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A SPECIAL TYPE OF QUARTER-SYMMETRIC NON-METRIC CONNECTION ON
P-SASAKIAN MANIFOLDS
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Abstract

The object of the present paper is to study a special type of quarter-symmetric
non-metric connection on a P-Sasakian manifold. It is shown that the first Bianchi
identity of the curvature tensors on P-Sasakian manifolds admits a special type
of quarter-symmetric non-metric connection. Among others we prove that if P-
Sasakian manifolds admit a special type of quarter-symmetric non-metric connec-
tion, then they are Ricci-Semi-symmetric. Finally, an illustrative example is given to
verify our result.
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1 Introduction

In 1977, Adati and Matsumoto [2] defined Para-Sasakian and Special Para-Sasakian
manifolds which are considered special cases of an almost paracontact manifold intro-
duced by Sato [16]. Para-Sasakian manifolds have been studied by De and Pathak [7],
Matsumoto, lanus and Mihai [13], De, Ozgiir, Arslan, Murathan and Yildiz [8], Yildiz, Tu-
ran and Acet [17], Barman ([3], [4]) and many others.

In 1924, Friedmann and Schouten [9] introduced the idea of semi-symmetric con-
nection on a differentiable manifold. A linear connection V on a differentiable manifold
M is said to be a semi-symmetric connection if the torsion tensor T' of the connection
V satisfies T(X,Y) = w(Y)X — u(X)Y, where u is a 1-form and p is a vector field
defined by u(X) = g(X, p), for all vector fields X,Y € x(M), x(M) denotes the set
of all differentiable vector fields on M.

In 1932, Hayden [11] introduced the idea of semi-symmetric metric connections on
a Riemannian manifold (M, g). A semi-symmetric connection V is said to be a semi-

symmetric metric connection if Vg = 0.
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After a long gap the study of a semi-symmetric connection \Y, satisfying @g = 0, was
initiated by Prvanovié¢ [15] with the name pseudo-metric semi-symmetric connection
and was just followed by Andonie [1]. The semi-symmetric connection V is said to be a
semi-symmetric non-metric connection.

In 1975, Golab [10] defined and studied quarter-symmetric connection in differen-
tiable manifolds with affine connections. A linear connection V on a Riemannian man-
ifold M is called a quarter-symmetric connection [10] if its torsion tensor T’ satisfies
T(X,Y) = n(Y)9pX — n(X)opY, where nis a 1-form and ¢ is a (1,1) tensor field. In
particular, if X = X, then the quarter-symmetric connection reduces to the semi-
symmetric connection [9]. Thus the notion of the quarter-symmetric connection gener-
alizes the notion of the semi-symmetric connection.

A quarter-symmetric connection Vissaid to be a quarter-symmetric metric connec-
tion if ﬁg = 0. Moreover, if a quarter-symmetric connection V satisfies the condition
(?Xg)(Y, Z) # 0, then V is said to be a quarter-symmetric non-metric connection, for
all X, Y, Z € x(M).

In 2012, Barman [5] studied another type of quarter-symmetric non-metric connec-
tion V for which we get (Vxg)(Y, Z) = 2n(X)g(Y, Z), where 7 is a non-zero 1-form.
The author called this a quarter-symmetric non-metric ¢-connection and in that paper
semisymmetric and Ricci-symmetric with respect to the quarter-symmetric non-metric
¢-connections are also investigated.

In this paper we study P-Sasakian manifolds with respect to a special type of quarter-
symmetric non-metric connection. The paper is organized as follows: After introduction
in section 2, we give a brief account of the P-Sasakian manifolds. In section 3, we define a
special type of quarter-symmetric non-metric connection on P-Sasakian manifolds. Sec-
tion 4 is devoted to establishing the relation between the curvature tensors with respect
to a special type of the quarter-symmetric non-metric connection and the Levi-Civita
connection. In this section the covariant derivative with Levi-Civita connection on the
curvature tensor of P-Sasakian manifolds admitting a special type of quarter-symmetric
non-metric connection V and the recurrent curvature tensor with Levi-Civita connec-
tion are also studied in this paper. In the next section, we investigate if the P-Sasakian
manifold is Ricci-Semi-symmetric with respect to a special type of quarter-symmetric
non-metric connection. Finally, we construct an example of 5-dimensional P-Sasakian
manifold with respect to a special type of the quarter-symmetric non-metric connection,
which verifies the results of Section 4 and Section 5.

