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POLYNOMIAL OF SECOND DEGREE STRUCTURES ON BIG TANGENT BUNDLE

Adelina MANEA1

Abstract

We introduced the generalized (a, b)-structure on a Riemannain manifold M ,
no onwhich includes the generalized almost complex and generalized almost prod-
uct structures. We studied the canonical generalized (a, b)-structure Jg induced by
the Riemannianmetric onM , a erwards the generalized (a, b)-structure Ĵ induced
by a similar structure onM . Considering a torsion-free linear connec on∇ onM ,
we define the ∇-integrability of a generalized (a, b)-structure and condi ons for
∇-integrability of Jg and Ĵ are given.

2000Mathema cs Subject Classifica on: 53C15, 53D18.
Key words: polynomial structures, generalized geometry

1 Introduc on

Polynomial structures on manifolds were introduced and studied in [6], closely re-
lated to known structures as almost product, almost complex and contact structures.
A ploynomial structure F of degree d on a C∞ manifold M is, [6], a (1, 1)-tensor field
sa sfying a polynomial equa on

F d + a1F
d−1 + ...+ ad−1F + adId = 0,

where a1, ...ad are real numbers and d is the smallest integer on which Id, F, ..., F
d are

dependent. Integrability condi ons for polynomial structures, involving the Nijenhuis
torsion of the structural endomorphism, are given in [17], under the assump on that
the polynomial Xd + a1X

d−1 + ... + ad−1X + ad has only simple roots. Examples of
polynomial structures of second degree are: the almost product structure, when F 2 =
Id; the almost complex structure with F 2 = −Id for dimM = 2n and the metallic
structure F 2 = pF + qId, with integers p, q such that p2 +4q is posi ve. The par cular
case of metallic structures was considered in the last decade, [7], [10]. For dimM =
2n+1, an almost contact structure is an example of polynomial structure of third degree,
since the structural endomorphism sa sfies F 3 + F = 0.

1Faculty of Mathema cs and Informa cs, Transilvania University of Braşov, Romania, e-mail:
adelina.manea@unitbv.ro
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In the last years many geometers passed from the tangent bundle of a manifold M
to the generalized tangent bundleE = TM ⊕T ∗M and extended different polynomial
structures defined on M to similar structures on the big tangent bundle E. General-
ized geometry of a manifoldM is the geometry of structures of the big tangent bundle
TM ⊕ T ∗M endowed with the neutral metric. The generalized complex structure was
inves gated in [3], [4], [8], [18], the generalized para-complex structure was studied in
[20], [22], since the generalized contact and para-contact structures were the topic for
[1], [15], [16]. A par cular assump on under the behaviour of the neutral metric of the
big tangent bundle with respect to the generalized structure endomorphism determined
the classes of generalized Hermi an, Kähler, para-Hermi an and para-Kähler structures,
[19], [20].

A polynomial structure on a manifold is called integrable if the eigen-distribut-
ions of the structural endomorphism are involu ve. The vanishing of Nijenhuis tensor
gives a necessary and sufficient condi on for integrability. Considering a linear connec-
on∇ on the manifoldM , the∇-brackets of sec ons of big tangent bundle E and the

concept of∇-integrability of a generalized complex structures onM are defined in [13]:
the eigen-distribu ons of the structural endomorphismare closed under the∇-brackets,
. Corresponding Nijenhuis tensors are defined with respect to∇-brackets and necessary
and sufficient condi ons for the∇-integrability are given.

In this paper we start with two real numbers a, b such that∆ = a2+4b ̸= 0 and we
define the no on of (a, b)-structure on a smooth manifold M . This no on generalized
the almost complex, almost paracomplex structures on manifolds and includes metallic
structures. Some proper es of (a, b)-structures on manifolds are given in the second
sec on of the paper. Integrability condi ons are obtained.

In the third sec on we define the generalized (a, b)-structure, which is a polyno-
mial of second degree structure on big tangent bundle of a Riemannian manifold M .
We inves gate the link between such a structure and the generalized almost product
or generalized almost complex structures. The canonical generalized (a, b)-structure Jg
determined by a Riemannian metric on the base M is studied. We show that a (a, b)
structure φ onM induced in a natural way a similar generalized structure Ĵ .

