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Abstract

In this paper we study the Riemann-Lagrange geometry, in the sense of non-
linear connection, d-torsions, d-curvatures and Yang-Mills-like energy, associated
with the dynamical system concerning market competition. Some possible eco-
nomic interpretations are derived.
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1 Introduction

Considering a generic market where two different types of firms produce and trade
their own homogenous goods, we study the dynamical competition between these two
economical sectors, via the first order differential system used by Udriste and Postolache
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where: e /1 and Es are two populations of new firms born in the above economical sec-
tors; e g1 and go are strictly positive constants representing the growth rates of the two
economical sectors; e K7 and K5 are strictly positive constants representing the invest-
ments of capitals; e 31 and (35 are strictly positive constants representing the competitive
interaction coefficients.

By differentiation, the dynamical system (1) can be extended to a dynamical system
of order two coming from a first order Lagrangian of least square type. This extension is
called in the literature in the field geometric dynamical system (see Udriste [5]).
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2 The Riemann-Lagrange geometry

The system (1) can be regarded on the tangent space TIR?, whose coordinates are
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Remark 1. We recall that the transformations of coordinates on the tangent space TR?
are given by
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wherei,j =1,2.

In this context, the solutions of class C? of the system (1) are the global minimum
points of the least square Lagrangian [5], [4]

L=(y' = X" (E1, B))’ + (12 — X2 (E1, Ea))? >0, (3)
where
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Remark 2. The solutions of class C? of the system (1) are solutions of the Euler-Lagrange
equations attached to the least square Lagrangian (3), namely (geometric dynamics, in
Udriste’s terminology)
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is endowed with the geometrical meaning of semispray of L (for more geometrical de-
tails, see book of Miron and Anastasiei [3] and Udriste’s book [5]).
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But, the least square Lagrangian (3), together with its Euler-Lagrange equations (4),
provide us with an entire Riemann-Lagrange geometry on the tangent space TR?, in
the sense of nonlinear connection, d-torsions, d-curvatures and Yang-Mills-like energy.
These geometrical objects are naturally associated with the economical dynamical sys-
tem (1).

Let us recall the main geometrical ideas developed in Miron and Anastasiei’s book

[3]. The canonical nonlinear connection N = <N;) i produced by the semispray
Z?J: b
(5) is given by the components
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Remark 3. We recall that, under a transformation of coordinates (2), the local compo-
nents of the nonlinear connection obey the rules [3]
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From a geometrical point of view, we point out that the coefficients N]Zf of the above
nonlinear connection do not have a global character on TR?.

Remark 4. Using the Cartan-Kosambi-Chern (KCC) theory exposed in the paper of B6h-
mer et al. [1], we can remark that the deviation curvature tensor associated with the
dynamical system (1) is given by the formula

It is important to note that the solutions of the Euler-Lagrange equations (4) are Jacobi
stable iff the real parts of the eigenvalues of the deviation tensor Pj are strictly negative
everywhere, and Jacobi unstable, otherwise. For more details, see [1] and references
therein.

The canonical nonlinear connection defines the adapted bases of vector fields and
covector fields on the tangent space 7R?, namely
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The adapted local components of the Cartan N-linear connection
CL(N) = (L}, Ciy.)
are given by the formulas
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where
1 0L
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The only non-vanishing d-torsion adapted component associated with the Cartan V-
linear connection CT'(NV) is given by the coefficient
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At the same time, all the adapted components of the curvature attached to the Cartan
N-linear connection CT'(IN) are zero (for all curvature formulas, see [3]).

The electromagnetic-like distinguished 2-form attached to the Lagrangian L, defined
via its deflection d-tensors (for more details, see Miron and Anastasiei’s book [3]), is given
by F = F;;0y’ A da’, where
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In this context, using the notation J(X) = >
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and following the above Miron and Anastasiei’s geometrical ideas, we obtain the follow-
ing geometrical results:

Theorem 1. (i) The canonical nonlinear connection on TR?, produced by the system (1),
has the local components N = (N 1) — , Where N ¢ are the entries of the skew-
7.]

symmetric matrix
N = (Nj)m‘:lg Y [J(X) - TJ(X)] =
1 Eq E
0 3 <9151 — 9202 2)
B E E
2< 91/31 +92ﬁ2 2) 0

(ii) All adapted components of the canonical Cartan connection CT'(N), produced by
the system (1), are zero.

(iii) The effective adapted components R;k of the torsion d-tensor T of the canoni-
cal Cartan connection CT'(N), produced by the system (1), are the entries of the skew-
symmetric matrices

0 9151
ON 2K,

9B
2K,
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(iv) All adapted components of the curvature d-tensor R of the canonical Cartan con-
nection CT'(N), produced by the system (1), vanish.