2 P-Sasakian manifolds
An n-dimensional differentiable manifold M is said to be an almost para-contact

structure (¢, &, 7, g), if there exist ¢ a (1, 1) tensor field, £ a vector field, 1 a 1-form and
g the Riemannian metric on M which satisfy the conditions

$§ =0, n(¢X)=0, n¢) =1, g(X,§ =n(X), (1)

¢*(X) = X —n(X)¢, (2)
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9(dX,8Y) = g(X,Y) —n(X)n(Y),

(Vxn)Y =Vxn(Y) —n(VxY) = g(X,¢Y) = (Vyn)X,
for any vector fields X, Y on M.
Moreover, it (¢, &, 1, g) satisfy the conditions

dn =0, Vx&=0X,

(Vxo)Y =Vxo(Y) —d(VxY) = —g(X,Y){ —n(Y)X
+2n(X)n(Y)¢E,

then M is called a para-Sasakian manifold or briefly a P-Sasakian manifold.

In a P-Sasakian manifold the following relations hold ([2], [16]) :

n(R(X,Y)Z) = g(R(X,Y)Z,§) = g(X, Z)n(Y)
—g(Y, Z)n(X),

R(EX)Y =n(Y)X —g(X, V)¢,

R(§, X)§ = X —n(X)E,

R(X,Y)E =n(X)Y —n(Y)X,

5(X,8) = =(n = 1)n(X),

S(@X,9Y) = S(X,Y) + (n — D)n(X)n(Y),

13

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(12)

(12)

where R and S are the curvature tensor and the Ricci tensor of the Levi-Civita connection

respectively.

3 Quarter-symmetric non-metric connection on
P-Sasakian manifolds

Theorem 1. The linear connection VxY = VxY —n(X)¢Y + g(X,Y)E —n(Y)X —
n(X)Y + n(X)n(Y )& is a special type of quarter-symmetric non-metric connection on

P-Sasakian manifolds.
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Proof. This section deals with a special type of quarter-symmetric non-metric connec-
tion on P-Sasakian manifold. Let (M, g) be a P-Sasakian Manifold with the Levi-Civita
connection V and we define a linear connection V on M by

VxY = VxV —n(X)oY + g(X,Y)¢ —n(Y)X —n(X)Y +n(X)n(Y)§.  (13)

Using (13), the torsion tensor 7" of M with respect to the connection V is given by

T(Xv Y) = vX}/ - vY‘X - [Xv Y] = n(Y)(bX - 77(X)¢Y (14)
The linear connection V satisfying (14) is a quarter-symmetric connection.

So the equation (13) with the help of (1) turns into

(Vxg)(Y.Z)=Vxg(Y,Z) - g(VxY,Z) — g(Y,VxZ) =2n(X)g(Y, 2)
+2n(X)g(Y,9Z) — 2n(X)n(Y)n(Z) #0.  (15)

Thus, the linear connection V satisfying (14) and (15) is called a quarter-symmetric
non-metric connection on P-Sasakian manifolds.

Conversely, we show that a linear connection V defined on M satisfying (14) and
(15) is given from equation (13). Let H be a tensor field of type (1,2) and we get

VxY =VxY + H(X,Y). (16)

Then we conclude that

T(X,Y)=H(X,Y) - H(Y, X). (17)

Further, using (16), it follows that

(?ngyv Z) = ng(Yv Z) _g(vXK Z) - 9<Ya ?XZ) - _g(H(X7Y)7Z>
—9(Y,H(X,Z)). (18)

In view of (15) and (18) it yields,

g(H(X,Y),Z2) +g(Y, H(X, Z)) = =2n(X)g(Y, Z) — 2n(X)g(Y, ¢Z)
+2n(X)n(Y)n(2). (19)

Also using (19) and (17), we derive that

9(T(X,Y), Z2) +9(T(2,X),Y) +9(T(2,Y), X) = 29(H(X,Y), Z)
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+2n(X)g(Y, Z) +2n(Y)g(X, Z) — 2n(Z2)g(X,Y) — 2n(X)n(Y)n(2).

From the above equation it yields,

g(H(X,)Y),Z) = %[Q(T()ﬁ Y),Z)+9(T(Z,X),Y)+g(T(Z,Y), X)]
—n(X)g(Y,Z) =n(Y)g(X, Z) +n(Z)g(X,Y) + n(X)n(Y)n(2). (20)

Now contracting Z in (20) and using (1) and (14), it implies that

H(X,Y)=-n(X)9Y +g(X,Y)§ —n(Y)X —n(X)Y
+n(X)n(Y)§. (21)

Combining (16) and (21), it follows that

VxY =VxY —n(X)oY + g(X,Y)E —n(Y)X — n(X)Y +n(X)n(Y)E.