The∇-integrability for generalized (a, b)-structures is defined in the last sec on. We
also defined the Nijenhuis torsionN∇

J of a generalized (a, b)-structure J and we proved
that the ∇-integrability of J is equivalent to N∇

J = 0. We obtained that a generalized
(a, b)-structure is∇-integrable if and only if its associated generalized almost complex/-
paracomplex structure is∇-integrable. Finally, we find condi ons for the∇-integrability
of the par cular generalized (a, b)-structures Jg and Ĵ .

2 Polynomial of second degree structures on manifolds

LetM be an n-dimensional C∞-manifold and a, b two real numbers with∆ = a2 +
4b ̸= 0.

We shall call a (a, b)-structure onM a polynomial structure of second degree given
by a (1, 1)-tensor field φ which sa sfies the equa on,

φ2 − a · φ− b · Id = 0, (1)
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where Id is the iden ty on the vector fields space Γ(TM). In this case the pair (M,φ)
will be called a (a, b)-manifold .

Proposi on 1. Let (M,φ) be a (a, b)-manifold. If∆ = a2 +4b < 0, then the dimension
n ofM is an even number.

Proof. The proof follows the ideas from the same asser on for almost complex mani-
folds. So, for every nonzero vector field X on M , X and φ(X) are liniar independent.
Indeed, if α ·X + β · φ(X) = 0, and we apply φ, it results that the real numbers α, β
sa sfy

α2 + aαβ − b · β2 = 0,

which implies α = β = 0, from∆ < 0.
Then, considering two nonzero vector fields X and Y such that {X,φ(X), Y } are

linear independent, we obtain {X,φ(X), Y, φ(Y )} also linear independent. Indeed, if
we suppose that there are real numbers α, β and γ such that

φ(Y ) = α ·X + β · φ(X) + γ · Y,

and we apply the endomorphism φ, it results that the real number γ is a root of x2− a ·
x− b = 0, which is false from the hypotesis.

It follows that the dimension of TM must be even.

Remark 1. For a = 0, b = 1, φ is an almost product structure onM . If a = 0, b = −1,
then φ is an almost complex structure on M . If a = b = 1 then φ is called a golden
structure, and for a, b integers such that a2 + 4b > 0, φ is called a metallic structure on
M .

The main proper es of (a, b)-structures are given in the following proposi ons and
they are easy to prove by direct computa on:

Proposi on 2. Let φ a (a, b)-structure on the manifold M , with b ̸= 0. Then φ is an
isomorphismon the tangent spaceTxM , for everyx ∈ M . Its inverse isφ−1 = 1

bφ−
a
b Id,

which is s ll a polynomial structure.

Proposi on 3. To every (a, b)-structure φ onM , given by (1), we can associate another
polynomial structure:

F =

(
2√
|∆|

· φ− a√
|∆|

· Id

)
. (2)

If∆ > 0, then F 2 = Id and F is called the almost product structure associated to φ.
If∆ < 0, then F 2 = −Id and F is called the almost complex structure associated to

φ.

Now, let F be a polynomial structure of second degree onM and

φ =
a

2
· Id +

√
|∆|
2

· F. (3)
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By direct computa on, we obtain

φ2 − aφ− bId = −∆

4
· Id +

|∆|
4

· F 2.

The above rela on shows that:

Proposi on 4. For any real numbers a, b such that a2 + 4b > 0, every almost product
structure F onM induces a (a, b)-structure onM , given by (3).

Proposi on 5. For any real numbers a, b such that a2 + 4b < 0, every almost complex
structure F onM induces a (a, b)-structure onM , given by (3).

Let (M, g) be a Riemannian manifold endowed with the (a, b)-structure φ. We say
that φ is compa ble with metric g and thatM is a Riemannian (a, b)-manifold, if

g(φX, Y ) = g(X,φY ), (4)

for everyX,Y ∈ Γ(TM). An equivalent condi on is

g(φX,φY ) = a · g(X,φY ) + b · g(X,Y ).

