Bulletin of the *Transilvania* University of Braşov · Vol 11(60), No. 1 - 2018 Series III: Mathematics, Informatics, Physics, 121-126

AN INTEGRAL LINKED TO THE ARITHMETIC-GEOMETRIC MEAN

Ernest SCHEIBER¹

Abstract

An integral involving hyperbolic functions is linked to the arithmetic-geometric mean in the same way as in the Gauss formula and a numerical method to compute the real elliptic integral of first kind is presented.

2010 *MathemaƟcs Subject ClassificaƟon:* 33C99, 33F99. Key words: arithmetic-geometric mean, elliptic integrals.

1 IntroducƟon

If $M(a, b)$ denotes the arithmetic-geometric mean of two positive numbers, a and b, then the following result established by Carl Friedrich GAUSS (1777-1855) in 1799 occurs, [5]:

Theorem 1. *If a and b are posiƟve reals then*

$$
\frac{1}{M(a,b)} = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \frac{dx}{\sqrt{a^2 \cos^2 x + b^2 \sin^2 x}}.
$$
 (1)

We shall denote by $I(a, b, \alpha) = \frac{\pi}{2}$ $\frac{\pi}{2})$ the integral of the right hand side of (1). The definition of $I(a, b, \alpha)$ is given in (3).

For $a > b > 0$ and $\alpha > 0$ we shall take care of the integral

$$
J(a,b,\alpha) = \int_0^\alpha \frac{\mathrm{d}x}{\sqrt{a^2 \cosh^2 x - b^2 \sinh^2 x}}.
$$
 (2)

First, we shall express $J(a, b, i\frac{\pi}{2})$ through $I(a, b, \frac{\pi}{2})$ involving an elliptic integral and then we present a pure real approach of $J(a, b, \alpha)$. We obtain a relation that links the integral $J(a, b, \alpha)$ with $M(a, b)$. In this case the computation is similar to the method presented in [5]. A simpler proof of (1) is given in [1], p.6.

Finally, using the same method for $I(a, b, \alpha)$ we obtain a numerical method to compute the real elliptic integral of first kind. The method will require the iterative computation of three sequences. For $\alpha = \frac{\pi}{2}$ $\frac{\pi}{2}$ the result is given in [3]. In [2], [4] other approaches to compute an elliptic integral of first kind are presented.

¹ scheiber@unitbv.ro

122 *Ernest Scheiber*

2 *I*(a, b, α) and $J(a, b, \alpha)$ as elliptic integrals

We recall the following elliptic integrals, [6],

$$
F(\phi, m) = \int_0^{\phi} \frac{\mathrm{d}\theta}{\sqrt{1 - m \sin^2 \theta}}, \quad \text{and} \quad K(m) = F(\frac{\pi}{2}, m).
$$

 $K(\phi, m)$ is called the elliptic integral of first kind.

We have

$$
I(a,b,\alpha) = \frac{1}{a} \int_0^{\alpha} \frac{\mathrm{d}x}{\sqrt{1 - \left(1 - \frac{b^2}{a^2}\right) \sin^2 x}} = \frac{1}{a} F\left(\alpha, 1 - \frac{b^2}{a^2}\right) \tag{3}
$$

and

$$
I(a, b, \frac{\pi}{2}) = \frac{1}{a}K\left(1 - \frac{b^2}{a^2}\right).
$$

Thus, equality (2) may be rewritten as $\frac{1}{M(a,b)} = \frac{2}{a\pi} K\left(1 - \frac{b^2}{a^2}\right)$ $rac{b^2}{a^2}$.

Using the changing of variable $x = iy$ we obtain

$$
J(a, b, i\frac{\pi}{2}) = i \int_0^{\frac{\pi}{2}} \frac{dy}{\sqrt{a^2 \cos^2 y + b^2 \sin^2 y}} = i I(a, b) = \frac{i}{a} K \left(1 - \frac{b^2}{a^2} \right)
$$

and thus $J(a, b, i\frac{\pi}{2}) = \frac{i\pi}{2M(a,b)}$. **Generally**

$$
J(a,b,\alpha) = i \int_0^{-i\alpha} \frac{dy}{\sqrt{a^2 \cos^2 y + b^2 \sin^2 y}} = \frac{i}{a} \int_0^{-i\alpha} \frac{dy}{\sqrt{1 - \left(1 - \frac{b^2}{a^2}\right) \sin^2 y}} =
$$

$$
= \frac{i}{a} F\left(-i\alpha, 1 - \frac{b^2}{a^2}\right) = -\frac{i}{a} F\left(i\alpha, 1 - \frac{b^2}{a^2}\right)
$$

and consequently $I(a, b, i\alpha) = i J(a, b, \alpha)$.

