POLYNOMIAL OF SECOND DEGREE STRUCTURES ON BIG TANGENT BUNDLE

Adelina MANEA ${ }^{1}$

Abstract

We introduced the generalized (a, b)-structure on a Riemannain manifold M, notion which includes the generalized almost complex and generalized almost product structures. We studied the canonical generalized (a, b)-structure J_{g} induced by the Riemannian metric on M, afterwards the generalized (a, b)-structure \hat{J} induced by a similar structure on M. Considering a torsion-free linear connection ∇ on M, we define the ∇-integrability of a generalized (a, b)-structure and conditions for ∇-integrability of J_{g} and \hat{J} are given.

2000 Mathematics Subject Classification: 53C15, 53D18.
Key words: polynomial structures, generalized geometry

1 Introduction

Polynomial structures on manifolds were introduced and studied in [6], closely related to known structures as almost product, almost complex and contact structures. A ploynomial structure F of degree d on a \mathbf{C}^{∞} manifold M is, [6], a (1, 1)-tensor field satisfying a polynomial equation

$$
F^{d}+a_{1} F^{d-1}+\ldots+a_{d-1} F+a_{d} I_{d}=0
$$

where $a_{1}, \ldots a_{d}$ are real numbers and d is the smallest integer on which I_{d}, F, \ldots, F^{d} are dependent. Integrability conditions for polynomial structures, involving the Nijenhuis torsion of the structural endomorphism, are given in [17], under the assumption that the polynomial $X^{d}+a_{1} X^{d-1}+\ldots+a_{d-1} X+a_{d}$ has only simple roots. Examples of polynomial structures of second degree are: the almost product structure, when $F^{2}=$ I_{d}; the almost complex structure with $F^{2}=-I_{d}$ for $\operatorname{dim} M=2 n$ and the metallic structure $F^{2}=p F+q I_{d}$, with integers p, q such that $p^{2}+4 q$ is positive. The particular case of metallic structures was considered in the last decade, [7], [10]. For $\operatorname{dimM}=$ $2 n+1$, an almost contact structure is an example of polynomial structure of third degree, since the structural endomorphism satisfies $F^{3}+F=0$.

[^0]In the last years many geometers passed from the tangent bundle of a manifold M to the generalized tangent bundle $E=T M \oplus T^{*} M$ and extended different polynomial structures defined on M to similar structures on the big tangent bundle E. Generalized geometry of a manifold M is the geometry of structures of the big tangent bundle $T M \oplus T^{*} M$ endowed with the neutral metric. The generalized complex structure was investigated in [3], [4], [8], [18], the generalized para-complex structure was studied in [20], [22], since the generalized contact and para-contact structures were the topic for [1], [15], [16]. A particular assumption under the behaviour of the neutral metric of the big tangent bundle with respect to the generalized structure endomorphism determined the classes of generalized Hermitian, Kähler, para-Hermitian and para-Kähler structures, [19], [20].

A polynomial structure on a manifold is called integrable if the eigen-distributions of the structural endomorphism are involutive. The vanishing of Nijenhuis tensor gives a necessary and sufficient condition for integrability. Considering a linear connection ∇ on the manifold M, the ∇-brackets of sections of big tangent bundle E and the concept of ∇-integrability of a generalized complex structures on M are defined in [13]: the eigen-distributions of the structural endomorphism are closed under the ∇-brackets, . Corresponding Nijenhuis tensors are defined with respect to ∇-brackets and necessary and sufficient conditions for the ∇-integrability are given.

In this paper we start with two real numbers a, b such that $\Delta=a^{2}+4 b \neq 0$ and we define the notion of (a, b)-structure on a smooth manifold M. This notion generalized the almost complex, almost paracomplex structures on manifolds and includes metallic structures. Some properties of (a, b)-structures on manifolds are given in the second section of the paper. Integrability conditions are obtained.

In the third section we define the generalized (a, b)-structure, which is a polynomial of second degree structure on big tangent bundle of a Riemannian manifold M. We investigate the link between such a structure and the generalized almost product or generalized almost complex structures. The canonical generalized (a, b)-structure J_{g} determined by a Riemannian metric on the base M is studied. We show that a (a, b) structure φ on M induced in a natural way a similar generalized structure \hat{J}.

The ∇-integrability for generalized (a, b)-structures is defined in the last section. We also defined the Nijenhuis torsion N_{J}^{∇} of a generalized (a, b)-structure J and we proved that the ∇-integrability of J is equivalent to $N_{J}^{\nabla}=0$. We obtained that a generalized (a, b)-structure is ∇-integrable if and only if its associated generalized almost complex/paracomplex structure is ∇-integrable. Finally, we find conditions for the ∇-integrability of the particular generalized (a, b)-structures J_{g} and \hat{J}.

2 Polynomial of second degree structures on manifolds

Let M be an n-dimensional \mathbf{C}^{∞}-manifold and a, b two real numbers with $\Delta=a^{2}+$ $4 b \neq 0$.

We shall call a (a, b)-structure on M a polynomial structure of second degree given by a (1, 1)-tensor field φ which satisfies the equation,

$$
\begin{equation*}
\varphi^{2}-a \cdot \varphi-b \cdot I_{d}=0 \tag{1}
\end{equation*}
$$

where I_{d} is the identity on the vector fields space $\Gamma(T M)$. In this case the pair (M, φ) will be called a (a, b)-manifold .