Therefore Theroem 1 is proved. ]

4 Curvature tensor of a P-Sasakian manifold with respect to the
quarter-symmetric non-metric connection

In this section we obtain the expressions of the curvature tensor and Ricci tensor of
M with respect to the quarter-symmetric non-metric connections on P-Sasakian mani-
folds defined by (13).

Analogous to the definitions of the curvature tensor of M with respect to the Levi-
Civita connection V, we define the curvature tensor R of M with respect to the quarter-
symmetric non-metric connections V by

R(X,Y)Z =VxVyZ—-VyVxZ—Vixy|Z, (22)
where XY, Z € x(M).

Using (2) and (13) in (22), we obtain

R(X,Y)Z = R(X,Y)Z +n(X)(Vy9)(Z) = n(Y)(Vx®)(Z) + g(Y, Z)VxE
—9(X, 2)Vy &+ (Vym)(Z)X — (Vxn)(2)Y + (Vxn)(Z)n(Y)E
—(Vym)(Z)n(X)§ +n(Y)N(Z)VxE —n(X)n(Z)VyE +n(X)g(Y,0Z)§
—n(Y)g(X,02)¢ +n(X)g(Y, 2)§ —n(Y)g(X, 2)§ +n(X)n(Z)pY
—n(Y)n(Z)¢X +n(Y)n(2)X —n(X)n(Z2)Y. (23)

TN

By making use of (4), (5) and (6) in (23), we have
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R(X,Y)Z = R(X,Y)Z + g(Y,02)X — g(X,02)Y + g(Y, Z)$X
—9(X, Z2)oY +n(X)g(Y, 2) —n(Y)g9(X, Z) + 9(X, 2)Y
—9(Y, 2)X +n(Y)n(Z)X —n(X)n(2)Y. (24)

So equation (24) turns into
R(X,Y)Z =-R(Y,X)Z

and
R(X,Y)Z+ R(Y,Z)X + R(Z,X)Y =0. (25)

We call (25) the first Bianchi identity with respect to a special type quarter-symmetric
non-metric connection on P-Sasakian manifolds.

Putting X = £ in (24) and using (1) and (8), we get

R(,Y)Z = —g(Y,Z)E +n(2)Y + g(Y,0Z)E — n(Z)¢Y. (26)

Taking the inner product of (24) with U, it follows that

R(X,Y,2,U) = R(X,Y, Z,U) + g(Y, $Z)g(X,U) — 9(X, 6Z)g(Y, U)
+9(Y, 2)9(6X,U) — g(X, Z)g(Y,U) + g(X, Z)g(Y,U)
—9(Y, 2)g(X,U) +n< ) Z)

n(U)g(Y, Z) —n(Y)n(U)g(X,
+n(Y)n(2)g(X,U) = n(X)n(Z)g(Y,U
where U € x(M), ]E’(X,Y,Z,U) = g(R(X,Y)Z,U) and E(X,Y,Z,U) =

From equation (27) it yields,

) (27)

R(X.Y,Z,U) = -R(X,Y.U, Z).

Let {e1,...,e,} be a local orthonormal basis of the tangent space at a point of the
manifold M. Then by putting X = U = ¢; in (27) and taking summationoveri, 1 <17 <
n and also using (1), we get

S(Y,2) = S(Y,Z) + (n—2)g(Y,9Z) + (o +2 = n)g(Y, Z)
+(n = 2)n(Y)n(2), (28)
where S and S denote the Ricci tensor of M with respect to V and V respec-
tively and o = g(ei7 d)ei)> g(ei7 d)Z)g(Ya 61') = g(Y7 ¢Z)> g(ei7 Z)g(Y7 ei) = g(}/ﬁ Z)?
n(ei)n(e:) = 1and n(e;)glei, Z) = n(2).
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From (28), it implies that
S(Y,Z)=S(2,Y).

Again putting Z = £ in (28) and using (1) and (11), we get

S(Y,€) = (a+1—n)n(Y). (29)
Summing up all of the above equations we can state the following proposition:

Proposition 1. For a P-Sasakian manifold M with respect to a special type of quarter-
symmetric non-metric connection V

(i) The curvature tensor R is given by
R(X,Y)Z = R(X,Y)Z + g(Y,0Z)X — g(X,02)Y + g(Y, Z)pX — g(X, Z)pY +
n(X)g(Y, 2)§—n(Y)g(X, Z2)§+9(X, Z2)Y —g(Y, Z) X +n(Y)n(Z) X —n(X)n(2)Y,

(i) The Ricci tensor S is given by

(iR(X,Y)Z = —R(Y, X)Z,
(VR(X,Y)Z +R(Y,Z)X + R(Z,X)Y =0,
(v) The Ricci tensor S is symmetric,

i) R(X,Y, Z,U) = —R(X,Y, U, Z).

