Bulletin of the Transilvania University of Brasov e Vol 11(60), No. 1 - 2018
Series Ill: Mathematics, Informatics, Physics, 121-126

AN INTEGRAL LINKED TO THE ARITHMETIC-GEOMETRIC MEAN

Ernest SCHEIBER!

Abstract

An integral involving hyperbolic functions is linked to the arithmetic-geometric
mean in the same way as in the Gauss formula and a numerical method to compute
the real elliptic integral of first kind is presented.
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1 Introduction

If M (a,b) denotes the arithmetic-geometric mean of two positive numbers, a and b,
then the following result established by Carl Friedrich GAUSS (1777-1855) in 1799 occurs,

[5]:
Theorem 1. If a and b are positive reals then

1

X

N S
M(a,b) 7)o +/a2cos?x +b2sin®x

We shall denote by I(a,b,a = %) the integral of the right hand side of (1). The
definition of I(a, b, @) is given in (3).
Fora > b > 0 and a > 0 we shall take care of the integral

)_/O‘ dx
0 Va2cosh®z — b2 sinh2

First, we shall express J(a, b, i) through I(a, b, T) involving an elliptic integral and
then we present a pure real approach of J(a, b, &). We obtain a relation that links the
integral J(a, b, &) with M (a, b). In this case the computation is similar to the method
presented in [5]. A simpler proof of (1) is given in [1], p.6.

Finally, using the same method for I(a, b, &) we obtain a numerical method to com-
pute the real elliptic integral of first kind. The method will require the iterative computa-
tion of three sequences. For a = g the result is given in [3]. In [2], [4] other approaches
to compute an elliptic integral of first kind are presented.

(1)

J(a,b,a (2)
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2 I(a,b,«) and J(a,b, «) as elliptic integrals

We recall the following elliptic integrals, [6],

and K(m)=F(

/¢ dé

m) = _—

0 V1—msin?6

K (¢, m) is called the elliptic integral of first kind.
We have

2
I(a,b,«) / :1F<o¢,1—b2> (3)
\/ sm2x “ “

and 2
T 1
I(a,b,=)=~-K|(1-—
@by =2k (1-1).

Thus, equality (2) may be rewritten as M(a 5= %K ( Zz) )

Using the changing of variable x = 7y we obtain

dy . i b2
Jabz =il(a,b)=-K|1-—
\/a2cos2y+b2$|n Y a a
and thus J(a,b,i%) = 2MZZ; Ok
Generally
J(a,b,a) =1 dy _ dy _

—x
2 cos2 2 cin2 a/
0 \/a cos®y + b*sin“y 0 \/1—<1—Zi>sin2y
. b2 . b2
—'F (-m, 1- 2) - -'F <m, 1- 2)
a a a a
and consequently I(a, b, i) =i J(a, b, o).

3 A pure real approach of J(a, b, «)

If ap = a and by = b then the sequences (ax)ren, (bk)ken defined by the recur-

rences n b
ag k
Ap4+1 = 9 , bk+1 = \/akbk, ke N,

converge to M (a, b).
In order to compute (2) the main ingredient is the changing of the variable

2a sinh ¢

sinhx =
v a+b— (a—b)sinh? g

(4)
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From (4) it results
cosh?z = 1 + sinh?z =

(a+ b)% 4 2(a® + b?) sinh? 0 + (a — b)?sinh*

- (a+b— (a— b)sinh? p)2 )

and then
a? ((a + b)? +2(a® — b?) sinh? p + (a — b)? sinh* )
(a+b—(a—0) sinh? ©)?

_ 2 <a+b+(a—b)sinh2g)>2
B a+b— (a—b)sinh?yp

a’cosh? z — b%sinh?x =

It follows that

a+b+ (a—b)sinh?

VaZcosh?z — b2 sinh2z = a — .
a+b— (a—b)sinh®y

(6)
In (5), using the relations
(a+0b)?=4a2, a®+b>=4a 203, (a—b)?=4a? — 43
the numerator expressions are linked to a; and b; and we get

4 ((1 + 2sinh? p + sinh® )a? — (sinh? ¢ + sinh* )b?)

cosh? z = =
(a+b— (a — b)sinh? )2

_ 4 cosh? p(a? cosh? p — b? sinh? )

(a+b— (a—b)sinh?p)2 ~
or
2 cosh /a2 cosh? ¢ — b? sinh? ¢
coshx = — . (7)
a+b—(a—b)sinh” e
Denoting f(t) = GM_Q(% we have

a+b+ (a— b)t?
(a4 b— (a—b)t?)?

f'(t)=2a > 0,
which means that f(t) is increasing.