For a Riemannian (a, b)-manifold (M, g, φ), let F be the associated almost produc-
t/almost complex structure from (2). We obtain that F is also g-symmetric:

g(FX, Y ) = g(X,FY ), ∀X,Y ∈ Γ(TM). (5)

The integrability of almost paracomplex/complex structureF is usually expressed by the
vanishing of the Nijenhuis tensorNF :

NF (X,Y ) = [FX,FY ]− F [FX, Y ]− F [X,FY ] + F 2[X,Y ],

which express the involu vity of eigenbundles of F . From rela on (3) it is easy to see
that the eigenbundles of φ are exactly the eigenbundles of the associated structure F .

Moreover, considering the Nijenhuis tensor of φ

Nφ(X,Y ) = [φX,φY ]− φ[φX, Y ]− φ[X,φY ] + φ2[X,Y ],

we obtain the following link betweenNφ andNF :

Nφ =
|∆|
4

NF +
∆

4

(
Id− |∆|

∆
F 2

)
=

|∆|
4

NF .

Defini on 1. The (a, b)-structure φ is called integrable ifNφ = 0.

A direct consequence is that

Proposi on 6. The (a, b)-structure φ is integrable if and only if the associated structure
F given by (2) is integrable. In this case the eigenbundles of φ are involu ve.
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3 Generalized polynomial of second degree structures

Generalized geometry of a manifoldM is the geometry of structures of the big tan-
gent bundle E = TM ⊕ T ∗M endowed with the neutral (or pairing) metric

g0(X + ξ, Y + η) =
1

2
(ξ(Y ) + η(X)) , (6)

for all vector fieldsX,Y and 1-forms ξ, η onM .
A generalized almost paracomplex structure of a manifold M is an endomorphism

I ∈ End(E), which sa sfies I2 = Id, I ̸= ±Id. Such a structure was firstly considered
in [22] and they unify symplec c forms, paracomplex structures, and Poisson structures.
Generalized complex structures were firstly considered in [9] and unifies symplec c and
complex geometry. A more general concept of generalized almost complex structures
was introduced in [14], that is: a generalized almost complex structure of a manifoldM
is an endomorphism I ∈ End(E), which sa sfies I2 = −Id.

Defini on 2. Leta, bbe two real numberswitha2+4b ̸= 0. A generalized (a, b)-structure
of amanifoldM is an endomorphismJ ∈ End(E), which sa sfiesJ2 = aJ+bId. Such a
structure is compa blewith neutralmetric if g0(J(X+ξ), Y +η) = g0(X+ξ, J(Y +η)).

In the block matrix form a general endomorphism J ∈ End(E) can be wri en as

J =

(
H α
β K

)
(7)

whereH : TM → TM , α : T ∗M → TM , β : TM → T ∗M , K : T ∗M → T ∗M .
A straigh orward computa on proves that such an endomorphism is a generalized

(a, b)-structure on a manifoldM if and only if the following condi ons hold:

H2 + α ◦ β = aH + bId, H ◦ α+ α ◦K = aα
β ◦H +K ◦ β = aβ, β ◦ α+K2 = aK + bId.

(8)

Moreover, according to Defini on 2, it is compa ble with neutral metric if in addi on to
(8) we have

K = H∗ , α = α∗ , β = β∗, (9)

where,H∗ : T ∗M → T ∗M is the dual operator ofH defined byH∗(ξ)(X) = ξ(HX),
α = α∗means η(α(ξ)) = ξ(α(η)) for all ξ, η ∈ Γ(T ∗M) andβ = β∗meansβ(X)(Y ) =
β(Y )(X) for allX,Y ∈ Γ(TM).

For a generalized (a, b)-structure J , the endomorphism

I =
2√
|∆|

· J − a√
|∆|

· Id, (10)

is a generalized almost paracomplex structure if∆ > 0, or a generalized almost complex
structure if ∆ < 0, respec vely. We shall call the endomorphism (10) the generalized
almost paracomplex/complex structure associated with the generalized (a, b)-structure
J .
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3.1 Canonical generalized (a, b)-structures

Let (M, g) be a Riemannian manifold. Let be ♮g : TM → T ∗M the bemolle musical
isomorphism and ♯g its inverse. There are the following rela ons:

♮g(X)(Y ) = g(X,Y ), ∀X,Y ∈ Γ(TM),

♯g(ξ) = Xξ ⇔ g(Xξ, Y ) = ξ(Y ), ∀ξ ∈ Γ(T ∗M), Y ∈ Γ(TM).

