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ON THE QUATERNIONIC W-CURVES IN THE SEMI-EUCLIAN SPACES

Ozgiir BOYACIOGLU KALKAN?

Abstract

In this paper, the position vector of the semi-real spatial quaternionic W-curve
in £ and the position vector of the semi-real quaternionic W-curve in E5 are given
and we obtain some characterizations for the semi-real spatial quaternionic W-
curvein Ei” and the semi-real quaternionic W-curve in E§ by using position vectors.
Also, we characterize unit semi-real quaternionic curves with respect to second cur-
vature k(s) and third curvature (r — e;epen, K)(s).
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1 Introduction

The quaternion was defined by Hamilton in 1843. His initial attempt was to gen-
eralize the complex numbers by introducing a three-dimensional object failed in the
sense that the algebra he constructed for these three dimensional object did not have
the desired properties. Hamilton discovered that the appropriate generalization is one
in which the scalar (real) axis is left unchanged whereas the vector (imaginary) axis is
supplemented by adding two further vector axes. There are different types of quater-
nions, namely: real, complex dual quaternions. A real quaternion is defined as ¢ =
qo + q1e1 + gqze2 + gses is composed of four units {1, ey, e, e3} where ey, e, e3 are
orthogonal unit spatial vectors, ¢; (i = 0, 1,2, 3) are real numbers and this quaternion
can be written as a linear combination of a real part (scalar) and vectorial part (a spatial
vector) [4, 8, 17].

In 1985, the Serret-Frenet formulas for a quaternionic curve in Euclidean spaces E?
and E* are given by Bharathi and Nagaraj [1]. By using these formulas Karadag and
Sivridag gave some characterizations for quaternionic inclined curves in terms of the
harmonic curvatures in Euclidean spaces E® and E* [9] . The Serret-Frenet formulae
for the quaternionic curves in the semi-Euclidean space E;‘ are given in [4]. The semi-
real quaternionic Bs slant helices in four dimensional space E§ are studied in [8].
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A curve « is called W-curve (or a helix), if it has constant Frenet curvatures. W-curves
in the Euclidean space E™ have been studied intensively. The simplest examples are
circles as planar W-curves and helices as non-planar W-curves in E3.

All W-curves in the Minkowski 3-space are completely classified by Walrave in [16].
For example, the only planar spacelike W-curves are circles and hyperbolas. All spacelike
W-curves in the Minkowski space-time Ef are studied in [13]. The examples of null W-
curves in the Minkowski space-time are given in [2]. Timelike W-curves in the same space
have been studied in [15]. The position vectors of a spacelike W-curve (or a helix), i.e.,
curve with constant curvatures, with spacelike, timelike and null principal normal in the
Minkowski 3-space Ef’ are given in [6]. The position vectors of a timelike and a null helix
in Minkowski 3-space are studied in [7].

In this paper, we obtain position vectors of the spatial semi-real quaternionic W-
curves in Ei” and by using position vectors we give some characterizations for semi-
real spatial quaternionic W-curves whose image lies on the semi-real spatial quater-
nionic sphere Sf, semi-real spatial quaternionic hyperbolical space Hg in E? Then we
obtain the position vector of the semi-real quaternionic W-curve in E% and by using
the position vector we give some characterizations for semi-real quaternionic W-curve
whose image lies on the semi-quaternionic sphere SS’, semi-quaternionic hyperbolical
space H; and semi-real quaternionic null cone C(m) in E3. Also, we characterize unit
semi-real quaternionic curves with respect to second curvature k(s) and third curvature

(r —eieren, K)(s).

2 Preliminaries

To meet the requirements in the next sections, the basic elements of the theory of
guaternionsinthe Euclidean space are briefly presented in this section. A more complete
elementary treatment can be found in [17].

A real quaternion is defined with ¢ = ae_1> + be_g> + ce—g> + de_4> or(qg =S4+ 7(1 where
the symbols S; = d and 7,] = ae_1> + be_g> + ce_3> denote scalar and vector part of g) such
that

i) e xe = —e(e), 1<i<3, e(e))==+1
i) e xe; = e(e)e(e))et, inRS
e xe = —e(e)e(e))et, inRs

18

where e(e]) = h,(e], ) and (ijk) is an even permutation of (123) [4]. Notice here
that we denote the set of all semi-real quaternions by @,

Qv ={q|q=aef +bes +cej +dej; a,bc,d€R, ¢3¢ € Ry}
where visanindex v = 1, 2. If e/ is spacelike or timelike vector, then a(?ﬁ) =+lor—1
respectively.