Definition 1. A P-Sasakian manifold M with respect to the Levi-Civita connection is said
to be recurrent [14] if its curvature tensor R satisfies the condition

where n is a non-zero 1-formand X, Y, Z, U € x(M).

Theorem 2. [f the covariant derivative of the curvature tensor on P-Sasakian manifolds
admits a special type of quarter-symmetric non-metric connection V with Levi-Civita con-
nection and the recurrent of the curvature tensor admits a Levi-Civita connection, then
the manifold is flat.

Proof. The equation (23) turns into

(VuR)(X,Y)Z = (VuR)(X,Y)Z + g(X,¢U)g(Y, Z)€ — g(Y,0U)g(X, Z)¢
+n(Z)g(Y, U)X —n(2)g(X, oU)Y +n(Y)g(Z, U)X
—n(X)g(Z,pU)Y +n(X)g(Y, Z)oU —n(Y)g(X, Z)oU. (31)

If (VuyR)(X,Y)Z = 0and using (30) in (31), we get
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N(U)R(X,Y)Z + g(X,0U)g(Y, Z)§ — g(Y,0U)g(X, Z)E +n(Z)g(Y, oU) X
—n(2)9(X, U)Y +n(Y)g(Z, oU) X — n(X)g(Z, pU)Y + n(X)g(Y, Z)pU
—n(Y)g(X, Z)gU = 0. (32)

Putting U = £ in (32) and using (1), it follows that

R(X,Y)Z =0.

Hence the proof of Theorem 2 is completed.
O

5 P-Sasakian manifolds with respect to a special type quarter-
symmetric non-metric connection V is Ricci-Semi-symmetric

Theorem 3. If P-Sasakian manifolds admit a special type of quarter-symmetric non-metric
connection, then they are Ricci-Semi-symmetric.

Proof. We characterize Ricci-Semi-symmetric on a P-Sasakian manifold admitting a spe-
cial type of quarter-symmetric non-metric connection V.

R-S=(R(X,Y)-9)(ZU).
Then from the above equation, we can write
R-S=S(R(X,Y)Z,U)+ S(Z,R(X,Y)U). (33)
Putting X = £ in (33), it follows that

R-S=SR(E&Y)Z,U)+8(Z R(EY)U). (34)
Using (1) and (26) in (34), we obtain
R-S=n(Z)SY,U)+n(U)S(Z,Y) - g(Y,2)5(&U) — g(Y,U)S(Z,¢)
+9(Y,¢2)5(&,U) + g(Y,¢U)S(Z,€) — n(Z)S(¢Y, U)
—n(U)S(Z,¢Y).  (35)

We take Z = £ in (35) and using (1) and (29), we get

R-S=SY,U)—-S(Y,U)— (a+1—-n)g(Y,U)
+(a+1—n)g(Y,oU). (36)

Again putting U = £ in (37) and also using (1) and (29), it implies that
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R-S=(a+1-n)nY)—(a+1—-n)nY)=0. (37)
This means that the P-Sasakian manifold is Ricci-Semi-symmetric with respect to a special
type of quarter-symmetric non-metric connection. This completes the proof. ]
6 Example

Now, we give an example of a 5-dimensional P-Sasakian manifold admitting a special
type of quarter-symmetric non-metric connection V, which verifies the skew-symmetric
property and the first Bianchi identity of the curvature tensors R of V.

We consider the 5-dimensional manifold {(z,y, z,u,v) € R®}, where (z,y, 2, u, v)
are the standard coordinates in R°.

We choose the vector fields
0 0 0

0
—X —XT X
%, €2 =¢€ 67;7 €3 =¢€

eg =€ "—,es=€ —

0z’ ou ov’

€] =
which are linearly independent at each point of M.

