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A SPECIAL TYPE OF QUARTER-SYMMETRIC NON-METRIC CONNECTION ON
P-SASAKIAN MANIFOLDS
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Abstract

The object of the present paper is to study a special type of quarter-symmetric
non-metric connecƟon on a P-Sasakian manifold. It is shown that the first Bianchi
idenƟty of the curvature tensors on P-Sasakian manifolds admits a special type
of quarter-symmetric non-metric connecƟon. Among others we prove that if P-
Sasakian manifolds admit a special type of quarter-symmetric non-metric connec-
Ɵon, then they are Ricci-Semi-symmetric. Finally, an illustraƟve example is given to
verify our result.

2000MathemaƟcs Subject ClassificaƟon:53C15, 53C25.
Keywords: P-Sasakianmanifold, quarter-symmetric non-metric connecƟon, Levi-

Civita connecƟon, recurrent manifold, Ricci-semi-symmetric.

1 IntroducƟon

In 1977, AdaƟ and Matsumoto [2] defined Para-Sasakian and Special Para-Sasakian
manifolds which are considered special cases of an almost paracontact manifold intro-
duced by Sato [16]. Para-Sasakian manifolds have been studied by De and Pathak [7],
Matsumoto, Ianus and Mihai [13], De, Özgür, Arslan, Murathan and Yildiz [8], Yildiz, Tu-
ran and Acet [17], Barman ([3], [4]) and many others.

In 1924, Friedmann and Schouten [9] introduced the idea of semi-symmetric con-
necƟon on a differenƟable manifold. A linear connecƟon ∇̃ on a differenƟable manifold
M is said to be a semi-symmetric connecƟon if the torsion tensor T of the connecƟon
∇̃ saƟsfies T (X,Y ) = u(Y )X − u(X)Y, where u is a 1-form and ρ is a vector field
defined by u(X) = g(X, ρ), for all vector fields X,Y ∈ χ(M), χ(M) denotes the set
of all differenƟable vector fields onM .

In 1932, Hayden [11] introduced the idea of semi-symmetric metric connecƟons on
a Riemannian manifold (M, g). A semi-symmetric connecƟon ∇̃ is said to be a semi-
symmetric metric connecƟon if ∇̃g = 0.
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AŌer a long gap the study of a semi-symmetric connecƟon ∇̂ saƟsfying ∇̂g ̸= 0,was
iniƟated by Prvanović [15] with the name pseudo-metric semi-symmetric connecƟon
and was just followed by Andonie [1]. The semi-symmetric connecƟon ∇̂ is said to be a
semi-symmetric non-metric connecƟon.

In 1975, Golab [10] defined and studied quarter-symmetric connecƟon in differen-
Ɵable manifolds with affine connecƟons. A linear connecƟon ∇̄ on a Riemannian man-
ifold M is called a quarter-symmetric connecƟon [10] if its torsion tensor T saƟsfies
T (X,Y ) = η(Y )ϕX − η(X)ϕY, where η is a 1-form and ϕ is a (1,1) tensor field. In
parƟcular, if ϕX = X , then the quarter-symmetric connecƟon reduces to the semi-
symmetric connecƟon [9]. Thus the noƟon of the quarter-symmetric connecƟon gener-
alizes the noƟon of the semi-symmetric connecƟon.

A quarter-symmetric connecƟon ∇̆ is said to be a quarter-symmetric metric connec-
Ɵon if ∇̆g = 0. Moreover, if a quarter-symmetric connecƟon ∇̄ saƟsfies the condiƟon
(∇̄Xg)(Y, Z) ̸= 0, then ∇̄ is said to be a quarter-symmetric non-metric connecƟon, for
allX,Y, Z ∈ χ(M).