Using these basic products we can now expand the product of two quaternions (as-
suming for the moment that the product is distributive with respect to addition):

p><q:Squ+<7p,7q>+Sp7q+5q7p+7p/\7q, Vp,q € Qy,
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where we have used the scalar and cross products in semi-Euclidean space E% [4]. The

conjugate of the semi-quaternion ¢ is denoted by ¢ and defined ag = S, — V;. This
defines the symmetric real-valued, non-degenerate, bilinear form h,, as follows:

h, : Q,xQ,— R, v=12;

hi(p,q) = % [e(p)e(q)(p x aq) + (q)e(p) (¢ x ap)]  foreveryp,q € R,
hapra) = 5 1-<(p)e(a)(p x aq) — cla)e(p)(a x ap)] for every p,q € R

Hence it is called semi-real quaternion inner product [4]. The norm of a semi-real quater-
nion ¢ = (q1,92,93,94) € Quis

2
lall® = |hw(a. q)| = |e(q)(q x aq)| = |—af — a3 + a3 + di].

If h, = (p,q) = 0 then semi-real quaternions p and ¢ are called h-orthogonal. If
llg|l = 1 then g is called a semi-real unit quaternion [12]. ¢ is called a semi-real spatial
quaternion whenever ¢ + g = 0 [1]. Moreover, the quaternionic product of two semi-
real spatial quaternionsis p x ¢ = (p,q) + p AL q. q is a semi-real temporal quaternion
whenever ¢ — g = 0. Any general g can be written as
q=5(q+aq) + 3(q — aq) [4].

It is known that the groups of unit real quaternions and unitary matrices SU(2) are
isomorphic. Thus, spherical concepts in S® such as meridians of longitude and parallels
of latitude are explained with assistance elements of SU(2). Furthermore, the element
of SO(3) can match with each element of S3 [11].

The four-dimensional Euclidean space E* is identified with the space of unit quater-
nions. A semi-real quaternionic sphere with origin m and radius R > 0 in E§ is

S3(m, R) = {p € Qv : h(p — m,p —m) = R’}
and the semi-real quaternionic hyperbolical space is defined by
H3(m,R)={p € Q,:h(p—m,p—m)=—R?}.
The semi-real quaternionic null cone with the vertex at a point m in E§ is defined by

C(m)={p€Qy:h(p—m,p—m)=0}

Theorem 1. The three-dimensional semi-Euclidean space Ef is identified with the space
of spatial quaternions {p € Q, | p + vp = 0} in an obvious manner. Let I = [0, 1]
denote the unit interval of the real line R and
3
a:I1—=Q, s—a(s)= Z%‘(S)(% 1<:1<3,
i=1
be the parameter along the smooth curve. Let the parameter s be chosen such that

3 !/
the tangent t = o/(s) = > «,(s)e; has unit magnitude and {t,n1,ns} be the Frenet
i=1
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trihedron of the differentiable semi-Euclidean space curve in the semi-Euclidean space
E3. Then the Frenet equations are

/
" = epkn
’
ny = —etkt + e, N0 (1)
Ny = —Epy,TN1

where k is the principal curvature, r is torsion of o and h(t,t) = e, h(ni,n1) = €p,
h(na,n2) = en, [4].

Theorem 2. The 4-dimensional semi-Euclidean space R‘Ql is identified with the space of
unit semi-quaternions which is denoted by Q,. Let

B:ICR—Q,
4
s— f(s) =Y Bi(s)er, (1<i<4), e=1
i=1

be a smooth curve defined over the interval 1. Let the parameter s be chosen such that

4
the tangent T = f3'(s) = . f;(s)e; has unit magnitude. Let {T, N1, Na, N3} be the

i=1

K3
Serret-Frenet frame in the point (3(s) of the semi-real quaternionic curve 3 and s be the
arc-length parameter of the semi-real quaternionic curve 3. Then the Frenet equations
are