Let g be the Riemannian metric defined by

ey { L i=]
I =0 i i#g 0, =1,234,5

Let n be the 1-form defined by

n(Z) = g(Z,e1),

forany Z € x(M).
Let ¢ be the (1, 1)-tensor field defined by

p(e1) =0, dle2) = ez, d(ez) = ez, dlea) = e, d(e5) = e5.
Using the linearity of ¢ and g, we have
n(er) =1, 9*Z =7 —n(Z)ex
and

9(¢Z,9U) = g(Z,U) —n(Z)n(U),

for any vector fields Z, U € x(M). Thus for ey = &, the structure (¢, &, 7, g) defines an
almost paracontact metric structure on M.
Then we have

le1,e2] = —ea, [e1,e3] = —es, [e1, e4] = —eq, [e1,e5] = —e5,

[e2,e3] = [e2,e4] = 0, [e2, e5] = [e3,e4] = [e3, 5] = [eq, e5] = 0.
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The Levi-Civita connection V of the metric tensor g is given by Koszul’s formula:

29(VxY, Z) X9(Y,Z2)+Yg(Z, X) - Zg(X,Y)

_Q(Xv [Y7 Z]) - Q(K [X’ Z]) +9(Z7 [Xv Y]),

therefore we get the following:

Ve, e1 =0, Ve ea =0, Ve,e3 =0, Ve,ea =0, Ve, e5 =0,
Ve, €1
Ve361
Ve461 = €4, Ve462 = 0, V6463 = 0, Ve4e4 = —e1, ve465 = 0,

= €2, v6262 = —é1, v62€3 = 07 v6264 = O) v6265 = 07

= €3, ve362 = 07 v6363 = —e€q, v€364 = 07 v8365 = 07

VGSel = 657 v€5€2 - 07 ve563 - O; vese4 - 07 v6565 = —e1.
In view of the above relations, we see that
Vx§=¢X, (Vxo)Y = —g(X,Y)§ —n(Y)X + 2n(X)n(Y)E, forall e;

Therefore, the manifold is a P-Sasakian manifold with the structure (¢, &, 7, g).

Using (13) in the above equations, we obtain

65161 = 0, 66162 = —262, 66163 = —263, 66164 = —284, ?6165 =
?3261 = 0, 66262 = —e1, 66263 = 0, 66264 = 0, ve265 = O,
?3361 = 0, 66362 = 0, 66363 = —e€1, ?ege4 = O, ve365 = O,
?,3461 = 0, 66462 = 0, 63463 = 0, ?,3464 = —e€1, 66465 = 0,
66561 = 0, ?6562 = 0, 66563 = 0, 66564 = 0, ?6565 = —e1.

R(ey,e2)er = ez, R(e1,ea)ea = —eq, R(e1,e3)er = es, R(er,es)es =

R(e1,eq)er = ey, R(e1,eq)es = —e1, R(er,es)er = es, R(er,es)es

R(ez,e3)e2 = e3, R(ea,e3)es = —e2, R(ea,eq)ea = ey, R(ez,eq)ey

R(ez,e5)e2 = e5, R(ea,e5)es = —ea2, R(es,eq)es = ey, R(es,eq)ey

R(es,es5)es = e5, R(e3,es)es = —e3, R(eq,e5)eq = e5, R(es,e5)es
and

R(el, 62)62 = R(el, 63)63 = R(61,€4)64 = R(el, 65)65 = —361,

R(eg, 61)62 = R(eg, 61)63 = R(€4,€1)€4 = R(65, 61)65 = 361.

=¢.

With the help of the above curvature tensors with respect to a special type of quarter-

symmetric non-metric connection, we find the Ricci tensors as follows:

S(e1,e1) = 0,S(e2,e2) = S(es, e3) = S(eq, e4) = S(es,e5) = —3.
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Let X, Y, Z and U be any four vector fields given by
X = aie1 + ases + ages + ageq + ases, Y = breq + boeg + bzes + bgey + bses,
Z = cre1 + coeo + cze3 + cqeq + cses and W = dyeq + doeg + dzes + daeq + dses,
where a;, b;, ¢;, d;, forallt = 1,2, 3,4, 5 are all non-zero real numbers.

Using the above curvature tensors admitting the quarter-symmetric non-metric con-
nection, we obtain

R(X,Y)Z = —3(a1bacy + aibscs + ajbaca + arbscy + arbses)e; = —R(Y, X)Z.
Hence we also conclude that from equation(25), we get
R(X,Y)Z+ R(Y,Z)X + R(Z,X)Y = 0.

Therefore, the curvature tensor of a P-Sasakian manifold admitting a special type of
quarter-symmetric non-metric connection V satisfies the skew-symmetric property and
the first Bianchi identity of the curvature tensors R of V. Now, we see that the Ricci-
Semi-symmetric with respect to the quarter-symmetric non-metric connections from the
above relations as follows:

R-S=0.

Hence P-Sasakian manifolds will be Ricci-Semi-symmetric with respect to the quarter-
symmetric metric connections.

The above arguments tell us that the 5-dimensional P-Sasakian manifolds with respect
to the quarter-symmetric non-metric connections under consideration are in agreement
with Section 5.
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