Proposition 1. Let (M, φ) be $a(a, b)$-manifold. If $\Delta=a^{2}+4 b<0$, then the dimension n of M is an even number.

Proof. The proof follows the ideas from the same assertion for almost complex manifolds. So, for every nonzero vector field X on M, X and $\varphi(X)$ are liniar independent. Indeed, if $\alpha \cdot X+\beta \cdot \varphi(X)=0$, and we apply φ, it results that the real numbers α, β satisfy

$$
\alpha^{2}+a \alpha \beta-b \cdot \beta^{2}=0
$$

which implies $\alpha=\beta=0$, from $\Delta<0$.
Then, considering two nonzero vector fields X and Y such that $\{X, \varphi(X), Y\}$ are linear independent, we obtain $\{X, \varphi(X), Y, \varphi(Y)\}$ also linear independent. Indeed, if we suppose that there are real numbers α, β and γ such that

$$
\varphi(Y)=\alpha \cdot X+\beta \cdot \varphi(X)+\gamma \cdot Y
$$

and we apply the endomorphism φ, it results that the real number γ is a root of $x^{2}-a$. $x-b=0$, which is false from the hypotesis.

It follows that the dimension of $T M$ must be even.

Remark 1. For $a=0, b=1, \varphi$ is an almost product structure on M. If $a=0, b=-1$, then φ is an almost complex structure on M. If $a=b=1$ then φ is called a golden structure, and for a, b integers such that $a^{2}+4 b>0, \varphi$ is called a metallic structure on M.

The main properties of (a, b)-structures are given in the following propositions and they are easy to prove by direct computation:

Proposition 2. Let $\varphi a(a, b)$-structure on the manifold M, with $b \neq 0$. Then φ is an isomorphism on the tangent space $T_{x} M$, for every $x \in M$. Its inverse is $\varphi^{-1}=\frac{1}{b} \varphi-\frac{a}{b} I_{d}$, which is still a polynomial structure.

Proposition 3. To every (a, b)-structure φ on M, given by (1), we can associate another polynomial structure:

$$
\begin{equation*}
F=\left(\frac{2}{\sqrt{|\Delta|}} \cdot \varphi-\frac{a}{\sqrt{|\Delta|}} \cdot I_{d}\right) \tag{2}
\end{equation*}
$$

If $\Delta>0$, then $F^{2}=I_{d}$ and F is called the almost product structure associated to φ. If $\Delta<0$, then $F^{2}=-I_{d}$ and F is called the almost complex structure associated to φ.

Now, let F be a polynomial structure of second degree on M and

$$
\begin{equation*}
\varphi=\frac{a}{2} \cdot I_{d}+\frac{\sqrt{|\Delta|}}{2} \cdot F \tag{3}
\end{equation*}
$$

By direct computation, we obtain

$$
\varphi^{2}-a \varphi-b I_{d}=-\frac{\Delta}{4} \cdot I_{d}+\frac{|\Delta|}{4} \cdot F^{2}
$$

The above relation shows that:
Proposition 4. For any real numbers a, b such that $a^{2}+4 b>0$, every almost product structure F on M induces $a(a, b)$-structure on M, given by (3).

Proposition 5. For any real numbers a, b such that $a^{2}+4 b<0$, every almost complex structure F on M induces $a(a, b)$-structure on M, given by (3).

Let (M, g) be a Riemannian manifold endowed with the (a, b)-structure φ. We say that φ is compatible with metric g and that M is a Riemannian (a, b)-manifold, if

$$
\begin{equation*}
g(\varphi X, Y)=g(X, \varphi Y) \tag{4}
\end{equation*}
$$

for every $X, Y \in \Gamma(T M)$. An equivalent condition is

$$
g(\varphi X, \varphi Y)=a \cdot g(X, \varphi Y)+b \cdot g(X, Y)
$$

For a Riemannian (a, b)-manifold (M, g, φ), let F be the associated almost product/almost complex structure from (2). We obtain that F is also g-symmetric:

$$
\begin{equation*}
g(F X, Y)=g(X, F Y), \quad \forall X, Y \in \Gamma(T M) \tag{5}
\end{equation*}
$$

The integrability of almost paracomplex/complex structure F is usually expressed by the vanishing of the Nijenhuis tensor N_{F} :

$$
N_{F}(X, Y)=[F X, F Y]-F[F X, Y]-F[X, F Y]+F^{2}[X, Y]
$$

which express the involutivity of eigenbundles of F. From relation (3) it is easy to see that the eigenbundles of φ are exactly the eigenbundles of the associated structure F.

Moreover, considering the Nijenhuis tensor of φ

$$
N_{\varphi}(X, Y)=[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]+\varphi^{2}[X, Y]
$$

we obtain the following link between N_{φ} and N_{F} :

$$
N_{\varphi}=\frac{|\Delta|}{4} N_{F}+\frac{\Delta}{4}\left(I d-\frac{|\Delta|}{\Delta} F^{2}\right)=\frac{|\Delta|}{4} N_{F}
$$

Definition 1. The (a, b)-structure φ is called integrable if $N_{\varphi}=0$.
A direct consequence is that
Proposition 6. The (a, b)-structure φ is integrable if and only if the associated structure F given by (2) is integrable. In this case the eigenbundles of φ are involutive.

