow has been already determined (using one of the algorithms men-
Ɵoned in the previous secƟon). In this case, one can apply again a minimum cost algo-
rithm in the modified network or, more efficient, one can use the minimum flow cost
already established in the original network as a starƟng point. We focus on the second
approach.

Suppose that we have already established a minimum cost flow f of cost cf in the
networkG = (N,A, c, b, v) and now we need to find a minimum cost flow in a network
G′ = (N,A, c′, b, v) having the same structure and the same capaciƟes and cost, except-
ing one capacity, asG. So, the only difference between these two networks is the capac-
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ity of a given arc (k, l), which is greater inG′ than inG. So, c′(x, y) = c(x, y), ∀(x, y) ∈
A\{(k, l)} and c′(k, l) = c(k, l) + a, where a > 0.

Obviously, a greater capacity of the arc (k, l) may imply the existence of addiƟonal
negaƟve cost directed cycles in the residual network and, consequently, the existence
of minimum cost flow in the network G′ having a cost smaller than cf . But it is not
compulsory. Here two cases might appear:

Case 1: The residual networkG(f)with respect to the minimum cost flow f already
contains the arc (k, l). In this case f is also a minimum cost flow inG′.

Case 2: The residual network G(f) with respect to the minimum cost flow f does
not contain the arc (k, l). In this case increasing the capacity of the arc (k, l) by a units
implies to add an arc (k, l)having the residual capacity equal toa to the residual network.
This means that new negaƟve cost directed cycles might appear in the residual network,
which implies that the minimum cost flow value in G′ is at most cf . If there are such
cycles, they all contain the arc (k, l). In this case, for determining a minimum cost flow
inG′ starƟng from theminimum cost flow inG, which is a feasible flow inG′, it is natural
to develop an algorithmof the first type, i.e. an algorithm thatmaintains the feasibility of
the flow and strives toward its opƟmality. If we apply the cycle-canceling algorithm (see
[1]) in G′(f), it performs at most a flow augmentaƟons. Since the Ɵme complexity of a
flow augmentaƟon is O(m), it follows that a minimum cost flow in G′ can be obtained
inO(am) Ɵme starƟng from a minimum cost flow inG.
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