3 A pure real approach of *J*(*a, b, α*)

If $a_0 = a$ and $b_0 = b$ then the sequences $(a_k)_{k \in \mathbb{N}}, (b_k)_{k \in \mathbb{N}}$ defined by the recurrences

$$
a_{k+1} = \frac{a_k + b_k}{2}
$$
, $b_{k+1} = \sqrt{a_k b_k}$, $k \in \mathbb{N}$,

converge to $M(a, b)$.

In order to compute (2) the main ingredient is the changing of the variable

$$
\sinh x = \frac{2a \sinh \varphi}{a + b - (a - b) \sinh^2 \varphi}.
$$
 (4)

From (4) it results

$$
\cosh^2 x = 1 + \sinh^2 x =
$$

=
$$
\frac{(a+b)^2 + 2(a^2 + b^2)\sinh^2 \varphi + (a-b)^2 \sinh^4 \varphi}{(a+b-(a-b)\sinh^2 \varphi)^2}
$$
 (5)

and then

$$
a^{2}\cosh^{2}x - b^{2}\sinh^{2}x = \frac{a^{2}((a+b)^{2} + 2(a^{2} - b^{2})\sinh^{2}\varphi + (a-b)^{2}\sinh^{4}\varphi)}{(a+b-(a-b)\sinh^{2}\varphi)^{2}} =
$$

$$
= a^{2}\left(\frac{a+b+(a-b)\sinh^{2}\varphi}{a+b-(a-b)\sinh^{2}\varphi}\right)^{2}.
$$

It follows that

$$
\sqrt{a^2 \cosh^2 x - b^2 \sinh^2 x} = a \frac{a+b+(a-b) \sinh^2 \varphi}{a+b-(a-b) \sinh^2 \varphi}.
$$
 (6)

In (5), using the relations

$$
(a+b)^2 = 4a_1^2
$$
, $a^2 + b^2 = 4a_1^2 - 2b_1^2$, $(a-b)^2 = 4a_1^2 - 4b_1^2$.

the numerator expressions are linked to a_1 and b_1 and we get

$$
\cosh^2 x = \frac{4\left((1+2\sinh^2 \varphi + \sinh^4 \varphi)a_1^2 - (\sinh^2 \varphi + \sinh^4 \varphi)b_1^2\right)}{(a+b-(a-b)\sinh^2 \varphi)^2} =
$$

$$
= \frac{4\cosh^2 \varphi(a_1^2 \cosh^2 \varphi - b_1^2 \sinh^2 \varphi)}{(a+b-(a-b)\sinh^2 \varphi)^2},
$$

or

$$
\cosh x = \frac{2\cosh\varphi\sqrt{a_1^2\cosh^2\varphi - b_1^2\sinh^2\varphi}}{a+b-(a-b)\sinh^2\varphi}.
$$
 (7)

Denoting $f(t) = \frac{2at}{a+b-(a-b)t^2}$ we have

$$
f'(t) = 2a \frac{a+b+(a-b)t^2}{(a+b-(a-b)t^2)^2} > 0,
$$

which means that $f(t)$ is increasing.

The new variable φ will belong to the interval $[0,\alpha_1]$, where α_1 is given by the equation 2*a* sinh *α*¹

$$
\sinh \alpha = \frac{2a \sinh \alpha_1}{a + b - (a - b) \sinh^2 \alpha_1}.
$$

Below we will return to this equation.

From (4) we find

$$
\cosh x \, dx = 2a \frac{a+b+(a-b)\sinh^2 \varphi}{(a+b-(a-b)\sinh^2 \varphi)^2} \cosh \varphi \, d\varphi.
$$

Using (6) the above equality may be rewritten as

$$
\cosh x \, dx = \sqrt{a^2 \cosh^2 x - b^2 \sinh^2 x} \frac{2 \cosh \varphi}{a + b - (a - b) \sinh^2 \varphi} \, d\varphi,
$$

otherwise

$$
\frac{\mathrm{d}x}{\sqrt{a^2\cosh^2 x - b^2\sinh^2 x}} = \frac{2\cosh\varphi}{\cosh x(a+b-(a-b)\sinh^2\varphi)}\,\mathrm{d}\varphi.
$$