3 Generalized polynomial of second degree structures

Generalized geometry of a manifold M is the geometry of structures of the big tangent bundle $E=T M \oplus T^{*} M$ endowed with the neutral (or pairing) metric

$$
\begin{equation*}
g_{0}(X+\xi, Y+\eta)=\frac{1}{2}(\xi(Y)+\eta(X)), \tag{6}
\end{equation*}
$$

for all vector fields X, Y and 1-forms ξ, η on M.
A generalized almost paracomplex structure of a manifold M is an endomorphism $I \in \operatorname{End}(E)$, which satisfies $I^{2}=I d, I \neq \pm I d$. Such a structure was firstly considered in [22] and they unify symplectic forms, paracomplex structures, and Poisson structures. Generalized complex structures were firstly considered in [9] and unifies symplectic and complex geometry. A more general concept of generalized almost complex structures was introduced in [14], that is: a generalized almost complex structure of a manifold M is an endomorphism $I \in \operatorname{End}(E)$, which satisfies $I^{2}=-I d$.

Definition 2. Let a, b be two real numbers with $a^{2}+4 b \neq 0$. A generalized (a, b)-structure of a manifold M is an endomorphism $J \in E n d(E)$, which satisfies $J^{2}=a J+b I_{d}$. Such a structure is compatible with neutral metric if $g_{0}(J(X+\xi), Y+\eta)=g_{0}(X+\xi, J(Y+\eta))$.

In the block matrix form a general endomorphism $J \in \operatorname{End}(E)$ can be written as

$$
J=\left(\begin{array}{cc}
H & \alpha \tag{7}\\
\beta & K
\end{array}\right)
$$

where $H: T M \rightarrow T M, \alpha: T^{*} M \rightarrow T M, \beta: T M \rightarrow T^{*} M, K: T^{*} M \rightarrow T^{*} M$.
A straightforward computation proves that such an endomorphism is a generalized (a, b)-structure on a manifold M if and only if the following conditions hold:

$$
\begin{gather*}
H^{2}+\alpha \circ \beta=a H+b I d, \quad H \circ \alpha+\alpha \circ K=a \alpha \\
\beta \circ H+K \circ \beta=a \beta, \quad \beta \circ \alpha+K^{2}=a K+b I d . \tag{8}
\end{gather*}
$$

Moreover, according to Definition 2, it is compatible with neutral metric if in addition to (8) we have

$$
\begin{equation*}
K=H^{*}, \alpha=\alpha^{*}, \beta=\beta^{*}, \tag{9}
\end{equation*}
$$

where, $H^{*}: T^{*} M \rightarrow T^{*} M$ is the dual operator of H defined by $H^{*}(\xi)(X)=\xi(H X)$, $\alpha=\alpha^{*}$ means $\eta(\alpha(\xi))=\xi(\alpha(\eta))$ for all $\xi, \eta \in \Gamma\left(T^{*} M\right)$ and $\beta=\beta^{*}$ means $\beta(X)(Y)=$ $\beta(Y)(X)$ for all $X, Y \in \Gamma(T M)$.

For a generalized (a, b)-structure J, the endomorphism

$$
\begin{equation*}
I=\frac{2}{\sqrt{|\Delta|}} \cdot J-\frac{a}{\sqrt{|\Delta|}} \cdot I_{d}, \tag{10}
\end{equation*}
$$

is a generalized almost paracomplex structure if $\Delta>0$, or a generalized almost complex structure if $\Delta<0$, respectively. We shall call the endomorphism (10) the generalized almost paracomplex/complex structure associated with the generalized (a, b)-structure J.

3.1 Canonical generalized (a, b)-structures

Let (M, g) be a Riemannian manifold. Let be $\hbar_{g}: T M \rightarrow T^{*} M$ the bemolle musical isomorphism and \sharp_{g} its inverse. There are the following relations:

$$
\begin{gathered}
\natural_{g}(X)(Y)=g(X, Y), \quad \forall X, Y \in \Gamma(T M), \\
\sharp_{g}(\xi)=X_{\xi} \quad \Leftrightarrow \quad g\left(X_{\xi}, Y\right)=\xi(Y), \quad \forall \xi \in \Gamma\left(T^{*} M\right), Y \in \Gamma(T M) .
\end{gathered}
$$

There are two canonical endomorphisms $P, C \in E n d(E)$ defined by Riemannian metric g as it follows:

$$
P=\left(\begin{array}{cc}
0 & \sharp g \tag{11}\\
\natural_{g} & 0
\end{array}\right), \quad C=\left(\begin{array}{cc}
0 & -\not \sharp_{g} \\
\natural_{g} & 0
\end{array}\right) .
$$

For endomorphism P we have in (7) $H=0, K=0, \beta=\natural_{g}$ and $\alpha=\not \sharp_{g}$, and relations (8), (9) are satisfied for $a=0$ and $b=1$. For endomorphism C we have in (7) $H=0$, $K=0, \beta=\hbar_{g}$ and $\alpha=-\not{ }_{g}$, and relations (8), (9) are satisfied for $a=0$ and $b=-1$. We obtained:

Proposition 7. The endomorphism P is a generalized almost product structure, since the endomorphism C is a generalized almost complex structure on M. Moreover, P and C are generalized structures compatible with the neutral metric g_{0}.