T = enKN
N{ = —een, KT +ep,kNo 2)
Ny = —etkNi+ ey, (r —eeren, K) N3
Nj = —ep,(r —eeren, K)No
where
K=en|T'||, M =c(t xT), Ny=e(n1 xT), Nz=cei(ngxT),

h(T7 T) = €T, h(N17N1) == 5N17 h(N27N2) - ETETLU h(N37N3) - ETETLZ’ [4]

The Serret-Frenet formulae of the semi-real quaternionic curve 5 = 3(s) is obtained
by making use of the Serret-Frenet formulae of the semi-real spatial quaternionic curve
a = «(s) where a is a semi-real spatial quaternionic curve associated with the semi-
real quaternionic curve $ and {t,n1,na} is the Frenet frame of the semi-real spatial
guaternionic curve « in R;f. Moreover, there are relationships between curvatures of
the curves 8 and «a. These relations can be explained because the torsion of 3 is the
principal curvature of the curve . Also, the bitorsion of 5 is (r — eieren, K), where
r is the torsion of o and K is the principal curvature of 3. These relations are only
determined for quaternions, [4].

3 Position Vectors of Semi-real Spatial Quaternionic W-curves in
EY

Let @ = a(s) be unit speed semi-real spatial quaternionic W-curve in E with non-
zero curvatures k and r. Then the position vector of the curve «(s) satisfies the equation

a(s) = A(s)t(s) + p(s)na(s) + v(s)na(s) (3)
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for some differentiable functions A(s), u(s), v(s). Then differentiating (3) with respect
to s and using the corresponding Frenet equations (1), we obtain

N—¢gkp—1 = 0 (4)
EmkA+p —eprv = 0
emr+v = 0
From these equations in (4) we get
1+ eny (Eny? + etk® ) + €n k=0 (5)

Here we have distinguished the following cases:
Case 1. When «(s) is a semi-real spatial quaternionic W-curve with spacelike princi-
pal normal ny. Thus €,,, = 1, therefore from (5) we get

p 4 (en,r? + ek + k=0 (6)

In this case we have the following subcases.
Case 1.1. If £,,,72 + £;k% = 0, (6) takes the form p”/ + k = 0. Then the solution of
this equation is
u(s) = —k% +cs+c (7)

where c1, co € R. By using (7), from (4) we get

As) = —sth% + stclk% + (ere2k + 1)s,
v(s) = rk% - cy% — CoTs.
Thus we find the position vector as;
a(s) = [k% + (escok + 1)3} t(s) + {—k% +e15+ co| ma(s)

(8)

+ {rk% — clr% - 627‘8} na(s)
Case 1.2. If En2T2 + ¢,k% > 0, then the solution of the equation (5) is
(1(s) = ¢1 cos(\/enyr2 + €k28) + casin(y/en,r2 + e1k2s) — W (9)
where c1, co € R. By using (9), from (4) we get
k2 k .
Als) = (1- sn;é%tkz)s + \/&Zﬁw sin(\/en, 12 + ek?s)
_ etk 2 2
N cos(/en,r? + 1k?s)

_ cir H 2 2
v(s) = ——F——=sin(\/ep, 1+ e:k?s
( ) \/W ( naT" + €t )
___cor / 2 2 _ rks
+\/€n27‘2+5tk2 COS( Eny T etk 8) + EngT2+etk?
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Thus we find the position vector as;

k2 ercik : 2 2
als) = [(1 - Enzfgw)s + \/ﬁsm(\/%r + e1k?2s)
o cos(\/ms)] (s)

+ [01 cos(\/en, 12 + etk?8) + casin(y/en, 12 + £1k?s) —

k
6n27‘2+€tk2] ni (S)

cir H 2 2
———__sin(y/En,T ctk?s
* |: v5n2T2+€tk2 ( n2 Te )
cor 2 2 rks
+7€n2ﬂ+€tk2 cos(y/en,r? + 1k?s) + T } na(s)

o2 terk?
(10)
Case 1.3. If 5,72 + /k? < 0, we get
fi(s) = cre”sV et ek ) sy mEngri ek sn2r2‘k_gtk2 (11)

where c{, co € R. By using (11), from (4) we get

_ N eik? _ eicrk —5/—€ngr?—ctk?
A(s) = (1 6n27‘2+5tk2) Em—

+ crcok es\/fanTQfsth
\/ —Engr2—etk?
e /— 2__ 1.2
'U(S) _ 017; 26 s EngT etk
\ —Engri—cik