In 2012, Barman [5] studied another type of quarter-symmetric non-metric connec-
Ɵon ∇̄ for which we get (∇̄Xg)(Y, Z) = 2η(X)g(Y, Z), where η is a non-zero 1-form.
The author called this a quarter-symmetric non-metric ϕ-connecƟon and in that paper
semisymmetric and Ricci-symmetric with respect to the quarter-symmetric non-metric
ϕ-connecƟons are also invesƟgated.

In this paper we study P-Sasakianmanifolds with respect to a special type of quarter-
symmetric non-metric connecƟon. The paper is organized as follows: AŌer introducƟon
in secƟon 2, we give a brief account of the P-Sasakianmanifolds. In secƟon 3, we define a
special type of quarter-symmetric non-metric connecƟon on P-Sasakian manifolds. Sec-
Ɵon 4 is devoted to establishing the relaƟon between the curvature tensors with respect
to a special type of the quarter-symmetric non-metric connecƟon and the Levi-Civita
connecƟon. In this secƟon the covariant derivaƟve with Levi-Civita connecƟon on the
curvature tensor of P-Sasakian manifolds admiƫng a special type of quarter-symmetric
non-metric connecƟon ∇̄ and the recurrent curvature tensor with Levi-Civita connec-
Ɵon are also studied in this paper. In the next secƟon, we invesƟgate if the P-Sasakian
manifold is Ricci-Semi-symmetric with respect to a special type of quarter-symmetric
non-metric connecƟon. Finally, we construct an example of 5-dimensional P-Sasakian
manifold with respect to a special type of the quarter-symmetric non-metric connecƟon,
which verifies the results of SecƟon 4 and SecƟon 5.

2 P-Sasakian manifolds

An n-dimensional differenƟable manifold M is said to be an almost para-contact
structure (ϕ, ξ, η, g), if there exist ϕ a (1, 1) tensor field, ξ a vector field, η a 1-form and
g the Riemannian metric onM which saƟsfy the condiƟons

ϕξ = 0, η(ϕX) = 0, η(ξ) = 1, g(X, ξ) = η(X), (1)

ϕ2(X) = X − η(X)ξ, (2)
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g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), (3)

(∇Xη)Y = ∇Xη(Y )− η(∇XY ) = g(X,ϕY ) = (∇Y η)X, (4)

for any vector fieldsX,Y onM .

Moreover, it (ϕ, ξ, η, g) saƟsfy the condiƟons

dη = 0, ∇Xξ = ϕX, (5)

(∇Xϕ)Y = ∇Xϕ(Y )− ϕ(∇XY ) = −g(X,Y )ξ − η(Y )X

+2η(X)η(Y )ξ, (6)

thenM is called a para-Sasakian manifold or briefly a P-Sasakian manifold.

In a P-Sasakian manifold the following relaƟons hold ([2], [16]) :

η(R(X,Y )Z) = g(R(X,Y )Z, ξ) = g(X,Z)η(Y )

−g(Y, Z)η(X), (7)

R(ξ,X)Y = η(Y )X − g(X,Y )ξ, (8)

R(ξ,X)ξ = X − η(X)ξ, (9)

R(X,Y )ξ = η(X)Y − η(Y )X, (10)

S(X, ξ) = −(n− 1)η(X), (11)

S(ϕX, ϕY ) = S(X,Y ) + (n− 1)η(X)η(Y ), (12)

whereR andS are the curvature tensor and the Ricci tensor of the Levi-Civita connecƟon
respecƟvely.

3 Quarter-symmetric non-metric connecƟon on
P-Sasakian manifolds

Theorem 1. The linear connecƟon ∇̄XY = ∇XY − η(X)ϕY + g(X,Y )ξ − η(Y )X −
η(X)Y + η(X)η(Y )ξ is a special type of quarter-symmetric non-metric connecƟon on
P-Sasakian manifolds.
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Proof. This secƟon deals with a special type of quarter-symmetric non-metric connec-
Ɵon on P-Sasakian manifold. Let (M, g) be a P-Sasakian Manifold with the Levi-Civita
connecƟon∇ and we define a linear connecƟon ∇̄ onM by

∇̄XY = ∇XY − η(X)ϕY + g(X,Y )ξ − η(Y )X − η(X)Y + η(X)η(Y )ξ. (13)

Using (13), the torsion tensor T ofM with respect to the connecƟon ∇̄ is given by

T (X,Y ) = ∇̄XY − ∇̄Y X − [X,Y ] = η(Y )ϕX − η(X)ϕY. (14)

The linear connecƟon ∇̄ saƟsfying (14) is a quarter-symmetric connecƟon.