Remark 2. The endomorphisms P and C satisfy the following relation:

$$
P \circ C=-C \circ P,
$$

and $P \circ C, C \circ P$ are also generalized almost product structures on M.
Proposition 8. Let a, b be two real numbers with $\Delta=a^{2}+4 b \neq 0$. The endomorphism of E defined by:

$$
J_{g}=\left(\begin{array}{cc}
\frac{a}{2} I_{d} & \frac{|\Delta|}{\Delta} \frac{\sqrt{|\Delta|}}{2} \cdot \sharp_{g} \tag{12}\\
\frac{\sqrt{|\Delta|}}{2} \cdot \natural_{g} & \frac{a}{2} I_{d}
\end{array}\right)
$$

is a generalized (a, b)-structure on M compatible with g_{0}. We shall call J_{g} the generalized (a, b)-structure induced by Riemannian metric g.

Proof. By direct computation, it results

$$
J_{g}^{2}-a J_{g}-b I_{d}=0
$$

which shows that J_{g} is a generalized (a, b)-structure on M.
$\left.g_{0}\left(J_{g}(X+\xi), Y+\eta\right)=\frac{a}{2} g_{0}(X+\xi, Y+\eta)+\frac{\sqrt{|\Delta|}}{2} g_{0}\left(\frac{|\Delta|}{\Delta} \sharp_{g}(\xi)+\natural_{g}(X)\right), Y+\eta\right)$.
If $\Delta>0$ we obtain

$$
g_{0}\left(J_{g}(X+\xi), Y+\eta\right)=\frac{a}{2} g_{0}(X+\xi, Y+\eta)+\frac{\sqrt{\Delta}}{4} g_{0}(P(X+\xi), Y+\eta)=
$$

$$
=\frac{a}{2} g_{0}(X+\xi, Y+\eta)+\frac{\sqrt{\Delta}}{4} g_{0}(X+\xi, P(Y+\eta))=g_{0}\left(X+\xi, J_{g}(Y+\eta)\right)
$$

If $\Delta<0$, it results

$$
\begin{aligned}
& g_{0}\left(J_{g}(X+\xi), Y+\eta\right)=\frac{a}{2} g_{0}(X+\xi, Y+\eta)+\frac{\sqrt{-\Delta}}{4} g_{0}(C(X+\xi), Y+\eta)= \\
& =\frac{a}{2} g_{0}(X+\xi, Y+\eta)+\frac{\sqrt{-\Delta}}{4} g_{0}(X+\xi, C(Y+\eta))=g_{0}\left(X+\xi, J_{g}(Y+\eta)\right)
\end{aligned}
$$

Or, equivalent, in (7) we have $H=K=\frac{a}{2} I_{d}, \alpha=\frac{|\Delta|}{\Delta} \frac{\sqrt{|\Delta|}}{2} \not \sharp_{g}, \beta=\frac{\sqrt{|\Delta|}}{2} \natural_{g}$. By straightforward computation, conditions (8),(9) are satisfied.

Remark 3. The generalized structure (10) associated to J_{g} is P for $\Delta>0$ and C for $\Delta<0$, respectively.

3.2 Generalized (a, b)-structures induced on a (a, b)-manifold

 (M, g, φ)Let a, b be two real numbers with $\Delta=a^{2}+4 b \neq 0$ and (M, g, φ) a Riemannian (a, b)-manifold with structural endomorphism φ. Let us consider the endomorphism $\varphi^{*} \in \operatorname{End}\left(T^{*} M\right)$, with

$$
\varphi^{*}(\xi)(X)=\xi(\varphi(X)), \quad \forall \xi \in \Gamma\left(T^{*} M\right), X \in \Gamma(T M)
$$

Proposition 9. The endomorphism $\hat{J} \in E n d(E)$ defined by

$$
\hat{J}=\left(\begin{array}{cc}
\varphi & 0 \tag{13}\\
0 & \varphi^{*}
\end{array}\right)
$$

is a generalized (a, b)-structure on M, induced by the (a, b) structure φ on M. The generalized structure \hat{J} is compatible with the neutral metric g_{0}.

Proof. Using $\varphi^{2}=a \varphi+b I_{d}$, from the definition of φ^{*} it results

$$
\begin{gathered}
\left(\varphi^{*}\right)^{2}(\xi)(X)=\varphi^{*}\left(\varphi^{*}(\xi)\right)(X)=\varphi^{*}(\xi)(\varphi(X))= \\
=\xi\left(\varphi^{2}(X)\right)=a \xi(\varphi(X))+b \cdot X=a \varphi^{*}(X)+b \cdot X
\end{gathered}
$$

so $\left(\varphi^{*}\right)^{2}=a \varphi^{*}+b I_{d}$. For endomorphism \hat{J} we have $H=\varphi, K=\varphi^{*}, \alpha=0, \beta=0$, in (7). Conditions (8) and (9) are satisfied.

