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POLYNOMIAL OF SECOND DEGREE STRUCTURES ON BIG TANGENT BUNDLE

Adelina MANEA!

Abstract

We introduced the generalized (a, b)-structure on a Riemannain manifold M,
notion which includes the generalized almost complex and generalized almost prod-
uct structures. We studied the canonical generalized (a, b)-structure J,; induced by
the Riemannian metricon M, afterwards the generalized (a, b)-structure Jinduced
by a similar structure on M. Considering a torsion-free linear connection V on M,
we define the V-integrability of a generalized (a, b)-structure and conditions for
V-integrability of .J, and J are given.

2000 Mathematics Subject Classification: 53C15, 53D18.
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1 Introduction

Polynomial structures on manifolds were introduced and studied in [6], closely re-
lated to known structures as almost product, almost complex and contact structures.
A ploynomial structure F' of degree d on a C*> manifold M is, [6], a (1, 1)-tensor field
satisfying a polynomial equation

Flh i F&V 4 4+ ag 1 F+agl; =0,

where ay, ...aq are real numbers and d is the smallest integer on which I, F, ..., F% are
dependent. Integrability conditions for polynomial structures, involving the Nijenhuis
torsion of the structural endomorphism, are given in [17], under the assumption that
the polynomial X + a1 X% 1 + ... 4+ ag_1X + ag has only simple roots. Examples of
polynomial structures of second degree are: the almost product structure, when F? =
1,;; the almost complex structure with F2 = —I; for dimM = 2n and the metallic
structure F2 = pF + ¢l,, with integers p, ¢ such that p? + 4q is positive. The particular
case of metallic structures was considered in the last decade, [7], [10]. For dimM =
2n+1, an almost contact structure is an example of polynomial structure of third degree,
since the structural endomorphism satisfies F> + F' = 0.
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In the last years many geometers passed from the tangent bundle of a manifold M
to the generalized tangent bundle £ = T'M & T™*M and extended different polynomial
structures defined on M to similar structures on the big tangent bundle E. General-
ized geometry of a manifold M is the geometry of structures of the big tangent bundle
TM & T*M endowed with the neutral metric. The generalized complex structure was
investigated in [3], [4], [8], [18], the generalized para-complex structure was studied in
[20], [22], since the generalized contact and para-contact structures were the topic for
[1], [15], [16]. A particular assumption under the behaviour of the neutral metric of the
big tangent bundle with respect to the generalized structure endomorphism determined
the classes of generalized Hermitian, Kahler, para-Hermitian and para-Kdahler structures,
[19], [20].

A polynomial structure on a manifold is called integrable if the eigen-distribut-
ions of the structural endomorphism are involutive. The vanishing of Nijenhuis tensor
gives a necessary and sufficient condition for integrability. Considering a linear connec-
tion V on the manifold M, the V-brackets of sections of big tangent bundle E and the
concept of V-integrability of a generalized complex structures on M are defined in [13]:
the eigen-distributions of the structural endomorphism are closed under the V-brackets,
. Corresponding Nijenhuis tensors are defined with respect to V-brackets and necessary
and sufficient conditions for the V-integrability are given.

In this paper we start with two real numbers a, b such that A = a? +4b # 0 and we
define the notion of (a, b)-structure on a smooth manifold M. This notion generalized
the almost complex, almost paracomplex structures on manifolds and includes metallic
structures. Some properties of (a, b)-structures on manifolds are given in the second
section of the paper. Integrability conditions are obtained.

In the third section we define the generalized (a, b)-structure, which is a polyno-
mial of second degree structure on big tangent bundle of a Riemannian manifold M.
We investigate the link between such a structure and the generalized almost product
or generalized almost complex structures. The canonical generalized (a, b)-structure J,
determined by a Riemannian metric on the base M is studied. We show that a (a, b)
structure ¢ on M induced in a natural way a similar generalized structure J.