_ cor es\/—angﬂ—etkz_{_ gks ;
/75n2r275tk2 EngTe+tetk

Thus we find the position vector as;

a(s) = {(1—8@555&@)5— N Al

\/—£n2 r2—gik?

eicok Sv/—En,r2—cik?
+7/7—5n2r2—5tk26 n2 t(s)

— — _ 2_ 2
o [ere VIR eV et R () (12)

+|——ar efs\/fenzﬂfsth
\/ —Engr?—etk?

__cor  _s\/—enyr?—eik? rks
RV  erre | m2(5)

Case 2. When «(s) is a semi-real spatial quaternionic W-curve with timelike principal
normal n;. Thus e,, = —l andso ¢,, = &; = 1. In that case 2 + k% > 0 and (5) takes
the form p”/ — (72 + k?)u — k = 0. Then the solution of this equation is

u(s) = cre Vv’ TR pesVritRT Tsz (13)
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where c1, co € R. By using (13), from (4) we get

)\(5) = (1 k2 )8— cak e—sm+ ok GSW

o r24k2 Vr2+k2 VrZ+k2 ’
U(S) — __ar —svr2+k 4 —cr eS\/T2+k’ _ _rks
o k2 ¢ Vr2+k? r4k?"
Thus we find the position vector as;
— k2 k__ —sVr2+k? k Vr2k?
als) = [(1— ph)s — S GhoemsVITR 4 gl ooV ()
+ [Cle—sx/r?—i-k? T pesVIHRE _ 7‘25’]/”2:| ni(s) (14)

cir —svVr24+-k2 cor sVr24+k? rks
+ [_\/rz—i-k ¢ + \/r2+k2e Tor24k2e n2(8)

Corollary 1. Let « = «(s) be a unit speed semi-real spatial quaternionic W-curve in
E3 with spacelike principal normal ny and the curvatures k(s) > 0, 7(s) # 0 for each
selR.

a)lf sn2r2 +e,k? = 0, then the position vector of the curve is given by the equation
(8).

b)If 5n2r2 + &,k% > 0, then the position vector of the curve is given by the equation
(10).

c)if 5n2r2 + e4k? < 0, then the position vector of the curve is given by the equation
(12).

Corollary 2. Let o« = «(s) be a unit speed semi-real spatial quaternionic W-curve in Ei”
with timelike principal normal ny and the curvatures k(s) > 0,7(s) # Oforeachs € IR.
Then the position vector of the curve is given by the equation (14).

4 Semi-Real Spatial Quaternionic W-curves on S7 and H¢ in F}

In this section we give some characterizations for the semi-real spatial quaternionic
W-curves whose image lies on the semi-real spatial quaternionic sphere S% and semi-real
quaternionic hyperbolic space Hg.

Theorem 3. Let o« = «(s) be a unit speed semi-real spatial quaternionic W-curve in Ef’
with the spacelike principal normal ny and non-zero curvatures k(s), r(s).

a) If €,,7% + ek? = 0, then « lies on a semi-real spatial quaternionic sphere S? if
and only if for each s € I C R the curvatures satisfy the following equalities:

0 = —Ef,kQ + 61561]6 + et(coks + 1)s (15)
—% = —k‘% +c1s+c
0 = rk% — 017”% — Cors
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b) If 5n2r2 + k% > 0, then « lies on a semi-real spatial quaternionic sphere S% if
and only if for each s € I C R the curvatures satisfy the folowing equalities:

_ _ erk? etc1k ; 2 2
0 = (1 8nzrgﬁtkg)s*#— S sin(\/en,r? + k?s)
ercok 2 2
——==t% ___cos(\/ep, 172 + e1k?s
\/ 5n27"2+5tk72 ( n2 t )

€ — / 2 2 i / 2 2 k
_?t = —01COS( EnyT +€tk S)—CQSIH( EnyT +Etk’ S)‘f‘m

0 = ———4Csin(y/en,r? + th?s
Vomarire SNV Enar® & edhs)
_cor —) 7 rks
+\/6n27‘2+€tk2 COS( EnaT + Etk S) + 8n27’2+6tk:2

c) If en,7? + £/k? < 0, then « lies on a semi-real spatial quaternionic sphere S% if
and only if for each s € I C R the curvatures satisfy the folowing equalities:
_ _ erk? - ercrk —S+/—En,r2—ck?
0 = (1 5”27"2+5tk2)s \/fanTQfEthe ’
+ ercok €5\ [Engr2+etk?
N/ —Engr?—etk?