So the equaƟon (13) with the help of (1) turns into

(∇̄Xg)(Y, Z) = ∇̄Xg(Y, Z)− g(∇̄XY, Z)− g(Y, ∇̄XZ) = 2η(X)g(Y, Z)

+2η(X)g(Y, ϕZ)− 2η(X)η(Y )η(Z) ̸= 0. (15)

Thus, the linear connecƟon ∇̄ saƟsfying (14) and (15) is called a quarter-symmetric
non-metric connecƟon on P-Sasakian manifolds.

Conversely, we show that a linear connecƟon ∇̄ defined on M saƟsfying (14) and
(15) is given from equaƟon (13). LetH be a tensor field of type (1, 2) and we get

∇̄XY = ∇XY +H(X,Y ). (16)

Then we conclude that

T (X,Y ) = H(X,Y )−H(Y,X). (17)

Further, using (16), it follows that

(∇̄Xg)(Y, Z) = ∇̄Xg(Y, Z)− g(∇̄XY, Z)− g(Y, ∇̄XZ) = −g(H(X,Y ), Z)

−g(Y,H(X,Z)). (18)

In view of (15) and (18) it yields,

g(H(X,Y ), Z) + g(Y,H(X,Z)) = −2η(X)g(Y, Z)− 2η(X)g(Y, ϕZ)

+2η(X)η(Y )η(Z). (19)

Also using (19) and (17), we derive that

g(T (X,Y ), Z) + g(T (Z,X), Y ) + g(T (Z, Y ), X) = 2g(H(X,Y ), Z)
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+2η(X)g(Y, Z) + 2η(Y )g(X,Z)− 2η(Z)g(X,Y )− 2η(X)η(Y )η(Z).

From the above equaƟon it yields,

g(H(X,Y ), Z) =
1

2
[g(T (X,Y ), Z) + g(T (Z,X), Y ) + g(T (Z, Y ), X)]

−η(X)g(Y, Z)− η(Y )g(X,Z) + η(Z)g(X,Y ) + η(X)η(Y )η(Z). (20)

Now contracƟng Z in (20) and using (1) and (14), it implies that

H(X,Y ) = −η(X)ϕY + g(X,Y )ξ − η(Y )X − η(X)Y

+η(X)η(Y )ξ. (21)

Combining (16) and (21), it follows that

∇̄XY = ∇XY − η(X)ϕY + g(X,Y )ξ − η(Y )X − η(X)Y + η(X)η(Y )ξ.

Therefore Theroem 1 is proved.

4 Curvature tensor of a P-Sasakian manifold with respect to the
quarter-symmetric non-metric connecƟon

In this secƟon we obtain the expressions of the curvature tensor and Ricci tensor of
M with respect to the quarter-symmetric non-metric connecƟons on P-Sasakian mani-
folds defined by (13).

Analogous to the definiƟons of the curvature tensor of M with respect to the Levi-
Civita connecƟon∇, we define the curvature tensor R̄ ofM with respect to the quarter-
symmetric non-metric connecƟons ∇̄ by

R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z, (22)

whereX,Y, Z ∈ χ(M).