There are two canonical endomorphismsP,C ∈ End(E) defined by Riemannianmetric
g as it follows:

P =

(
0 ♯g
♮g 0

)
, C =

(
0 −♯g
♮g 0

)
. (11)

For endomorphism P we have in (7)H = 0, K = 0, β = ♮g and α = ♯g, and rela ons
(8), (9) are sa sfied for a = 0 and b = 1. For endomorphism C we have in (7) H = 0,
K = 0, β = ♮g and α = −♯g, and rela ons (8), (9) are sa sfied for a = 0 and b = −1.
We obtained:

Proposi on 7. The endomorphismP is a generalized almost product structure, since the
endomorphism C is a generalized almost complex structure on M . Moreover, P and C
are generalized structures compa ble with the neutral metric g0.

Remark 2. The endomorphisms P and C sa sfy the following rela on:

P ◦ C = −C ◦ P,

and P ◦ C, C ◦ P are also generalized almost product structures onM .

Proposi on 8. Let a, b be two real numbers with∆ = a2 + 4b ̸= 0. The endomorphism
of E defined by:

Jg =

 a
2Id

|∆|
∆

√
|∆|
2 · ♯g√

|∆|
2 · ♮g a

2Id

 , (12)

is a generalized (a, b)-structure onM compa ble with g0. We shall call Jg the general-
ized (a, b)-structure induced by Riemannian metric g.

Proof. By direct computa on, it results

J2
g − aJg − bId = 0,

which shows that Jg is a generalized (a, b)-structure onM .

g0 (Jg(X + ξ), Y + η) =
a

2
g0 (X + ξ, Y + η)+

√
|∆|
2

g0

(
|∆|
∆

♯g(ξ) + ♮g(X)), Y + η

)
.

If∆ > 0 we obtain

g0 (Jg(X + ξ), Y + η) =
a

2
g0 (X + ξ, Y + η) +

√
∆

4
g0 (P (X + ξ), Y + η) =



Polynomial of second degree structures on big tangent bundle 91

=
a

2
g0 (X + ξ, Y + η) +

√
∆

4
g0 (X + ξ, P (Y + η)) = g0 (X + ξ, Jg(Y + η)) .

If∆ < 0, it results

g0 (Jg(X + ξ), Y + η) =
a

2
g0 (X + ξ, Y + η) +

√
−∆

4
g0 (C(X + ξ), Y + η) =

=
a

2
g0 (X + ξ, Y + η) +

√
−∆

4
g0 (X + ξ, C(Y + η)) = g0 (X + ξ, Jg(Y + η)) .

Or, equivalent, in (7) we haveH = K = a
2Id, α = |∆|

∆

√
|∆|
2 ♯g, β =

√
|∆|
2 ♮g. By straight-

forward computa on, condi ons (8),(9) are sa sfied.

Remark 3. The generalized structure (10) associated to Jg is P for ∆ > 0 and C for
∆ < 0, respec vely.

3.2 Generalized (a, b)-structures induced on a (a, b)-manifold
(M, g, φ)

Let a, b be two real numbers with ∆ = a2 + 4b ̸= 0 and (M, g, φ) a Riemannian
(a, b)-manifold with structural endomorphism φ. Let us consider the endomorphism
φ∗ ∈ End(T ∗M), with

φ∗(ξ)(X) = ξ (φ(X)) , ∀ξ ∈ Γ(T ∗M), X ∈ Γ(TM).

Proposi on 9. The endomorphism Ĵ ∈ End(E) defined by

Ĵ =

(
φ 0
0 φ∗

)
, (13)

is a generalized (a, b)-structure onM , induced by the (a, b) structure φ onM . The gen-
eralized structure Ĵ is compa ble with the neutral metric g0.