2 2 2 2
_& 016_81/_8"271 —etk + 6265’/_5"271 —e¢k? k

k Eng T2 terk?
0 = cir e~ [Eng T2+t k?
\/ —€nyr2—etk?
o cor sy/—€nyr2—eik? + rks
v/ 2 2¢ EngT2terk?
—EngT —erk ng t

Proof. a)let us first suppose that « lies on a semi-real spatial quaternionic sphere Sf
with center m

h(a —m,a —m) = a* (16)

for every s € I C R. Differentiation in s gives

h(t,a) =0 (17)
By a new differentiation, we find that
h(ni,B) = —%. (18)
Then one more differentiation in s gives
h(ns,B) = 0. (19)

By using Egs. 16,17, 18 and 19in Eq. 8, we find equations in 15. Conversely, we assume
that equations in 15 holds for each s € I C R then from Eq. 8 we find the position

: e : 2 :
vector of the curve o = —£tny which satisfies the equation h(a, @) = (1)~ = a® which

means that the curve lies in Sf. The proofs of (b) and (c) are analogous to the proof of
(a). ]



Quaternionic W-curves 31

Theorem 4. Let a = «(s) be a unit speed semi-real spatial quaternionic W-curve in Ei”
with the timelike principal normal ny and non-zero curvatures k(s), v(s). Then « lies on
a semi-real spatial quaternionic hyperbolic space Hg ifand only if foreach s € I C R
the curvatures satisfy the following equalities:

_ (1 k2 )S c1k 6—5\/7"2+k2+ cok esx/r2+k2

TR T VR

— 2 2 2 2
_1 cle svVri+k +0268\/T +k2 2k .
k r+4+k
0 = —_ar 6—5\/r2+k2 + _cor 68\/r2+k2 _ _rks
Vr2 k2 VrZ+k? r2+k2
Proof. The proof is analogous to the proof of Theorem 3. O

Corollary 3. There is no semi-real spatial quaternionic W-curve with the spacelike princi-
pal normal ny and non-zero curvatures k(s) and r(s) whose image lies on the semi-real
spatial quaternionic hyperbolic space H3 in E3.

Corollary 4. There is no semi-real spatial quaternionic W-curve with the timelike principal
normal ny and non-zero curvatures k(s) and r(s) whose image lies on the semi-real
spatial quaternionic sphere S3 in E3.

Corollary 5. Let a(s) be a unit speed semi-real spatial quaternionic W-curve in Ei)’ with
spacelike or timelike principal normal n; and non-zero curvatures k(s) and r(s). If . is
a semi-real spatial quaternionic spherical curve or semi-real spatial quaternionic hyper-
1

bolical curve, then the radius of S? or Hf isT = 1.

5 Position Vector of Semi-Real Quaternionic W-curve in £,

Let 3 = B(s) be unit speed semi-real quaternionic W-curve in E3 with non- zero
curvatures K, kand (r—eere N, K). Then the position vector of the curve /3(s) satisfies
the equation

B(s) = A(s)T(s) + p(s)N1(s) +v(s)Na(s) + o(s) N3(s) (20)

for some differentiable functions A(s), u(s), v(s), o(s). These functions are called com-
ponent functions (or simply components) of the position vector.