Using (2) and (13) in (22), we obtain

R̄(X,Y )Z = R(X,Y )Z + η(X)(∇Y ϕ)(Z)− η(Y )(∇Xϕ)(Z) + g(Y, Z)∇Xξ

−g(X,Z)∇Y ξ + (∇Y η)(Z)X − (∇Xη)(Z)Y + (∇Xη)(Z)η(Y )ξ

−(∇Y η)(Z)η(X)ξ + η(Y )η(Z)∇Xξ − η(X)η(Z)∇Y ξ + η(X)g(Y, ϕZ)ξ

−η(Y )g(X,ϕZ)ξ + η(X)g(Y, Z)ξ − η(Y )g(X,Z)ξ + η(X)η(Z)ϕY

−η(Y )η(Z)ϕX + η(Y )η(Z)X − η(X)η(Z)Y. (23)

By making use of (4), (5) and (6) in (23), we have
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R̄(X,Y )Z = R(X,Y )Z + g(Y, ϕZ)X − g(X,ϕZ)Y + g(Y, Z)ϕX

−g(X,Z)ϕY + η(X)g(Y, Z)ξ − η(Y )g(X,Z)ξ + g(X,Z)Y

−g(Y, Z)X + η(Y )η(Z)X − η(X)η(Z)Y. (24)

So equaƟon (24) turns into

R̄(X,Y )Z = −R̄(Y,X)Z

and
R̄(X,Y )Z + R̄(Y, Z)X + R̄(Z,X)Y = 0. (25)

We call (25) the first Bianchi idenƟty with respect to a special type quarter-symmetric
non-metric connecƟon on P-Sasakian manifolds.

PuƫngX = ξ in (24) and using (1) and (8), we get

R̄(ξ, Y )Z = −g(Y, Z)ξ + η(Z)Y + g(Y, ϕZ)ξ − η(Z)ϕY. (26)

Taking the inner product of (24) with U, it follows that

˜̄R(X,Y, Z, U) = R̃(X,Y, Z, U) + g(Y, ϕZ)g(X,U)− g(X,ϕZ)g(Y, U)

+g(Y, Z)g(ϕX,U)− g(X,Z)g(ϕY,U) + g(X,Z)g(Y, U)

−g(Y, Z)g(X,U) + η(X)η(U)g(Y, Z)− η(Y )η(U)g(X,Z)

+η(Y )η(Z)g(X,U)− η(X)η(Z)g(Y, U), (27)

where U ∈ χ(M), ˜̄R(X,Y, Z, U) = g(R̄(X,Y )Z,U) and R̃(X,Y, Z, U) =
= g(R(X,Y )Z,U).

From equaƟon (27) it yields,

˜̄R(X,Y, Z, U) = − ˜̄R(X,Y, U, Z).

Let {e1, ..., en} be a local orthonormal basis of the tangent space at a point of the
manifoldM . Then by puƫngX = U = ei in (27) and taking summaƟon over i, 1 ≤ i ≤
n and also using (1), we get

S̄(Y, Z) = S(Y, Z) + (n− 2)g(Y, ϕZ) + (α+ 2− n)g(Y, Z)

+(n− 2)η(Y )η(Z), (28)

where S̄ and S denote the Ricci tensor of M with respect to ∇̄ and ∇ respec-
Ɵvely and α = g(ei, ϕei), g(ei, ϕZ)g(Y, ei) = g(Y, ϕZ), g(ei, Z)g(Y, ei) = g(Y, Z),
η(ei)η(ei) = 1 and η(ei)g(ei, Z) = η(Z).
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From (28), it implies that

S̄(Y, Z) = S̄(Z, Y ).