Proof. Using φ2 = aφ+ bId, from the defini on of φ∗ it results

(φ∗)2(ξ)(X) = φ∗(φ∗(ξ))(X) = φ∗(ξ)(φ(X)) =

= ξ(φ2(X)) = aξ(φ(X)) + b ·X = aφ∗(X) + b ·X,

so (φ∗)2 = aφ∗ + bId. For endomorphism Ĵ we haveH = φ,K = φ∗, α = 0, β = 0,
in (7). Condi ons (8) and (9) are sa sfied.

Taking into account that M is a Riemannian (a, b)-manifold, hence g(φX, Y ) =
g(X,φY ), we have the following rela ons:

φ ◦ ♯g = ♯g ◦ φ∗, ♮g ◦ φ = φ∗ ◦ ♮g. (14)
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Proposi on 10. Let (M, g, φ) be a Riemannian (a, b)-manifold. The following rela on
between the canonical generalized (a, b)- structureJg and the inducedgeneralized (a, b)-
structure Ĵ holds:

Ĵ ◦ Jg = Jg ◦ Ĵ .

Moreover, if a = 0, then the endomorphism Ĵ ◦ Jg is a generalized (0, b2)-structure,
while if b = 0, then Ĵ ◦ Jg is a generalized (a2, 0)-structure.

Proof. Firstly we have to remark that rela ons (14) prove that the induced (a, b) struc-
ture Ĵ commutes with the canonical generalized structures P and C from the previous
subsec on. Taking into account the defini on of Jg from Proposi on 8, it results that the
generalized (a, b) structures Ĵ and Jg commute. We denote J = Ĵ ◦ Jg and compute

J2 = a2J + ab(Ĵ + Jg) + b2Id.

Considering a = 0 or b = 0, we obtain that J is a generalized (0, b2)-, or (a2, 0)-
structure.

Remark 4. The generalized structure (10) associated to Ĵ is

IĴ =

(
F 0
0 F ∗

)
, (15)

where F is the polynomial structure (2) associated to φ and F ∗ : T ∗M → T ∗M is
defined by F ∗(ξ)(X) = ξ(FX).

Another generalized (a, b)-structure, induced by φ and g, on a Riemannian (a, b)-
manifold (M, g, φ) is

Jφ,g =

(
φ 0√

∆
2 · ♮g aId − φ∗

)
, (16)

Indeed, for H = φ, K = aId − φ∗, α = 0 and β =
√
∆
2 · ♮g, in (7), condi ons (8) are

verified, but (9) are not sa fied, so Jφ,g is not compa ble with g0.
The generalized structure (10) associated to Jφ,g is

Iφ,g =

(
F 0
♮g F ∗

)
. (17)

4 ∇-integrability of generalized (a, b)-structures

The integrability of generalized structures can be defined by using a linear connec on
∇ onM . It defines, in a canonical way, a bracket in E = TM ⊕ T ∗M by

[X + ξ, Y + η]∇ = [X,Y ] +∇Xη −∇Y ξ, (18)

for allX+ξ, Y +η ∈ Γ(E). Moreover,∇-bracket defined by (18) sa sfies (see [11, 13]):

1. [X + ξ, Y + η]∇ = − [Y + η,X + ξ]∇,
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2. [f(X + ξ), Y + η]∇ = f [X + ξ, Y + η]∇ − Y (f)(X + ξ),

3. Jacobi’s iden ty holds for [·, ·]∇ if and only if∇ has zero curvature.

Let J be a generalized (a, b)-structure onM and L+ and L− be the eigen distribu-
ons of J , that is

L+ = Ker (J − λ1Id) = {X + ξ ∈ Γ(E)| J(X + ξ) = λ1(X + ξ)}, (19)

L− = Ker (J − λ2Id) = {X + ξ ∈ Γ(E)| J(X + ξ) = λ2(X + ξ)},

where λ1,2 =
a±

√
∆

2 .
EveryX + ξ ∈ Γ(E) could be wri enX + ξ = p+(X + ξ) + p−(X + ξ), where p+

and p− are the projec ons p+ : Γ(E) → L+, p− : Γ(E) → L− defined by

p+(X + ξ) =
1√
∆

(J(X + ξ)− λ2(X + ξ))

p−(X + ξ) =
1√
∆

(−J(X + ξ) + λ1(X + ξ)) ,

and we also have
E = L+ ⊕ L−.