The V-integrability for generalized (a, b)-structures is defined in the last section. We
also defined the Nijenhuis torsion NY of a generalized (a, b)-structure .J and we proved
that the V-integrability of .J is equivalent to NJv = 0. We obtained that a generalized
(a,b)-structure is V-integrable if and only if its associated generalized almost complex/-
paracomplex structure is V-integrable. Finally, we find conditions for the V-integrability
of the particular generalized (a, b)-structures J, and J.

2 Polynomial of second degree structures on manifolds

Let M be an n-dimensional C>°-manifold and a, b two real numbers with A = a2 +
4b # 0.

We shall call a (a, b)-structure on M a polynomial structure of second degree given
by a (1, 1)-tensor field ¢ which satisfies the equation,

' —a-p—b-1;=0, (1)
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where I is the identity on the vector fields space I'(T'M). In this case the pair (M, ¢)
will be called a (a, b)-manifold .

Proposition 1. Let (M, ©) be a (a, b)-manifold. If A = a® + 4b < 0, then the dimension
n of M is an even number.

Proof. The proof follows the ideas from the same assertion for almost complex mani-
folds. So, for every nonzero vector field X on M, X and ¢(X) are liniar independent.
Indeed, if a - X 4+ - ¢(X) = 0, and we apply ¢, it results that the real numbers «, 8
satisfy

o +aaf—b- B2 =0,

which implies a« = 8 =0, from A < 0.

Then, considering two nonzero vector fields X and Y such that {X, ¢(X),Y} are
linear independent, we obtain {X, ¢(X),Y, ¢(Y)} also linear independent. Indeed, if
we suppose that there are real numbers o, 3 and -y such that

eY)=a - X+6 - ¢(X)+7"Y,

and we apply the endomorphism ¢, it results that the real number ~ is a root of 22 — a -
x — b = 0, which is false from the hypotesis.
It follows that the dimension of T'M must be even. ]

Remark 1. Fora = 0, b = 1, @ is an almost product structure on M. Ifa = 0, b = —1,
then @ is an almost complex structure on M. If a = b = 1 then  is called a golden
structure, and for a, b integers such that a® + 4b > 0, @ is called a metallic structure on
M.

The main properties of (a, b)-structures are given in the following propositions and
they are easy to prove by direct computation:

Proposition 2. Let ¢ a (a,b)-structure on the manifold M, with b # 0. Then @ is an
isomorphism on the tangent space T, M, forevery x € M. Itsinverse is go_l = %@—%Id,
which is still a polynomial structure.

Proposition 3. To every (a, b)-structure @ on M, given by (1), we can associate another
polynomial structure:

( 2 a 7 > 2)
—_— (p —_— — d .

VIA| VIA|

If A > 0, then F? = I;and F is called the almost product structure associated to ©.
If A <0, then F? = —I,; and F is called the almost complex structure associated to

®.

Now, let F' be a polynomial structure of second degree on M and

a VIAL F (3)

.7
¥ 5 d+ 9
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By direct computation, we obtain

A A
g02—ag0—bId:—4-Id+4|-F2.

The above relation shows that:

Proposition 4. For any real numbers a,b such that a®> + 4b > 0, every almost product
structure F on M induces a (a,b)-structure on M, given by (3).

Proposition 5. For any real numbers a, b such that a® + 4b < 0, every almost complex
structure F on M induces a (a, b)-structure on M, given by (3).

Let (M, g) be a Riemannian manifold endowed with the (a, b)-structure . We say
that ¢ is compatible with metric g and that M is a Riemannian (a, b)-manifold, if

9(@X,Y) = g(X, 9Y), (4)
for every X, Y € I'(T'M). An equivalent condition is
9(pX,Y) = a-g(X, oY) +b-g(X,Y).

For a Riemannian (a, b)-manifold (M, g, ), let F’ be the associated almost produc-
t/almost complex structure from (2). We obtain that ' is also g-symmetric:

g(FX,Y)=g(X,FY), VX,Y eTI(TM). (5)

The integrability of almost paracomplex/complex structure I is usually expressed by the
vanishing of the Nijenhuis tensor Np:

Np(X,Y) = [FX,FY] - FI[FX,Y] - FIX,FY] + F?[X,Y],

which express the involutivity of eigenbundles of F'. From relation (3) it is easy to see
that the eigenbundles of ¢ are exactly the eigenbundles of the associated structure F.
Moreover, considering the Nijenhuis tensor of ¢

Ny(X,Y) = [pX,0Y] — ¢[pX, Y] — o[ X, Y] + ©*[X,Y],

we obtain the following link between N, and Np:

_ 1Al A Al o) _ A
N@_ 4NF+4 Id AF = 4NF.