Again puƫng Z = ξ in (28) and using (1) and (11), we get

S̄(Y, ξ) = (α+ 1− n)η(Y ). (29)

Summing up all of the above equaƟons we can state the following proposiƟon:

ProposiƟon 1. For a P-Sasakian manifold M with respect to a special type of quarter-
symmetric non-metric connecƟon ∇̄

(i) The curvature tensor R̄ is given by
R̄(X,Y )Z = R(X,Y )Z + g(Y, ϕZ)X − g(X,ϕZ)Y + g(Y, Z)ϕX − g(X,Z)ϕY +
η(X)g(Y, Z)ξ−η(Y )g(X,Z)ξ+g(X,Z)Y −g(Y, Z)X+η(Y )η(Z)X−η(X)η(Z)Y,

(ii) The Ricci tensor S̄ is given by
S̄(Y, Z) = S(Y, Z) + (n− 2)g(Y, ϕZ) + (α+ 2− n)g(Y, Z) + (n− 2)η(Y )η(Z),

(iii)R̄(X,Y )Z = −R̄(Y,X)Z,

(iv)R̄(X,Y )Z + R̄(Y, Z)X + R̄(Z,X)Y = 0,

(v) The Ricci tensor S̄ is symmetric,

(vi) ˜̄R(X,Y, Z, U) = − ˜̄R(X,Y, U, Z).

DefiniƟon 1. A P-Sasakian manifoldM with respect to the Levi-Civita connecƟon is said
to be recurrent [14] if its curvature tensorR saƟsfies the condiƟon

(∇UR)(X,Y )Z) = η(U)R(X,Y )Z, (30)

where η is a non-zero 1-form andX,Y, Z, U ∈ χ(M).

Theorem 2. If the covariant derivaƟve of the curvature tensor on P-Sasakian manifolds
admits a special type of quarter-symmetric non-metric connecƟon ∇̄with Levi-Civita con-
necƟon and the recurrent of the curvature tensor admits a Levi-Civita connecƟon, then
the manifold is flat.

Proof. The equaƟon (23) turns into

(∇U R̄)(X,Y )Z = (∇UR)(X,Y )Z + g(X,ϕU)g(Y, Z)ξ − g(Y, ϕU)g(X,Z)ξ

+η(Z)g(Y, ϕU)X − η(Z)g(X,ϕU)Y + η(Y )g(Z, ϕU)X

−η(X)g(Z, ϕU)Y + η(X)g(Y, Z)ϕU − η(Y )g(X,Z)ϕU. (31)

If (∇U R̄)(X,Y )Z = 0 and using (30) in (31), we get
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η(U)R(X,Y )Z + g(X,ϕU)g(Y, Z)ξ − g(Y, ϕU)g(X,Z)ξ + η(Z)g(Y, ϕU)X

−η(Z)g(X,ϕU)Y + η(Y )g(Z, ϕU)X − η(X)g(Z, ϕU)Y + η(X)g(Y, Z)ϕU

−η(Y )g(X,Z)ϕU = 0. (32)

Puƫng U = ξ in (32) and using (1), it follows that

R(X,Y )Z = 0.

Hence the proof of Theorem 2 is completed.

5 P-Sasakian manifolds with respect to a special type quarter-
symmetric non-metric connecƟon ∇̄ is Ricci-Semi-symmetric

Theorem3. If P-Sasakianmanifolds admit a special type of quarter-symmetric non-metric
connecƟon, then they are Ricci-Semi-symmetric.

Proof. We characterize Ricci-Semi-symmetric on a P-Sasakian manifold admiƫng a spe-
cial type of quarter-symmetric non-metric connecƟon ∇̄.

R̄ · S̄ = (R̄(X,Y ) · S̄)(Z,U).

Then from the above equaƟon, we can write

R̄ · S̄ = S̄(R̄(X,Y )Z,U) + S̄(Z, R̄(X,Y )U). (33)

PuƫngX = ξ in (33), it follows that

R̄ · S̄ = S̄(R̄(ξ, Y )Z,U) + S̄(Z, R̄(ξ, Y )U). (34)

Using (1) and (26) in (34), we obtain

R̄ · S̄ = η(Z)S̄(Y, U) + η(U)S̄(Z, Y )− g(Y, Z)S̄(ξ, U)− g(Y, U)S̄(Z, ξ)

+g(Y, ϕZ)S̄(ξ, U) + g(Y, ϕU)S̄(Z, ξ)− η(Z)S̄(ϕY,U)