Finally, using (7), from the right hand side we obtain

$$
\frac{\mathrm{d}x}{\sqrt{a^2\cosh^2 x - b^2\sinh^2 x}} = \frac{\mathrm{d}\varphi}{\sqrt{a_1^2\cosh^2\varphi - b_1^2\sinh^2\varphi}}
$$

and then

$$
\int_0^\alpha \frac{\mathrm{d}x}{\sqrt{a^2 \cosh^2 x - b^2 \sinh^2 x}} = \int_0^{\alpha_1} \frac{\mathrm{d}\varphi}{\sqrt{a_1^2 \cosh^2 \varphi - b_1^2 \sinh^2 \varphi}}.\tag{8}
$$

Iterating (8) it results

$$
J(a, b, \alpha) \stackrel{def}{=} J_0(a_0, b_0, \alpha_0) = J_1(a_1, b_1, \alpha_1) = J_2(a_2, b_2, \alpha_2) = \dots
$$
 (9)

where

$$
J_k(a_k, b_k. \alpha_k) = \int_0^{\alpha_k} \frac{\mathrm{d}\varphi}{\sqrt{a_k^2 \cosh^2 \varphi - b_k^2 \sinh^2 \varphi}}.
$$

The integration limit α_k is given by the equation

$$
\sinh \alpha_{k-1} = \frac{2a_{k-1} \sinh \alpha_k}{a_{k-1} + b_{k-1} - (a_{k-1} - b_{k-1}) \sinh^2 \alpha_k}.
$$
 (10)

Rewriting (10) we deduce that

$$
\frac{\sinh \alpha_{k-1}}{\sinh \alpha_k} = \frac{2a_{k-1}}{a_{k-1}+b_{k-1}-(a_{k-1}-b_{k-1})\sinh^2 \alpha_k} > 1 \quad \Leftrightarrow \quad 1+\sinh^2 a_k > 0.
$$

Consequently, the sequence $(\sinh \alpha_k)_{k\in\mathbb{N}}$ is decreasing and therefore the sequence $(\alpha_k)_{k\in\mathbb{N}}$ is decreasing, too. Because $\alpha_k>0$, the sequence converges to some α_{∞} .

The limit in (10) does not generate an equation for α_{∞} . In order to compute an approximation of α_{∞} the elements of the sequence must be sequentially computed using a stopping rule which assures that the last computed element is near the limit.

From (10) we get

$$
\sinh \alpha_k = \frac{\sqrt{a_{k-1}^2 \cosh^2 \alpha_{k-1} - b_{k-1}^2 \sinh^2 \alpha_{k-1}} - a_{k-1}}{(a_{k-1} - b_{k-1}) \sinh \alpha_{k-1}} = y_k
$$
\n(11)

and

$$
\alpha_k = \ln\left(y_k + \sqrt{y_k^2 + 1}\right).
$$

If $a = 5$, $b = 3$ and $\alpha = \alpha_0 = 1$ then after 4 iterations we obtained $\alpha_{\infty} \approx 0.71093896$. The stopping rule was $| \alpha_k - \alpha_{k-1} | < 10^{-7}$ or $a_{k-1} - b_{k-1} < 10^{-10}$.

From (9) it results that

$$
J(a, b, \alpha) = \lim_{k \to \infty} J_k(a_k, b_k, \alpha_k) = \frac{\alpha_{\infty}}{M(a, b)}.
$$
 (12)

4 Numerical computaƟon of *F*(*α, m*)

For $0 < b < a$ and $0 < \alpha < 1$, as in [5], for $I(a, b, \alpha)$ the changing of variables

$$
\sin x = \frac{2a\sin\varphi}{a+b+(a-b)\sin^2\varphi}
$$

leads to the sequence

$$
I(a, b, \alpha) \stackrel{def}{=} I_0(a_0, b_0, \alpha_0) = I_1(a_1, b_1, \alpha_1) = I_2(a_2, b_2, \alpha_2) = \dots
$$
 (13)

where

$$
I_k(a_k, b_k, \alpha_k) = \int_0^{\alpha_k} \frac{\mathrm{d}\varphi}{\sqrt{a_k^2 \cos^2 \varphi + b_k^2 \sin^2 \varphi}}
$$

and the upper integration limits are generated by the sequence

$$
\sin \alpha_{k-1} = \frac{2a_{k-1} \sin \alpha_k}{a_{k-1} + b_{k-1} + (a_{k-1} - b_{k-1}) \sin^2 \alpha_k}.
$$