Definition 1. The (a, b)-structure ¢ is called integrable if N, = 0.
A direct consequence is that

Proposition 6. The (a, b)-structure  is integrable if and only if the associated structure
F' given by (2) is integrable. In this case the eigenbundles of ¢ are involutive.
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3 Generalized polynomial of second degree structures

Generalized geometry of a manifold M is the geometry of structures of the big tan-
gent bundle £ = TM @& T* M endowed with the neutral (or pairing) metric

L) + (X)), (6)

for all vector fields X, Y and 1-forms &, 7 on M.

A generalized almost paracomplex structure of a manifold M is an endomorphism
I € End(F), which satisfies I?=1d,1 = +1d. Such a structure was firstly considered
in [22] and they unify symplectic forms, paracomplex structures, and Poisson structures.
Generalized complex structures were firstly considered in [9] and unifies symplectic and
complex geometry. A more general concept of generalized almost complex structures
was introduced in [14], that is: a generalized almost complex structure of a manifold M
is an endomorphism I € End(E), which satisfies I2 = —Id.

Definition 2. Let a, b be two real numbers with a®+4b # 0. Ageneralized (a, b)-structure
of a manifold M is an endomorphism J € End(E), which satisfies J> = aJ+bly. Sucha
structure is compatible with neutral metric if go(J(X +&),Y +n) = go(X+E&, J (Y +n)).

In the block matrix form a general endomorphism J € End(FE) can be written as

H «
J—<6_K> @)
where H : TM —-TM , o :T"M —TM,8:TM —T*M, K : T*M — T*M.

A straightforward computation proves that such an endomorphism is a generalized
(a, b)-structure on a manifold M if and only if the following conditions hold:

H? +aoB =aH+0bld, Hoa+aoK =aa

BoH+KoB=aB, Boa+K?=aK+bld. (®)

Moreover, according to Definition 2, it is compatible with neutral metric if in addition to
(8) we have
K:H*,a:a*,ﬁ:ﬁ*, (9)

where, H* : T*M — T*M is the dual operator of H defined by H*(£)(X) = {(HX),
a=a*meansn(a(§)) = &(a(n))forallé,n € T'(T*M)and 5 = f*means B(X)(Y) =
B(Y)(X)forall X, Y € I'(TM).

For a generalized (a, b)-structure .J, the endomorphism

2 a

RN

is a generalized almost paracomplex structure if A > 0, or a generalized almost complex
structure if A < 0, respectively. We shall call the endomorphism (10) the generalized
almost paracomplex/complex structure associated with the generalized (a, b)-structure
J.

-1, (10)
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3.1 Canonical generalized (a, b)-structures

Let (M, g) be a Riemannian manifold. Let be i, : T'M — T M the bemolle musical
isomorphism and {, its inverse. There are the following relations:

ug(X)(Y):g(va)a VX,YGF(TM),

1) =Xe & g(Xg,Y)=&Y), YWel(IT"M),Y e (TM).

There are two canonical endomorphisms P, C' € End(FE) defined by Riemannian metric

g as it follows:
_( 0 ¢ _ (0 -1
P_<hg 09)’ C_<hg 09)' -

For endomorphism P we havein (7) H = 0, K = 0, 8 = fj; and « = {4, and relations
(8), (9) are satisfied for a = 0 and b = 1. For endomorphism C we have in (7) H = 0,
K =0, =f4and o = —4,, and relations (8), (9) are satisfied fora = O and b = —1.
We obtained:

Proposition 7. The endomorphism P is a generalized almost product structure, since the
endomorphism C'is a generalized almost complex structure on M. Moreover, P and C
are generalized structures compatible with the neutral metric gg.