−η(U)S̄(Z, ϕY ). (35)

We take Z = ξ in (35) and using (1) and (29), we get

R̄ · S̄ = S̄(Y, U)− S̄(ϕY,U)− (α+ 1− n)g(Y, U)

+(α+ 1− n)g(Y, ϕU). (36)

Again puƫng U = ξ in (37) and also using (1) and (29), it implies that



A special type of quarter-symmetric non-metric connecƟon... 19

R̄ · S̄ = (α+ 1− n)η(Y )− (α+ 1− n)η(Y ) = 0. (37)

Thismeans that the P-Sasakianmanifold is Ricci-Semi-symmetricwith respect to a special
type of quarter-symmetric non-metric connecƟon. This completes the proof.

6 Example

Now, we give an example of a 5-dimensional P-Sasakian manifold admiƫng a special
type of quarter-symmetric non-metric connecƟon ∇̄,which verifies the skew-symmetric
property and the first Bianchi idenƟty of the curvature tensors R̄ of ∇̄.

We consider the 5-dimensional manifold {(x, y, z, u, v) ∈ R5}, where (x, y, z, u, v)
are the standard coordinates in R5.
We choose the vector fields

e1 =
∂

∂x
, e2 = e−x ∂

∂y
, e3 = e−x ∂

∂z
, e4 = e−x ∂

∂u
, e5 = e−x ∂

∂v
,

which are linearly independent at each point ofM .
Let g be the Riemannian metric defined by

g(ei, ej) =

{
1 if i = j
0 if i ̸= j; i, j = 1, 2, 3, 4, 5.

Let η be the 1-form defined by

η(Z) = g(Z, e1),

for any Z ∈ χ(M).
Let ϕ be the (1, 1)-tensor field defined by

ϕ(e1) = 0, ϕ(e2) = e2, ϕ(e3) = e3, ϕ(e4) = e4, ϕ(e5) = e5.

Using the linearity of ϕ and g, we have

η(e1) = 1, ϕ2Z = Z − η(Z)e1

and
g(ϕZ, ϕU) = g(Z,U)− η(Z)η(U),

for any vector fields Z,U ∈ χ(M). Thus for e1 = ξ, the structure (ϕ, ξ, η, g) defines an
almost paracontact metric structure onM .
Then we have

[e1, e2] = −e2, [e1, e3] = −e3, [e1, e4] = −e4, [e1, e5] = −e5,

[e2, e3] = [e2, e4] = 0, [e2, e5] = [e3, e4] = [e3, e5] = [e4, e5] = 0.
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The Levi-Civita connecƟon∇ of the metric tensor g is given by Koszul’s formula:

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]),

therefore we get the following:

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = 0, ∇e1e4 = 0, ∇e1e5 = 0,

∇e2e1 = e2, ∇e2e2 = −e1, ∇e2e3 = 0, ∇e2e4 = 0, ∇e2e5 = 0,

∇e3e1 = e3, ∇e3e2 = 0, ∇e3e3 = −e1, ∇e3e4 = 0, ∇e3e5 = 0,

∇e4e1 = e4, ∇e4e2 = 0, ∇e4e3 = 0, ∇e4e4 = −e1, ∇e4e5 = 0,

∇e5e1 = e5, ∇e5e2 = 0, ∇e5e3 = 0, ∇e5e4 = 0, ∇e5e5 = −e1.

In view of the above relaƟons, we see that

∇Xξ = ϕX, (∇Xϕ)Y = −g(X,Y )ξ − η(Y )X + 2η(X)η(Y )ξ, for all e1 = ξ.

Therefore, the manifold is a P-Sasakian manifold with the structure (ϕ, ξ, η, g).