Defini on 3. The endomorphism J is called ∇-integrable if the eigen-distribu ons L+

and L− are closed under the∇-brackets, that is

p∓[p±(σ), p±(τ)]∇ = 0 , ∀σ = X + ξ, τ = Y + η ∈ Γ(E). (20)

Similar with [13], we define the Nijenhuis torsion with respect to∇ of the endomor-
phism J being the an symmetric tensor

N∇
J : Γ(E)× Γ(E) → Γ(E),

N∇
J (σ, τ) = [Jσ, Jτ ]∇ − J ([Jσ, τ ]∇ + [σ, Jτ ]∇ − a · [σ, τ ]∇) + b · [σ, τ ]∇ , (21)

for every σ = X + ξ and τ = Y + η, and we have

p∓[p±(σ), p±(τ)]∇ = ∓ 1

∆
p∓
(
N∇

J

)
. (22)

A direct consequence is

Proposi on 11. The generalized (a, b)-structure J is∇-integrable if and only ifN∇
J = 0.

Proposi on 12. Let∇ be a linear connec on onM , J a generalized (a, b)-structure on
M and I its associated generalized almost complex or paracomplex structure, defined
by (10). Between the Nijenhuis torsionsN∇

I andN∇
J there is the followig rela on:

N∇
J =

|∆|
4

N∇
I . (23)

The structure J is∇-integrable if and only if I is∇-integrable.
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Proof. By a straigthforward computa on we obtain rela on (23), where N∇
I is defined

by (21) replacing a with 0 and b with ϵ2, where ϵ =
√

∆
|∆| . If∆ > 0, ϵ = 1 and if∆ < 0,

then ϵ = i. We obtain

L+ = {X + ξ ∈ E| I(X + ξ) = ϵ(X + ξ)}, (24)

L− = {X + ξ ∈ E| I(X + ξ) = −ϵ(X + ξ)},

and we have I2 = ϵ2 · Id.
The ∇-integrability of a generalized almost complex/paracomplex structure is de-

fined by the involu vity of its eigen distribu ons with respect to∇-brackets. From rela-
ons (24), the eigen distribu ons L+ and L− of J are exactly the eigen distribu ons of

the associated generalized almost paracomplex/complex structure I , so J is integrable
if and only if I is integrable.

Moreover, from Proposi on 11, the∇-integrability of a generalized (a, b)-structure
is expressed by the vanishing of the Nijenhuis torsion N∇

J . Then, rela on (23) proves
that∇-integrability of J , defined byN∇

J = 0, is equivalent toN∇
I = 0, that means I is

∇-integrable.

In the folllowing we study the ∇-integrability in the par cular cases of generalized
(a, b)-structures Jg and Ĵ introduced in Sec on 3.

Theorem1. Let∇bea torsion-free linear connec onon theRiemannianmanifold (M, g),
a, b two real numbers with ∆ = a2 + 4b ̸= 0, and Jg the generalized (a, b)-structure
determined by g, defined by (12). The endomorphism Jg is∇-integrable if and only if the
metric g is a Codazzi tensor, i.e.

(∇Xg)Y = (∇Y g)X, ∀X,Y ∈ Γ(TM).

Proof. According to Remark 3, the associated generalized almost paracomplex/complex
structure I of Jg is P , canonical generalized almost product structure determined by
g, if ∆ > 0, or C, canonical generalized almost complex structure determined by g, if
∆ < 0, respec vely. Taking into account Proposi on 12, inves ga ng∇-integrability of
Jg is equivalent to inves ga ng the∇-integrability of I .

Since∇ is a torsion-free connec on, we can write [X,Y ] = ∇XY −∇Y X , and the
∇-bracket on E could be expressed by

[X + ξ, Y + η]∇ = ∇X(Y + η)−∇Y (X + ξ).

We calculate, in the case∆ > 0,

[P (X + ξ), P (Y + η)]∇ = ∇♯g(ξ)(♯(η) + ♮g(Y ))−∇♯g(η)(♯g(ξ) + ♮g(X)),

P [P (X + ξ), Y + η]∇ = ♯g
(
∇♯g(ξ)(η)−∇Y (♮g(X)

)
+ ♮g

(
∇♯g(ξ)Y −∇Y (♯g(ξ))

)
,

P [X + ξ, P (Y + η)]∇ = ♯g
(
∇X(♮g(Y )−∇♯g(η)(ξ)

)
+ ♮g

(
∇X(♯g(η))−∇♯g(η)X

)
.