Remark 2. The endomorphisms P and C' satisfy the following relation:
PoC=-CoP,
and P o C, C o P are also generalized almost product structures on M.

Proposition 8. Let a, b be two real numbers with A = a? + 4b # 0. The endomorphism
of E defined by:
Al VA
514 U% “tg

= 12
Jg /|A| aId 9 ( )

2 hg 2
is a generalized (a, b)-structure on M compatible with go. We shall call J, the general-
ized (a, b)-structure induced by Riemannian metric g.

Proof. By direct computation, it results
2
Jg —adg—blg =0,

which shows that J, is a generalized (a, b)-structure on M.

0 X+ ¥ 4m) = o0 (X+.€¥ 4+ Y g (1Bl1y(6) 8,607 ).

If A > 0 we obtain

A
QO(Jg(X+§)=Y+77):;LQO(X+§=Y+T7)+{QO(P(X'i_f)vY'i_n):
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A
go(X+£,Y+77)+{go(XJrf,P(YﬂLn))=go(X+£,Jg(Y+n))~

If A <0, it results

90 (Jy(X +).Y +m) = Zg0 (X + &Y +1) + 90 (C(X +),Y +n) =

R (X &Y 4 1) = g0 (X +ET,(Y +1)).

g0 (X +EY +n)+

Or, equivalent, in (7) we have H = K = “I , QL= |A| 5 IA g, 8= Y5— lA g+ By straight-
forward computation, conditions (8),(9) are sa‘nsﬁed ]

Remark 3. The generalized structure (10) associated to J, is P for A > 0 and C for
A < 0, respectively.

3.2 Generalized (a, b)-structures induced on a (a, b)-manifold
(Mg, )

Let a, b be two real numbers with A = a? + 4b # 0 and (M, g, ) a Riemannian
(a, b)-manifold with structural endomorphism . Let us consider the endomorphism
©* € End(T*M), with

P ((X) =& (p(X)), VEeT(T"°M),X € I(TM).

Proposition 9. The endomorphism J € End(F) defined by

A_ SD 0

is a generalized (a, b)-structure on M, induced by the (a,b) structure v on M. The gen-
eralized structure J is compatible with the neutral metric gy.

Proof. Using p? = ay + bl from the definition of * it results

= {(P*(X)) = a(p(X)) +b- X = ap™(X) +b- X,

so (¢*)? = ay* + bl,. For endomorphism J we have H = o, K=p"a=0p3=0,
in (7). Conditions (8) and (9) are satisfied. O

Taking into account that M is a Riemannian (a, b)-manifold, hence g(¢X,Y) =
9(X, YY), we have the following relations:

@Oﬁg:ﬁgo‘)@*a thSOZSD*Oug- (14)
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Proposition 10. Let (M, g, ) be a Riemannian (a, b)-manifold. The following relation
between the canonical generalized (a, b)- structure J, and the induced generalized (a, b)-
structure .J holds:

Jo Jg=Jg0 J.

Moreover, if a = 0, then the endomorphism J o Jg is a generalized (0, b2)—structure,
while if b = 0, then .J o J, is a generalized (a?, 0)-structure.

Proof. Firstly we have to remark that relations (14) prove that the induced (a, b) struc-
ture J commutes with the canonical generalized structures P and C' from the previous
subsection. Taking into account the definition of .J, from Proposition 8, it results that the
generalized (a, b) structures J and Jg commute. We denote J = Jo Jg and compute

J? =T +ab(J + J,) + b1,

Considering a = 0 or b = 0, we obtain that J is a generalized (0, b%)-, or (a2,0)-
structure. ]

Remark 4. The generalized structure (10) associated to Jis

Ij:(lg I?) (15)

where F' is the polynomial structure (2) associated to ¢ and F* : T*M — T*M is
defined by F*(£)(X) = £(FX).