Taking into account that M is a Riemannian (a, b)-manifold, hence $g(\varphi X, Y)=$ $g(X, \varphi Y)$, we have the following relations:

$$
\begin{equation*}
\varphi \circ \sharp_{g}=\sharp_{g} \circ \varphi^{*}, \quad \natural_{g} \circ \varphi=\varphi^{*} \circ \natural_{g} . \tag{14}
\end{equation*}
$$

Proposition 10. Let (M, g, φ) be a Riemannian (a, b)-manifold. The following relation between the canonical generalized (a, b)-structure J_{g} and the induced generalized (a, b) structure \hat{J} holds:

$$
\hat{J} \circ J_{g}=J_{g} \circ \hat{J}
$$

Moreover, if $a=0$, then the endomorphism $\hat{J} \circ J_{g}$ is a generalized $\left(0, b^{2}\right)$-structure, while if $b=0$, then $\hat{J} \circ J_{g}$ is a generalized $\left(a^{2}, 0\right)$-structure.

Proof. Firstly we have to remark that relations (14) prove that the induced (a, b) structure \hat{J} commutes with the canonical generalized structures P and C from the previous subsection. Taking into account the definition of J_{g} from Proposition 8 , it results that the generalized (a, b) structures \hat{J} and J_{g} commute. We denote $J=\hat{J} \circ J_{g}$ and compute

$$
J^{2}=a^{2} J+a b\left(\hat{J}+J_{g}\right)+b^{2} I_{d}
$$

Considering $a=0$ or $b=0$, we obtain that J is a generalized $\left(0, b^{2}\right)$-, or $\left(a^{2}, 0\right)$ structure.

Remark 4. The generalized structure (10) associated to \hat{J} is

$$
I_{\hat{J}}=\left(\begin{array}{cc}
F & 0 \tag{15}\\
0 & F^{*}
\end{array}\right)
$$

where F is the polynomial structure (2) associated to φ and $F^{*}: T^{*} M \rightarrow T^{*} M$ is defined by $F^{*}(\xi)(X)=\xi(F X)$.

Another generalized (a, b)-structure, induced by φ and g, on a Riemannian (a, b) manifold (M, g, φ) is

$$
J_{\varphi, g}=\left(\begin{array}{cc}
\varphi & 0 \tag{16}\\
\frac{\sqrt{\Delta}}{2} \cdot \mathfrak{b}_{g} & a I_{d}-\varphi^{*}
\end{array}\right)
$$

Indeed, for $H=\varphi, K=a I_{d}-\varphi^{*}, \alpha=0$ and $\beta=\frac{\sqrt{\Delta}}{2} \cdot \vdash_{g}$, in (7), conditions (8) are verified, but (9) are not satified, so $J_{\varphi, g}$ is not compatible with g_{0}.

The generalized structure (10) associated to $J_{\varphi, g}$ is

$$
I_{\varphi, g}=\left(\begin{array}{cc}
F & 0 \tag{17}\\
\varphi_{g} & F^{*}
\end{array}\right) .
$$

$4 \quad \nabla$-integrability of generalized (a, b)-structures

The integrability of generalized structures can be defined by using a linear connection ∇ on M. It defines, in a canonical way, a bracket in $E=T M \oplus T^{*} M$ by

$$
\begin{equation*}
[X+\xi, Y+\eta]_{\nabla}=[X, Y]+\nabla_{X} \eta-\nabla_{Y} \xi \tag{18}
\end{equation*}
$$

for all $X+\xi, Y+\eta \in \Gamma(E)$. Moreover, ∇-bracket defined by (18) satisfies (see [11, 13]):

1. $[X+\xi, Y+\eta]_{\nabla}=-[Y+\eta, X+\xi]_{\nabla}$,
2. $[f(X+\xi), Y+\eta]_{\nabla}=f[X+\xi, Y+\eta]_{\nabla}-Y(f)(X+\xi)$,
3. Jacobi's identity holds for $[\cdot, \cdot]_{\nabla}$ if and only if ∇ has zero curvature.

Let J be a generalized (a, b)-structure on M and \mathcal{L}_{+}and \mathcal{L}_{-}be the eigen distributions of J, that is

$$
\begin{gather*}
\mathcal{L}_{+}=\operatorname{Ker}\left(J-\lambda_{1} I_{d}\right)=\left\{X+\xi \in \Gamma(E) \mid \quad J(X+\xi)=\lambda_{1}(X+\xi)\right\}, \tag{19}\\
\mathcal{L}_{-}=\operatorname{Ker}\left(J-\lambda_{2} I_{d}\right)=\left\{X+\xi \in \Gamma(E) \mid \quad J(X+\xi)=\lambda_{2}(X+\xi)\right\},
\end{gather*}
$$

where $\lambda_{1,2}=\frac{a \pm \sqrt{\Delta}}{2}$.
Every $X+\xi \in \Gamma(E)$ could be written $X+\xi=p_{+}(X+\xi)+p_{-}(X+\xi)$, where p_{+} and p_{-}are the projections $p_{+}: \Gamma(E) \rightarrow \mathcal{L}_{+}, \quad p_{-}: \Gamma(E) \rightarrow \mathcal{L}_{-}$defined by

$$
\begin{aligned}
& p_{+}(X+\xi)=\frac{1}{\sqrt{\Delta}}\left(J(X+\xi)-\lambda_{2}(X+\xi)\right) \\
& p_{-}(X+\xi)=\frac{1}{\sqrt{\Delta}}\left(-J(X+\xi)+\lambda_{1}(X+\xi)\right),
\end{aligned}
$$

and we also have

$$
E=\mathcal{L}_{+} \oplus \mathcal{L}_{-}
$$

Definition 3. The endomorphism J is called ∇-integrable if the eigen-distributions \mathcal{L}_{+} and \mathcal{L}_{-}are closed under the ∇-brackets, that is

$$
\begin{equation*}
p_{\mp}\left[p_{ \pm}(\sigma), p_{ \pm}(\tau)\right]_{\nabla}=0, \forall \sigma=X+\xi, \tau=Y+\eta \in \Gamma(E) . \tag{20}
\end{equation*}
$$