Then differentiating (20) with respect to s and using the corresponding Frenet equa-
tions (2), we obtain

N —egenKp—1 = (212)
eny KX+ 1/ — etkry

en kit + 7' — eny[r — ereren, Klo

I
o o o o

ey |1 — eteren, K|y + 0 =

From the first three equations in (21) we get

_eteny (M =1)

- (22)
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7= TR +e)) (23)
and
o= kK[:t—Ea?;TJZ}lKT {575)\ + (en, k2 + KQ))\/ _ 5mk2] ‘ (24)

By using (24) in the last equation in (21) we easily obtain the differential equation
A& [en2k2 — K%+ etfr — 5t5T5N1K]2] p— K2[r — steTleK]2)\ =0. (25)

The solution of the previous equation is

A(s) = c1cos(Q18) + casin(Q18) + c3 cosh(Qas) + ¢4 sinh(Q2s) (26)
where
o 1 2 2 2
Qi = B (C’+ \/C + 4K2?[r — gieren, K] ) ,
g 1 2 2 2
Q5= B (C— \/C' +4K?[r — gieren, K] >
and

C = £n2k2 — K%+ efr — etETleK]z.

Then using (26) in (22), (23) and (24) we get

h = Q) (e Q1)+ eacos(Qu).

+Q2(c3 sinh(Q25) + ¢4 cosh(Qas)) — 1]

v o= TEN[(K? — £Q3) (c1cos(Q1s) + c2sin(Qys))

+ (K? + £4Q3) (c3 cosh(Q25s) + ¢4 sinh(Q25))]
and

o = Al-enk?+ (en,k* + K*)Q1 — £,Q3) (—c1sin(Q18) + ¢2 cos(Q15))

+ ((en k* + K*)Q2 + £,Q3) (c3sinh(Q25) + c4 cosh(Q25)) — en, k2] .
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- EzEnQENl . ey .
where A = TRTr—ereren, K- Thus we find the position vector as;

B(s) = [c1cos(Q1s) + casin(Q18) + c3 cosh(Qas) + c4sinh(Q2s)] T'(s)

ateNl

+—71 [—c1Q15in(Q15) + c2Q1 cos(Q15)

+c3Q2 sinh(Q2s) + c4Q2 cosh(Q2s) — 1] Ni(s)

+51t (K2 = 2Q1) (c1cos(Q1s) + casin(Q19))
+ (K? + £1Q3) (c3 cosh(Q2s) + casinh(Q2s))] Na(s)
+A [—en k? + (en k2 + K?)Q1 — £:Q3) (—c1 sin(Q18) + ¢2 cos(Q15))

+ ((en k* + K*)Q2 + £,Q3) (c3sinh(Q25) + c4 cosh(Q25))] N3(s).
(27)

Theorem 5. Let 5 = [((s) be a unit speed semi-real quaternionic W-curve in Eg‘ with
non-zero curvatures K (s), k(s) and (r — eeren, K)(s) for each s € I R. Then position
vector of the curve is given by the equation (27).

Next, the following theorems characterize unit semi-real quaternionic curves with
respect to second curvature k(s) and third curvature (r — ereren, K)(s).

Theorem 6. Let 3 = [3(s) be a unit speed semi-real quaternionic curve in E§ with non-
zero curvature K (s). Then (3 has k(s) = 0 if and only if ( lies fully in a 2-dimensional
quaternionic hyperplane of E3, spanned by {T, N1}.

Proof. If B has k(s) = 0, then by using the Frenet equations we obtain 8’ = T, 8" =
en, KNy, 8" = e K2T + e, K' N1. Next, all higher order derivates of 3 are combina-
tions of vectors 3’ and 3", so by using the MacLaurin expansion for 3 given by

3

. L2 . s
Bs) = B(0) + B(0)s + B(O) o7 + B(O) 5 + -y

we conclude that £ lies fully in a quaternionic hyperplane of Q,,, spanned by {7, N1 }.
Conversely, assume that 3 satisfies the assumptions of the theorem and lies fully
in a quaternionic hyperplane 7 of Q,. Then there exist points p,q € Egl, such that 5
satisfies the equation of 7 given by h(3(s) — p,q) = 0, where ¢ € 7. Differentiating
the last equation yields h(7,q) = h(N1,q) = 0. Next differentiation of the equation
h(N1,q) = 0gives e, kh(Na2,q) = 0. Since N3 is the unit semi-real quaternionic vector
perpendicular to {T', N1 }, it follows that h(Na, ¢) # 0. Therefore k = 0. O

Theorem 7. Let 5 = [(s) be a unit speed semi-real quaternionic curve in E§ with
non-zero curvature K, k. Then  has r = eieren, K if and only if 3 lies fully in a 3-
dimensional quaternionic hyperplane of E%, spanned by {T', N1, Ny}.