Another generalized (a, b)-structure, induced by ¢ and g, on a Riemannian (a, b)-
manifold (M, g, ¢) is
® 0
Jog = . | (16)
i <\/2Z'bg alg—¢ >

Indeed, for H = ¢, K = al; — ¢*,a = 0and 8 = @ - g, in (7), conditions (8) are
verified, but (9) are not satified, so J, 4 is not compatible with g.
The generalized structure (10) associated to J,, 4 is

@g:<i_;>. (17)

4 V-integrability of generalized (a, b)-structures

The integrability of generalized structures can be defined by using a linear connection
V on M. It defines, in a canonical way, a bracketin E = TM & T*M by

forall X +&,Y +n € I'(E). Moreover, V-bracket defined by (18) satisfies (see [11, 13]):

1L [ X+&6&Y 4nlg=—[Y +nX+ ¢y
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2. [fJ(X+8),Y +nlyg =X +&Y +ng = V()X +E),
3. Jacobi’s identity holds for [-, -]y if and only if V has zero curvature.

Let J be a generalized (a, b)-structure on M and £ and £_ be the eigen distribu-
tions of J, that is

Ly =FKer(J-MI) ={X+£eT(E) J(X+&=MX+8}, (19)

Lo = Ker(J = dolg) = {X + €€ T(E)| J(X +€) = ha(X + )},

where A\ o = %.

Every X + ¢ € I'(F) could be written X + & = p4 (X + &) +p_ (X + &), where p
and p_ are the projections py : I'(E) - L4, p_ :I'(E) — L_ defined by

pe(X+6) = ;z (J(X +6) — Ma(X +6))
po(X €)= fz (—J(X +6) + M(X +9)).
and we also have
E=L,®L_.

Definition 3. The endomorphism J is called V-integrable if the eigen-distributions £
and £ _ are closed under the V-brackets, that is

p£lp£(0),p£(7)lvy =0, Vo =X +& 7=Y +nel(E). (20)

Similar with [13], we define the Nijenhuis torsion with respect to V of the endomor-
phism J being the antisymmetric tensor

NY :T(E) xI'(E) — I'(E),
NJV(O-) T) = [‘]Ua JT]V —J ([JO', T]V + [Ua JT]V —a- [07 T]V) +b- [07 T]V y (21)
foreveryo = X + and 7 =Y + 7, and we have

plps(0) p(rlv = F xpr (NY) (22)

A direct consequence is
Proposition 11. The generalized (a,b)-structure J is V-integrable if and only if NJv = 0.

Proposition 12. Let V be a linear connection on M, J a generalized (a, b)-structure on
M and I its associated generalized almost complex or paracomplex structure, defined
by (10). Between the Nijenhuis torsions N[v and NJV there is the followig relation:

NY = =N}, (23)

The structure J is V-integrable if and only if I is V-integrable.
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Proof. By a straigthforward computation we obtain relation (23), where N[V is defined
by (21) replacing a with 0 and b with €2, where e = ﬁT\' fA>0,e=1andif A <O,
then € = 7. We obtain

Lo={X+Ee B I(X+8=eX+6), (24)
L_={X+E€El I(X+¢=—-eX+},

and we have I2 = ¢2 - I,.

The V-integrability of a generalized almost complex/paracomplex structure is de-
fined by the involutivity of its eigen distributions with respect to V-brackets. From rela-
tions (24), the eigen distributions £ and £_ of J are exactly the eigen distributions of
the associated generalized almost paracomplex/complex structure I, so J is integrable
if and only if I is integrable.

Moreover, from Proposition 11, the V-integrability of a generalized (a, b)-structure
is expressed by the vanishing of the Nijenhuis torsion NJV. Then, relation (23) proves
that V-integrability of J, defined by NJv = 0, is equivalent to NIV = 0, that means [ is
V-integrable. O

In the folllowing we study the V-integrability in the particular cases of generalized
(@, b)-structures J, and J introduced in Section 3.

Theorem 1. Let V be a torsion-free linear connection on the Riemannian manifold (M, g),
a,b two real numbers with A = a® + 4b # 0, and Jg the generalized (a,b)-structure
determined by g, defined by (12). The endomorphism J, is V-integrable if and only if the
metric g is a Codazzi tensor, i.e.

(Vxq)Y = (Vyg) X, VX,Y €T(TM).