Using (13) in the above equaƟons, we obtain

∇̄e1e1 = 0, ∇̄e1e2 = −2e2, ∇̄e1e3 = −2e3, ∇̄e1e4 = −2e4, ∇̄e1e5 = −2e5,

∇̄e2e1 = 0, ∇̄e2e2 = −e1, ∇̄e2e3 = 0, ∇̄e2e4 = 0, ∇̄e2e5 = 0,

∇̄e3e1 = 0, ∇̄e3e2 = 0, ∇̄e3e3 = −e1, ∇̄e3e4 = 0, ∇̄e3e5 = 0,

∇̄e4e1 = 0, ∇̄e4e2 = 0, ∇̄e4e3 = 0, ∇̄e4e4 = −e1, ∇̄e4e5 = 0,

∇̄e5e1 = 0, ∇̄e5e2 = 0, ∇̄e5e3 = 0, ∇̄e5e4 = 0, ∇̄e5e5 = −e1.

Now, we can easily obtain the non-zero components of the curvature tensors as follows:

R(e1, e2)e1 = e2, R(e1, e2)e2 = −e1, R(e1, e3)e1 = e3, R(e1, e3)e3 = −e1,

R(e1, e4)e1 = e4, R(e1, e4)e4 = −e1, R(e1, e5)e1 = e5, R(e1, e5)e5 = −e1,

R(e2, e3)e2 = e3, R(e2, e3)e3 = −e2, R(e2, e4)e2 = e4, R(e2, e4)e4 = −e2,

R(e2, e5)e2 = e5, R(e2, e5)e5 = −e2, R(e3, e4)e3 = e4, R(e3, e4)e4 = −e3,

R(e3, e5)e3 = e5, R(e3, e5)e5 = −e3, R(e4, e5)e4 = e5, R(e4, e5)e5 = −e4

and

R̄(e1, e2)e2 = R̄(e1, e3)e3 = R̄(e1, e4)e4 = R̄(e1, e5)e5 = −3e1,

R̄(e2, e1)e2 = R̄(e3, e1)e3 = R̄(e4, e1)e4 = R̄(e5, e1)e5 = 3e1.

With the help of the above curvature tensors with respect to a special type of quarter-
symmetric non-metric connecƟon, we find the Ricci tensors as follows:

S̄(e1, e1) = 0, S̄(e2, e2) = S̄(e3, e3) = S̄(e4, e4) = S̄(e5, e5) = −3.
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LetX, Y, Z and U be any four vector fields given by
X = a1e1 + a2e2 + a3e3 + a4e4 + a5e5, Y = b1e1 + b2e2 + b3e3 + b4e4 + b5e5,
Z = c1e1 + c2e2 + c3e3 + c4e4 + c5e5 and W = d1e1 + d2e2 + d3e3 + d4e4 + d5e5,
where ai, bi, ci, di, for all i = 1, 2, 3, 4, 5 are all non-zero real numbers.

Using the above curvature tensors admiƫng the quarter-symmetric non-metric con-
necƟon, we obtain

R̄(X,Y )Z = −3(a1b2c2 + a1b3c3 + a1b2c2 + a1b4c4 + a1b5c5)e1 = −R̄(Y,X)Z.

Hence we also conclude that from equaƟon(25), we get

R̄(X,Y )Z + R̄(Y, Z)X + R̄(Z,X)Y = 0.

Therefore, the curvature tensor of a P-Sasakian manifold admiƫng a special type of
quarter-symmetric non-metric connecƟon ∇̄ saƟsfies the skew-symmetric property and
the first Bianchi idenƟty of the curvature tensors R̄ of ∇̄. Now, we see that the Ricci-
Semi-symmetricwith respect to the quarter-symmetric non-metric connecƟons from the
above relaƟons as follows:

R̄ · S̄ = 0.

Hence P-Sasakian manifolds will be Ricci-Semi-symmetric with respect to the quarter-
symmetric metric connecƟons.
The above arguments tell us that the 5-dimensional P-Sasakian manifolds with respect
to the quarter-symmetric non-metric connecƟons under consideraƟon are in agreement
with SecƟon 5.
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