Similar with [13], we define the Nijenhuis torsion with respect to ∇ of the endomorphism J being the antisymmetric tensor

$$
\begin{gather*}
N_{J}^{\nabla}: \Gamma(E) \times \Gamma(E) \rightarrow \Gamma(E), \\
N_{J}^{\nabla}(\sigma, \tau)=[J \sigma, J \tau]_{\nabla}-J\left([J \sigma, \tau]_{\nabla}+[\sigma, J \tau]_{\nabla}-a \cdot[\sigma, \tau]_{\nabla}\right)+b \cdot[\sigma, \tau]_{\nabla} \tag{21}
\end{gather*}
$$

for every $\sigma=X+\xi$ and $\tau=Y+\eta$, and we have

$$
\begin{equation*}
p_{\mp}\left[p_{ \pm}(\sigma), p_{ \pm}(\tau)\right]_{\nabla}=\mp \frac{1}{\Delta} p_{\mp}\left(N_{J}^{\nabla}\right) . \tag{22}
\end{equation*}
$$

A direct consequence is
Proposition 11. The generalized (a, b)-structure J is ∇-integrable if and only if $N_{J}^{\nabla}=0$.
Proposition 12. Let ∇ be a linear connection on M, J a generalized (a, b)-structure on M and I its associated generalized almost complex or paracomplex structure, defined by (10). Between the Nijenhuis torsions N_{I}^{∇} and N_{J}^{∇} there is the followig relation:

$$
\begin{equation*}
N_{J}^{\nabla}=\frac{|\Delta|}{4} N_{I}^{\nabla} \tag{23}
\end{equation*}
$$

The structure J is ∇-integrable if and only if I is ∇-integrable.

Proof. By a straigthforward computation we obtain relation (23), where N_{I}^{∇} is defined by (21) replacing a with 0 and b with ϵ^{2}, where $\epsilon=\sqrt{\frac{\Delta}{|\Delta|}}$. If $\Delta>0, \epsilon=1$ and if $\Delta<0$, then $\epsilon=i$. We obtain

$$
\begin{gather*}
\mathcal{L}_{+}=\{X+\xi \in E \mid \quad I(X+\xi)=\epsilon(X+\xi)\}, \tag{24}\\
\mathcal{L}_{-}=\{X+\xi \in E \mid \quad I(X+\xi)=-\epsilon(X+\xi)\},
\end{gather*}
$$

and we have $I^{2}=\epsilon^{2} \cdot I_{d}$.
The ∇-integrability of a generalized almost complex/paracomplex structure is defined by the involutivity of its eigen distributions with respect to ∇-brackets. From relations (24), the eigen distributions \mathcal{L}_{+}and \mathcal{L}_{-}of J are exactly the eigen distributions of the associated generalized almost paracomplex/complex structure I, so J is integrable if and only if I is integrable.

Moreover, from Proposition 11, the ∇-integrability of a generalized (a, b)-structure is expressed by the vanishing of the Nijenhuis torsion N_{J}^{∇}. Then, relation (23) proves that ∇-integrability of J, defined by $N_{J}^{\nabla}=0$, is equivalent to $N_{I}^{\nabla}=0$, that means I is ∇-integrable.

In the folllowing we study the ∇-integrability in the particular cases of generalized (a, b)-structures J_{g} and \hat{J} introduced in Section 3.

Theorem 1. Let ∇ be a torsion-free linear connection on the Riemannian manifold (M, g), a, b two real numbers with $\Delta=a^{2}+4 b \neq 0$, and J_{g} the generalized (a, b)-structure determined by g, defined by (12). The endomorphism J_{g} is ∇-integrable if and only if the metric g is a Codazzi tensor, i.e.

$$
\left(\nabla_{X} g\right) Y=\left(\nabla_{Y} g\right) X, \quad \forall X, Y \in \Gamma(T M) .
$$

Proof. According to Remark 3, the associated generalized almost paracomplex/complex structure I of J_{g} is P, canonical generalized almost product structure determined by g, if $\Delta>0$, or C, canonical generalized almost complex structure determined by g, if $\Delta<0$, respectively. Taking into account Proposition 12, investigating ∇-integrability of J_{g} is equivalent to investigating the ∇-integrability of I.