We omit the proof, as it is similar to the proof of Theorem 7.
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6 Semi-real quaternionic W-curves on S5, H; and C(m) in Ej

In this section we give some characterizations for the semi-real quaternionic W-curve
whose image lies on the semi-real quaternionic sphere S3, semi-real quaternionic hyper-
bolic space H3 and semi-real quaternionic null cone C'(m).

Theorem 8. Let 3 = [(s) be a unit speed semi-real quaternionic W-
curve in Ej with non-zero curvatures K(s), k(s), (r — ewren,K)(s) and

2
112 k . . -
EN, ( F) > ET€n, (m) . Theimage of the curve lies on a semi—real quater-

nionic sphere SS if and only for each s € I C R the curvatures satisfy the following
equalities:

= ¢1c0s(Q15) + casin(Q15) + c3 cosh(Qas) + cq sinh(Q2s),
—eeren; = c1Qisin(Q1s) — Q1 cos(Q15) — c3Qa sinh(Qas) — caQ2 cosh(Qas) — 1,
0= [(K? - &@Q}) (c1 cos(Qus) + casin(Qus))
+ (K2 + £:Q3) (c3 cosh(Q25) + casinh(Q25))]
—en k% = [(En k2 + K Q1 — £:Q}) (—c1sin(Q1s) + 2 cos(Q19))

+ ((en k* + K*)Q2 + £:Q3) (c3sinh(Q25) + c4 cosh(Q25)) + en, k2] .
(28)

Proof. Let us first suppose that 3 lies on a semi-real quaternionic sphere S% with
center m
h(B —m, B —m) = a® (29)

for every s € I C R. Differentiation in s gives
h(T, B) = 0. (30)
By a new differentiation, we find that
h(Ny, B) = -2 (31)
Then one more differentiation in s gives
h(N2,8) =0 (32)
and

k
r—eeeren, K)'

h(N376) = —&En ETEN, K( (33)

By using Egs. (30), (31), (32) and (33) in Eq. (27), we find equations in (28).
Conversely, we assume that equations in (28) hold for each
s € I C R then from Eq. (27) we find the position vector of the curve
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&t

_een B Y
5 — K N1 <€7557L15T‘€]V1 K(r—atﬁTENlK)

N3 which satisfies the equation

2 2 .
h(B,8) = en, (%) + €T€n, (W) = a? which means that the curve

liesin S3. O

Theorem 9. Let 5 = [(s) be a unit speed speed semi-real quaternionic W- curve
in E3 with non-zero curvatures K(s), k(s), (r — eeren,K)(s) and

2
1\2 k . . .
EN, (F) < ETEn, (K(’“TTSMK)) . Theimage of the curve lies on a semi-real quater-

nionic hyperbolic space H 13 if and only if for each s € I C R the curvatures satisfy the
equalities (28).

Theorem 10. Let 3 = [(s) be a unit speed semi-real quaternionic W-
curve in Ej with non-zero curvatures k(s), K(s), (r — eweren,K)(s) and

2
1\2 k . . .
EN, (F) = ET€En, (m) . Theimage of the curve lies on a semi-real quater-

nionic null cone C(m) if and only if for each s € I C R the curvatures satisfy equalities
(28).

The proof of the Theorem 9 and Theorem 10 is analogous with the proof of Theorem
8.

Corollary 6. Let 3(s) be a unit speed semi-real quaternionic W-curve in E3 with non-
zero curvatures K (s), k(s) and (r — eieren, K)(s) foreach s € I C R. If fisa
semi-real  quaternionic  spherical  curve, then the radius of SS is

_ 1\2 k 2
a=1\eN (?) +ETen, K(r—eteren; K) ) °

Corollary 7. Let (3(s) be a unit speed semi-real quaternionic W-curve in E§ with non-
zero curvatures K (s), k(s) and (r — e;eren, K)(s) foreach s € I C R. If fisa
semi-real quaternionic  hyperbolical curve, then the radius of H f’ is

, 2
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