Proof. According to Remark 3, the associated generalized almost paracomplex/complex
structure I of J, is PP, canonical generalized almost product structure determined by
g, if A > 0, or C, canonical generalized almost complex structure determined by g, if
A < 0, respectively. Taking into account Proposition 12, investigating V-integrability of
Jg is equivalent to investigating the V-integrability of I.

Since V is a torsion-free connection, we can write [X, Y] = VxY — Vy X, and the
V-bracket on E could be expressed by

(X +&Y 4+l =Vx(Y +1) — Vy (X +8).
We calculate, in the case A > 0,
[P(X +&),P(Y +n)ly = Vi, #() +85(Y)) = Vi, 0 (85(€) + (X)),

P [P(X + f)u Y + U]v = ﬁg (Vﬂg(g)(n) - VY(hg(X)) + hg (vug(g)y - vY(ﬁg(f))) 5
PIX +&P(Y +n)ly =ty (Vx(B(Y) = Vi, 0(€) + g (Vx (£(1) = Vi, X) -
Using (Vxg)Y = Vxi,y(Y) — t4(VxY'), we obtain

g (Vy (1g(X)) = 44 (Vyg) X) + Vy X,
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19 (Vi) = = (Vi,©9) Y + Vi, (Y),
0y (Vytg(§)) = — (Vyg) #y(§) + VvE,
tg (vﬁg(n)g) =1y ((Vﬁg(n)g) ﬁg(g)) + Vﬁg(n)ﬁg(f)-

Hence,

NE(X +&EY +n) =ty (Vi,009) 8(€) = (Vi,(009) tg(n)) +

+, (Vyg) X — (Vx9)Y) + (Vi,69) Y — (Vyg) 1)+

+(Vx9)tg(n) = (Vi,m9) X-

If (Vxg)Y = (Vyg) X,VX,Y € I'(TM), then the above relation becomes Ny = 0,
so P is V-integrable.

Conversely, if NIY(X +&,Y +n) = 0forall vector fields X, Y and 1-forms £, 7, we
consider { = 0,17 = 0 and obtain (Vxg)Y = (Vyg) X,VX,Y € I'(TM).

According to Proposition 12, we obtain that the generalized (a, b)-structure J; in-
duced by the Riemannian metric g is V-integrable if and only if the torsion-free linear
connection V satisfies

(Vxg9)Y = (Vyg) X, VXY e(TM).
A similar computation gives the same result in the case A < 0. O

Now, let (M, g, ) be a Riemannian (a, b)-manifold and let J be the generalized
(a, b)-structure induced by . We study the V-integrability of J, where V is a linear
torsion-free connection on the (a, b)-manifold (M, g, ¢).

Proposition 13. Let V be a linear connection on M. The Nijenhuis torsion with respect
to V of the generalized (a, b)-structure J is

NY(X +&Y +7)
= No(X,Y) 4+ (Voy @ )n =" (Vxe)n) — (Vey ©™) €+ 9" (Vyp) §) (25)

forall X + &Y +ne'(E).
Proof. By direct computation, using (V. ©*)n = Vo, (¢*n) — ©*(Voxn). O
If V is a torsion-free connection, then we obtain
Ne(X,Y) = (Vox ) Y = (Vor ) X + 0 (Vye) X = (Vxp)Y).  (26)

Theorem 2. If V is a torsion free connection on M such that V¢ = 0, then the general-
ized (a,b)-structure J is V-integrable.
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Proof. Condition V=0 implies from (26) that IV, = 0. Then, the same condition gives
us Vx(¢Y) = p(VxY) for all vector fields X, Y. We also compute

(Vox (¢™) Z = (¢ X)((¢Z2)) —n(e(Vpx Z)) =
= (pX)((9Z2)) = n(Vex9Z) = (Voxn(pZ) = ¢* (Voxn) (2),
for every vector field Z. We obtain
Vex (™) = 0" (Vexn),

and then (V. ¢*)n = 0, for every vector field X and 1-form 7. This relation and
V¢ = 0in (25) imply that va =0, so J is V-integrable. O
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