The sequence $(\alpha_k)_{k\in\mathbb{N}}$ is convergent and

$$
\sin \alpha_k = \frac{a_{k-1} - \sqrt{a_{k-1}^2 \cos^2 \alpha_{k-1} + b_{k-1}^2 \sin^2 \alpha_{k-1}}}{(a_{k-1} - b_{k-1}) \sin \alpha_{k-1}} = y_k
$$
\n(14)\n
\n
$$
\alpha_k = \arcsin y_k.
$$

From (13) it results

$$
I(a, b, \alpha) = \lim_{k \to \infty} I_k(a_k, b_k, \alpha_k) = \frac{\alpha_{\infty}}{M(a, b)},
$$

with $\alpha_{\infty} = \lim_{k \to \infty} \alpha_k$. Using (3) we get

$$
I(a, b, \alpha) = \frac{1}{a} F\left(\alpha, 1 - \frac{b^2}{a^2}\right) = \frac{\alpha_{\infty}}{M(a, b)}
$$

and consequently

$$
F\left(\alpha, 1 - \frac{b^2}{a^2}\right) = \frac{a\alpha_{\infty}}{M(a, b)} = \frac{\alpha_{\infty}}{\frac{1}{a}M(a, b)} = \frac{\alpha_{\infty}}{M(1, \frac{b}{a})}.
$$

Denoting $m = 1 - \frac{b^2}{a^2}$ $\frac{b^2}{a^2}$, $(a > b > 0 \Leftrightarrow 0 < m < 1)$, the above equation becomes

$$
F(\alpha, m) = \frac{\alpha_{\infty}}{M(1, \sqrt{1 - m})}.
$$

Therefore, the computation of $F(\alpha, m)$ returns to generate iteratively the sequences $(a_k)_k$, $(b_k)_k$, $(a_k)_k$ until a stopping condition is fulfilled. The initial values are $a_0 =$ 1*,* $b_0 = \sqrt{1-m}$ and $\alpha_0 = \alpha$. For $a_0 = 1$, instead of the sequences $(a_k)_k$, $(b_k)_k$ we may compute the sequences, [3],

$$
s_0 = b_0
$$

\n
$$
s_{k+1} = \frac{2\sqrt{s_k}}{1+s_k}
$$

\n
$$
p_0 = \frac{1}{2}(1+s_0)
$$

\n
$$
p_{k+1} = \frac{1}{2}(1+s_k)p_k
$$

.

Then $\lim_{k\to\infty} p_k = M(1, b_0)$.

If $\alpha = \frac{\pi}{2}$ $\frac{\pi}{2}$ then from the relation of recurrence (14) of α_k it follows that $\alpha_k = \frac{\pi}{2}$ $\frac{\pi}{2}$, for any $k \in \mathbb{N}$, and hence $\alpha_{\infty} = \frac{\pi}{2}$. $\frac{\pi}{2}$. Consequently $K(m) = \frac{\pi}{2M(1,\sqrt{1-m})}$.

As a drawback from a practical point of view the method is not applicable when α is small, e.g. $0 < \alpha < 10^{-5}$.

References

- [1] Borwein J.M., Borwein P.B., *Pi and the AGM.* John Wiley & Sons, New York, 1986.
- [2] Fukuskima T., *Numerical computation of inverse complete elliptic integrals of first and second kinds.* J. ComputaƟon and Applied MathemaƟcs, **249** (2013), 37-50.
- [3] Jameson G.J.O., *Elliptic integrals, the arithmetic-geometric mean and the Brent-Salamin algorithm for π.* http://www.maths.lancs.ac.uk/jameson/ellagm. pdf.
- [4] Rösch N., The derivation of algorithms to compute elliptic integrals of the first and *second kind by Landen transformaƟon.* BoleƟn de Ciências Geodésicas (Online), **17** (2011), no.1, http://dx.doi.org/10.1590/S1982-21702011000100001.
- [5] Tkachev V.G., *EllipƟc funcƟons: IntroducƟon course.* http://users.mai.liu. se/vlatk48/teaching/lect2-agm.pdf.
- [6] ***, NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.17 of 2017-12-22. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, and B. V. Saunders, eds.