Since ∇ is a torsion-free connection, we can write $[X, Y]=\nabla_{X} Y-\nabla_{Y} X$, and the ∇-bracket on E could be expressed by

$$
[X+\xi, Y+\eta]_{\nabla}=\nabla_{X}(Y+\eta)-\nabla_{Y}(X+\xi)
$$

We calculate, in the case $\Delta>0$,

$$
\begin{aligned}
& {[P(X+\xi), P(Y+\eta)]_{\nabla}=\nabla_{\sharp_{g}(\xi)}\left(\sharp(\eta)+\hbar_{g}(Y)\right)-\nabla_{\sharp_{g}(\eta)}\left(\not \sharp_{g}(\xi)+\hbar_{g}(X)\right),} \\
& P[P(X+\xi), Y+\eta]_{\nabla}=\sharp_{g}\left(\nabla_{\sharp_{g}(\xi)}(\eta)-\nabla_{Y}\left(\hbar_{g}(X)\right)+\natural_{g}\left(\nabla_{\sharp_{g}(\xi)} Y-\nabla_{Y}\left(\sharp_{g}(\xi)\right)\right),\right. \\
& P[X+\xi, P(Y+\eta)]_{\nabla}=\sharp_{g}\left(\nabla_{X}\left(\hbar_{g}(Y)-\nabla_{\sharp_{g}(\eta)}(\xi)\right)+\hbar_{g}\left(\nabla_{X}\left(\sharp_{g}(\eta)\right)-\nabla_{\sharp_{g}(\eta)} X\right) .\right.
\end{aligned}
$$

$$
\sharp_{g}\left(\nabla_{Y}\left(\mathfrak{h}_{g}(X)\right)=\sharp_{g}\left(\left(\nabla_{Y} g\right) X\right)+\nabla_{Y} X,\right.
$$

$$
\begin{gathered}
\natural_{g}\left(\nabla_{\sharp_{g}(\xi)} Y\right)=-\left(\nabla_{\sharp_{g}(\xi)} g\right) Y+\nabla_{\sharp_{g}(\xi)} \mathfrak{\not q g}(Y), \\
\natural_{g}\left(\nabla_{Y} \sharp_{g}(\xi)\right)=-\left(\nabla_{Y} g\right) \sharp_{g}(\xi)+\nabla_{Y} \xi, \\
\sharp_{g}\left(\nabla_{\sharp_{g}(\eta)} \xi\right)=\sharp_{g}\left(\left(\nabla_{\sharp_{g}(\eta)} g\right) \sharp_{g}(\xi)\right)+\nabla_{\sharp_{g}(\eta)} \sharp_{g}(\xi) .
\end{gathered}
$$

Hence,

$$
\begin{gathered}
N_{P}^{\nabla}(X+\xi, Y+\eta)=\sharp_{g}\left(\left(\nabla_{\sharp_{g}(\eta)} g\right) \sharp_{g}(\xi)-\left(\nabla_{\sharp_{g}(\xi)} g\right) \sharp_{g}(\eta)\right)+ \\
+\sharp_{g}\left(\left(\nabla_{Y} g\right) X-\left(\nabla_{X} g\right) Y\right)+\left(\nabla_{\sharp_{g}(\xi)} g\right) Y-\left(\nabla_{Y} g\right) \sharp_{g}(\xi)+ \\
+\left(\nabla_{X} g\right) \not \sharp_{g}(\eta)-\left(\nabla_{\sharp_{g}(\eta)} g\right) X .
\end{gathered}
$$

If $\left(\nabla_{X} g\right) Y=\left(\nabla_{Y} g\right) X, \forall X, Y \in \Gamma(T M)$, then the above relation becomes $N_{P}^{\nabla}=0$, so P is ∇-integrable.

Conversely, if $N_{P}^{\nabla}(X+\xi, Y+\eta)=0$ for all vector fields X, Y and 1-forms ξ, η, we consider $\xi=0, \eta=0$ and obtain $\left(\nabla_{X} g\right) Y=\left(\nabla_{Y} g\right) X, \forall X, Y \in \Gamma(T M)$.

According to Proposition 12, we obtain that the generalized (a, b)-structure J_{g} induced by the Riemannian metric g is ∇-integrable if and only if the torsion-free linear connection ∇ satisfies

$$
\left(\nabla_{X} g\right) Y=\left(\nabla_{Y} g\right) X, \quad \forall X, Y \in \Gamma(T M) .
$$

A similar computation gives the same result in the case $\Delta<0$.
Now, let (M, g, φ) be a Riemannian (a, b)-manifold and let \hat{J} be the generalized (a, b)-structure induced by φ. We study the ∇-integrability of \hat{J}, where ∇ is a linear torsion-free connection on the (a, b)-manifold (M, g, φ).

Proposition 13. Let ∇ be a linear connection on M. The Nijenhuis torsion with respect to ∇ of the generalized (a, b)-structure \hat{J} is

$$
\begin{align*}
& N_{\hat{\jmath}}^{\nabla}(X+\xi, Y+\eta) \\
= & N_{\varphi}(X, Y)+\left(\nabla_{\varphi_{X}} \varphi^{*}\right) \eta-\varphi^{*}\left(\left(\nabla_{X} \varphi\right) \eta\right)-\left(\nabla_{\varphi_{Y}} \varphi^{*}\right) \xi+\varphi^{*}\left(\left(\nabla_{Y} \varphi\right) \xi\right)(2 \tag{25}
\end{align*}
$$

for all $X+\xi, Y+\eta \in \Gamma(E)$.
Proof. By direct computation, using $\left(\nabla_{\varphi_{X}} \varphi^{*}\right) \eta=\nabla_{\varphi_{X}}\left(\varphi^{*} \eta\right)-\varphi^{*}\left(\nabla_{\varphi_{X}} \eta\right)$.
If ∇ is a torsion-free connection, then we obtain

$$
\begin{equation*}
N_{\varphi}(X, Y)=\left(\nabla_{\varphi_{X}} \varphi\right) Y-\left(\nabla_{\varphi_{Y}} \varphi\right) X+\varphi\left(\left(\nabla_{Y} \varphi\right) X-\left(\nabla_{X} \varphi\right) Y\right) . \tag{26}
\end{equation*}
$$

Theorem 2. If ∇ is a torsion free connection on M such that $\nabla \varphi=0$, then the generalized (a, b)-structure \hat{J} is ∇-integrable.