Using (∇Xg)Y = ∇X♮g(Y )− ♮g(∇XY ), we obtain

♯g (∇Y (♮g(X)) = ♯g ((∇Y g)X) +∇Y X,
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♮g
(
∇♯g(ξ)Y

)
= −

(
∇♯g(ξ)g

)
Y +∇♯g(ξ)♮g(Y ),

♮g (∇Y ♯g(ξ)) = − (∇Y g) ♯g(ξ) +∇Y ξ,

♯g
(
∇♯g(η)ξ

)
= ♯g

((
∇♯g(η)g

)
♯g(ξ)

)
+∇♯g(η)♯g(ξ).

Hence,

N∇
P (X + ξ, Y + η) = ♯g

((
∇♯g(η)g

)
♯g(ξ)−

(
∇♯g(ξ)g

)
♯g(η)

)
+

+♯g ((∇Y g)X − (∇Xg)Y ) +
(
∇♯g(ξ)g

)
Y − (∇Y g) ♯g(ξ)+

+ (∇Xg) ♯g(η)−
(
∇♯g(η)g

)
X.

If (∇Xg)Y = (∇Y g)X , ∀X,Y ∈ Γ(TM), then the above rela on becomesN∇
P = 0,

so P is∇-integrable.
Conversely, ifN∇

P (X + ξ, Y + η) = 0 for all vector fieldsX,Y and 1-forms ξ, η, we
consider ξ = 0, η = 0 and obtain (∇Xg)Y = (∇Y g)X , ∀X,Y ∈ Γ(TM).

According to Proposi on 12, we obtain that the generalized (a, b)-structure Jg in-
duced by the Riemannian metric g is ∇-integrable if and only if the torsion-free linear
connec on∇ sa sfies

(∇Xg)Y = (∇Y g)X, ∀X,Y ∈ Γ(TM).

A similar computa on gives the same result in the case∆ < 0.

Now, let (M, g, φ) be a Riemannian (a, b)-manifold and let Ĵ be the generalized
(a, b)-structure induced by φ. We study the ∇-integrability of Ĵ , where ∇ is a linear
torsion-free connec on on the (a, b)-manifold (M, g, φ).

Proposi on 13. Let ∇ be a linear connec on on M . The Nijenhuis torsion with respect
to∇ of the generalized (a, b)-structure Ĵ is

N∇
Ĵ
(X + ξ, Y + η)

= Nφ(X,Y ) + (∇φXφ
∗) η − φ∗ ((∇Xφ) η)− (∇φY φ

∗) ξ + φ∗ ((∇Y φ) ξ) ,(25)

for allX + ξ, Y + η ∈ Γ(E).

Proof. By direct computa on, using (∇φXφ
∗) η = ∇φX (φ

∗η)− φ∗(∇φXη).

If∇ is a torsion-free connec on, then we obtain

Nφ(X,Y ) = (∇φXφ)Y − (∇φY φ)X + φ ((∇Y φ)X − (∇Xφ)Y ) . (26)

Theorem 2. If∇ is a torsion free connec on onM such that∇φ = 0, then the general-
ized (a, b)-structure Ĵ is∇-integrable.
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Proof. Condi on∇φ=0 implies from (26) thatNφ = 0. Then, the same condi on gives
us∇X(φY ) = φ(∇XY ) for all vector fieldsX,Y . We also compute

(∇φX (φ
∗η))Z = (φX)(η(φZ))− η (φ(∇φXZ)) =

= (φX)(η(φZ))− η(∇φXφZ) = (∇φXη(φZ) = φ∗ (∇φXη) (Z),

for every vector field Z. We obtain

∇φX (φ
∗η) = φ∗ (∇φXη) ,

and then (∇φXφ
∗) η = 0, for every vector field X and 1-form η. This rela on and

∇φ = 0 in (25) imply thatN∇
Ĵ

= 0, so Ĵ is∇-integrable.
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