The new variable ¢ will belong to the interval [0, 1], where « is given by the equa-
tion

2a sinh a1

a+b—(a—b)sinh?a;’
Below we will return to this equation.

From (4) we find

sinha =

a+b+ (a—b)sinh? ¢

coshz dz =2
e a(a+b—(a—b)sinh2g0)2

cosh ¢ de.
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Using (6) the above equality may be rewritten as

2 cosh q
a+b—(a—b)sinh?yp &

coshz dz = \/a2 cosh? z — b2sinh? x

otherwise

dz _ 2 cosh ¢
Va2 cosh? z — b2 sinh? 2 ~ cosha(a+b— (a—b)sinh? o)

de.

Finally, using (7), from the right hand side we obtain

dx dy

Va2 cosh?z — b2sinh® x a \/a% cosh? ¢ — b? sinh? ¢

and then

dy

/ Va2 cosh2 — b2sinh%z / \/a cosh? ¢ — b2 sinh? ¢

(8)

Iterating (8) it results

de
J(a,b, ) 2 Jo(ao, bo, ) = Ji(a1, b1, 1) = Jo(ag, by, a2) = ... (9)

where
dy

/ \/a cosh2 smh2

The integration limit « is given by the equation

Ji(ak, b.ay)

26L1€_1 sinh Qe
ak—1 +bg—1 — (ag—1 — bg—1)sinh® ay”

sinhaj_1 = (10)

Rewriting (10) we deduce that

sinh a1 2ak_1

. = >1 <« 1+sinh?a, > 0.
sinh g, ap—1 + bp—1 — (ap_1 — bp_1) sinh? ay, b

Consequently, the sequence (sinh ay)ren is decreasing and therefore the sequence
(ak)ken is decreasing, too. Because «y, > 0, the sequence converges to some a.

The limit in (10) does not generate an equation for as,. In order to compute an ap-
proximation of a, the elements of the sequence must be sequentially computed using
a stopping rule which assures that the last computed element is near the limit.

From (10) we get

\/azq cosh? aj—1 — b2 sinh? a1 — aj_1

sinh oy, = = Y (12)

(ak,1 — bkfl) sinh Q1
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and

ag = In (yk—i-\/y,%—Fl).

125

Ifa =5, b =3and a = ayg = 1 then after 4 iterations we obtained a, ~ 0.71093896.

The stopping rule was |ag, — ag_1| < 1077 orap_; — bp_1 < 10719,
From (9) it results that
Qoo

M(a,b)

J(a,b,a) = k"m Ji(ag, b, ag) =
—00

4 Numerical computation of F'(«, m)

ForO0 <b<aand0 < a < 1,asin[5], for I(a,b, «) the changing of variables

2asinp
a+b+ (a—b)sin?yp

sine =

leads to the sequence

de
I(a,b,a) 2 Io(ao, bo, ) = I (a1, b1, 1) = In(ag, by, c2) = . ..

where

Ii(a, by, o

- [ e
0 \/ai cos? ¢ + b7 sin? ¢

and the upper integration limits are generated by the sequence

2CLk,1 sin Q.
ag—1 + bp—1 + (ar—1 — bp—1) sin® oy,

sinag_1 =

The sequence (g )ren is convergent and

ap_1 — \/ai_l cos? a1 + b2 sin? a4
sinag, = - =Yk
(ag—1 — bp—1) sinag_q
o = arcsinyy.

From (13) it results

I((L, b, Oé) = kllm Ik(akvbkvak) =
—00

with ay, = limy_, o ag. Using (3) we get

Haba)= F(a1-2) =
GHa = A a?)  M(a,b)

and consequently

F<a1—b2> W0e Qe Qo
©a?) M(a,b)  IM(ab) T M(1, L)

(12)

(13)

(14)
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Denotingm = 1 — 2—2, (a>b>0 < 0<m<1),the above equation becomes

F(a,m) = m

Therefore, the computation of F'(a, m) returns to generate iteratively the sequences
(ak)k, (bk)k, (ax)r until a stopping condition is fulfilled. The initial values are ag =
1, bp = /1 —mand ap = «. For ap = 1, instead of the sequences (ay)x, (bg)r we
may compute the sequences, [3],

so=bo_ po = 5(1 + 50)
Sk41 = %‘j: P = 5(1+ sp)pe

Then Iimk_mo Pr = M(l, bg).

If = § then from the relation of recurrence (14) of oy, it follows that ay, = 7, for
any k € N, and hence a., = 7 Consequently K (m) = m

As a drawback from a practical point of view the method is not applicable when « is

small,e.g. 0 < o < 107°.
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