Proof. Condition $\nabla \varphi=0$ implies from (26) that $N_{\varphi}=0$. Then, the same condition gives us $\nabla_{X}(\varphi Y)=\varphi\left(\nabla_{X} Y\right)$ for all vector fields X, Y. We also compute

$$
\begin{gathered}
\left(\nabla_{\varphi_{X}}\left(\varphi^{*} \eta\right)\right) Z=(\varphi X)(\eta(\varphi Z))-\eta\left(\varphi\left(\nabla_{\varphi_{X}} Z\right)\right)= \\
=(\varphi X)(\eta(\varphi Z))-\eta\left(\nabla_{\varphi_{X}} \varphi Z\right)=\left(\nabla_{\varphi_{X}} \eta(\varphi Z)=\varphi^{*}\left(\nabla_{\varphi_{X}} \eta\right)(Z),\right.
\end{gathered}
$$

for every vector field Z. We obtain

$$
\nabla_{\varphi_{X}}\left(\varphi^{*} \eta\right)=\varphi^{*}\left(\nabla_{\varphi_{X}} \eta\right)
$$

and then $\left(\nabla_{\varphi_{X}} \varphi^{*}\right) \eta=0$, for every vector field X and 1-form η. This relation and $\nabla \varphi=0$ in (25) imply that $N_{\hat{J}}^{\nabla}=0$, so \hat{J} is ∇-integrable.

References

[1] Blaga, A.M. and Ida, C., Generalized almost paracontact structures, An. Şt. Univ. Ovidius Constanţa, 23,2015, 53-64.
[2] V. Cruceanu, V., Fortuny, P. and Gadea, P.M., A survey on paracomplex geometry, Rocky Mount. J. Math. 26 (1996), 83-115.
[3] Cruceanu, V., Gadea, P.M. and Munoz Masque, J., Para-Hermitian and para-Kähler manifolds. Quaderni Inst. Mat. Univ. Messina 1 (1995), 1-72.
[4] Crainic, M., Generalized complex structures and Lie brackets, arXiv:math/0412097v2, 2004.
[5] Courant, T., Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661.
[6] Goldberg S.I., and Yano K., Polynomial structures on manifolds. Kodai Math Sem Rep. 22(1970); 22: 199-218.
[7] Gezer A. and Karaman C., On metallic Riemannian structures. Turk J Math. 39(2015), 954-962.
[8] Gualtieri, M., Generalized complex geometry, PhD Thesis, 2004, arXiv:math/0401221v1.
[9] Hitchin, N., Generalized Calabi-Yau manifolds, Q. J. Math., 54(2003), 281-308.
[10] Hreţcanu C.E. and Crâşmăreanu M., Metallic structures on Riemannian Manifolds, Rev Un. Mat. Argentina 54 (2013), 15-27.
[11] Nannicini, A., Calibrated complex structures on the generalized tangent bundle of a Riemannian manifold, J. of Geom. and Phys. 56 (2006), 903-916.
[12] Nannicini, A., Almost complex structures on cotangent bundles and generalized geometry, J. of Geom. and Phys. 60 (2010), 1781-1791.
[13] A. Nannicini, A., Generalized geometry of Norden manifolds, J. of Geom. and Phys. 99 (2016), 244-255.
[14] Nannicini, A., Almost complex structures on cotangent bundles and generalized geometry, J. of Geom. and Phys. 60 (2010), 1781-1791.
[15] Y. S. Poon, Y.S. and Wade, A., Generalized Contact Structures, 2009, arXiv:math/0912.5314v1.
[16] B. Şahin, B. and Şahin, F., Generalized almost para-contact manifolds, arXiv:1401.5304v1. math. GT.
[17] Vanzura J., Integrability conditions for polynomial structures. Kodai Math Sem Rep. 27(1976), 42-50.
[18] Vaisman, I., Reduction and submanifolds of generalized complex manifolds, Diff. Geom. and Appl. 25 (2007), 147-166.
[19] Vaisman, I., From Generalized Kähler to Generalized Sasakian Structures, J. of Geom. and Symmetry in Physics 18 (2010), 63-86.
[20] Vaisman, I., Generalized para-Kahler manifolds, 2015, arXiv:1503.01252v1[math.DG]
[21] Yano, K., Differential geometry on complex and almost complex spaces, Pure and Applied Math. 49, New York, Pergamon Press Book, 1965.
[22] Wade, A., Dirac structures and paracomplex manifolds, Comptes Rendus Mathematique, 11 (2004), 889-894.
[23] Zabzine, M., Lectures On Generalized Complex Geometry and Supersymmetry, Archivum Mathematicum(BRNO) 42 (2006), 119 - 146.

[^0]: ${ }^{1}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: adelina.manea@unitbv.ro