(v) The geometric electromagnetic-like distinguished 2-form, produced by the system
(1), is given by F = Fijéyi A dxz? , where the adapted components F;; are the entries of

the skew-symmetric matrix F' = (FZ])” 15 = N =
Ey E
1 0 9151* — 9227 =
T2
—91/31 + 92[32 0

(vi) The geometric Yang-Mills-like energy, produced by the system (1), is given by the
formula
1 En E
EYM(t) = Fip = 1 <91/81 — 9232 2)
Remark 5. In the author’s opinion, from an economical point of view the zero level of the
geometric Yang-Mills-like energy produced by the economical system (1) is important.
The geometric Yang-Mills-like economical energy produced by the system (1) is zero on

the straight line
Ey El 9282 K1

glﬂlK = 9252 E N

This means that E is directly proport‘iona/ with the ratio K /(g/3), that is the population
of new firms born in the corresponding economical sector increases with the growth of
the investments of capital and decreases with the growth of the competitive interaction
coefficient and with the growth rate of the corresponding economical sector.

At the same time, we consider that the constant level curves of the geometric Yang-
Mills-like economical energy

1 F E
EYM(t) = 1 <9151 — g2 2) =C? C>0,

could contain important economic connotations. These curves are in the system of axes
OFE1 E; exactly the parallel straight lines
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ZL B2 —oC
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whose gradients are again (g252K1) / (9151 K2) .
Remark 6. The zero level set of the Yang-Mills-like energy is produced on the straight line
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(6)
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so, in this case, replacing (6) into the equations (1), we get the Bernoulli differential equa-
tion
dEq 1 g18iKs
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which is completely integrable and it can be solved by using the changing of variable
z=FE7 L. The solution of the above Bernoulli differential equation is

1
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Ey(t) =

where a € R is an arbitrary constant, and we have

1 gfiK,
K1 252K}

b=

Remark 7. The deviation curvature tensor components P; can be obtained by contract-
ing with yk the nonzero components of the torsion tensor R;k, that is P]? = R;kyk =

<8N JZ / &rk) yk. Consequently, the matrix of the deviation curvature tensor is given by
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The eigenvalues of the matrix P are
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In conclusion, the behavior of neighboring solutions of the Euler-Lagrange equations (4)
is Jacobi unstable.

3 Arealistic example

Let us analyse the population competition for a realistic market described by the
following data (see the Ferrara and Niglia’s paper [2]): e g1 = 0.3 and g3 = 0.2 represent
the growth rates of the two economic sectors; e K1 = 0.005 and K9 = 0.007 represent
the investments of capitals; e 51 = 0.001 and 52 = 0.003 are the competitive interaction
coefficients.
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So, we study the geometric dynamics associated with the least square Lagrangian
(3), together with the Riemann-Lagrange geometry attached to this Lagrangian. In our
particular context, the first order differential system (1) becomes

dE E E
1:0.3E1<1— L _ 0.001 2)

dt 0.005 ~ 0.005 )
% = 0.2F, (1 - % - 0.0030%7)
. % =0.3E1 (1 —200E; — 0.2E5)
% = 0.2F (1 — 142.85F5 — 0.43E3) ,

and the following geometrical results are true:

Corollary 1. (i) The canonical nonlinear connection on TR?, produced by the system (7),
has the local components N = (N ;) , where N ]’ are the entries of the skew-symmetric
matrix

) 0 0.03FE1 — 0.045E,
b —0.03E + 0.045E, 0 '
(ii) All adapted components of the canonical Cartan connection CT'(N), produced by
the system (7), are zero.
(iii) The effective adapted components R;k of the torsion d-tensor T of the canoni-

cal Cartan connection CT'(N), produced by the system (7), are the entries of the skew-
symmetric matrices

. 0 003
Ri= (R, — =N _
Wij=12 " 9E, 003 0 )’

. ON 0 —0.045
Ry = (Rja), 013 = 55, = ( ) ‘

0.045 0

(iv) All adapted components of the curvature d-tensor R of the canonical Cartan con-
nection CT'(N), produced by the system (7), vanish.

(v) The geometric electromagnetic-like distinguished 2-form, produced by the system
(7), is given by F = Fl-jéy" A dz?, where the adapted components F;; are the entries of
the skew-symmetric matrix

0 0.03E) — 0.045E5
F=(Fy),, 3=N= ‘
—0.03E; + 0.045E, 0

(vi) The geometric Yang-Mills-like energy, produced by the system (7), is given by the
formula
EYM(t) = FZ, = (0.03E, — 0.045E5)%.
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Remark 8. From an economic point of view the constant level curves of the geometric
Yang-Miills-like energy produced by the economic system (7) are the parallel straight lines

0.03E1 —0.045E; =C & E1 =15E,+C, C >0,

whose gradients are 3/2. Consequently, according to Ferrara and Niglia, we emphasize
that the market competition has heteroclinic connections (see [2]) but, moreover, it has
even daffine connections.

Open problem. The economic interpretations associated with the geometrical objects
constructed in this paper still represent an open problem.
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