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Series III: Mathematics, Informatics, Physics, 435-442

https://doi.org/10.31926/but.mif.2019.12.61.2.21

NEW FIXED POINT THEOREM FOR GENERALIZED
CONTRACTIONS

Alexandrina Maria PROCA1

Abstract

In this paper we give a Ciric type fixed point theorem in a complete met-
ric space; this theorem extends other well-known fixed point theorems ([7],
[8], [9]). Two examples are given to demonstrate the importance of our work.
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1 Introduction and preliminaries

Definition 1. Let (X, d) be a metric space. A mapping T : X → X is a contrac-
tion if there exists a number q, 0 ≤ q ≤ 1, such that the condition

d (Tx, Ty) ≤ q · d (x, y)

holds, for all x, y ∈ X.

The well-known Banach contraction principle (BCP) [1] is the following:

Theorem 1. If the T : X → X is a contraction mapping of a complete metric
space, then:

(i) (∃!) x∗ ∈ X, fixed point for T ;

(ii) {Tnx} → x∗ for n→∞, (∀) x ∈ X;

(iii) d (Tnx, x∗) ≤ qn

1− q
d (x, Tx) .

Because of its importance in mathematical theory, many authors gave gen-
eralisations of it in many directions (see [1]-[18]). One of the most well-known
generalisation of the BCP is Ciric fixed point theorem (see [7],[8], [9] ).
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Definition 2. Let (X,d) be a metric space. An operator T : X → X is a Picard
operator if and only if

(i) (∃!)x∗ ∈ X, fixed point for T ;

(ii) {Tnx} → x∗ for n→∞, (∀) x ∈ X.

Ciric gives the next theorem in [7] , which is a very important result in fixed
point theory:

Theorem 2. [7] Let (X, d) be a complete metric space,and an operator T : X →
X. If there exists a ∈ [0, 1) such that

d (Tx, Ty) ≤ a ·max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
(∀)x, y ∈ X, then T is a Picard operator.

After then, many authors give important generalizations of Ciric’s theorem in
a complete metric space ([11], [15], [16]) or in partial metric space [13].

2 Main results

In this paper we give a generalisation of Ciric type fixed point theorem, by
replacing the value of the maximum with

M∗(x, y) = max{d(x, y) + |d (x, Tx)− d (y, Ty)| ,
d(x, Tx) + |d (x, y)− d (y, Ty)| , (1)

d(y, Ty) + |d (x, y)− d (x, Tx)| ,
d(x, Ty) + d(y, Tx) + |d(x, Tx)− d(y, Ty)|

2

}
Theorem 3. Let (X,d) be a complete metric space, T : X → X such that there
exist a ∈ [0, 1) and

d(Tx, Ty) ≤ a ·M∗(x, y), (∀)x, y ∈ X, (2)

where M∗(x, y) is defined in (1). Then, T is a Picard operator.

Proof. Let x0 ∈ X. Put xn = Tnx0, x0 ∈ X, (∀)n ∈ N. If there exists n ∈ N
such that xn+1 = xn, then xn+1 = Tnx0 = Txn = xn, then, by induction xn+p =
xn, ∀p ∈ N. That is xn is a fixed point of T. Now, we suppose that xn+1 6= xn, for
all n ∈ N. Then, d(xn, xn+1) > 0, for all n ∈ N.

We denote by dn = d(xn, xn+1). For any n ∈ N, we have

d (Txn, Txn+1) = d (xn+1, xn+2) = dn+1 (3)
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and

M∗(xn, xn+1) = max

{
d(xn, xn+1) + |d(xn, Txn)− d(xn+1, Txn+1)| ,

d(xn, Txn) + |d(xn, xn+1)− d(xn+1, Txn+1)| ,
d(xn+1, Txn+1) + |d(xn, xn+1)− d(xn, Txn)| ,
1

2
(d(xn, Txn+1) + d(xn+1, Txn)+

+ |d(xn, Txn)− d(xn+1, Txn+1)|)
}

(4)

= max

{
d(xn, xn+1) + |d(xn, xn+1)− d(xn+1, xn+2)| ,

d(xn, xn+1) + |d(xn, xn+1)− d(xn+1, xn+2)| ,
d(xn+1, xn+2) + |d(xn, xn+1)− d(xn, xn+1)| ,
1

2
(d(xn, xn+2) + d(xn+1, xn+1)+

+ |d(xn, xn+1)− d(xn+1, xn+2)|)
}

If dn+1 ≥ dn, then |dn − dn+1| = dn+1 − dn and from triangle inequality
d(xn, xn+2) ≤ d(xn, xn+1) + d (xn+1, xn+2) we obtain

M∗ (xn, xn+1) ≤ max

{
dn+1,

dn + dn+1 + dn+1 − dn
2

}
= dn+1.

From the assumption of the theorem, we get

dn+1 = d(xn+1, xn+2)

= d(Txn, Txn+1) ≤ a ·M∗(xn, xn+1)

≤ a · dn+1

⇔ (1− a) · dn+1 ≤ 0,

which is false, because a ∈ [0, 1) . So, dn+1 < dn, (∀)n ∈ N.
For dn+1 < dn, we have |dn − dn+1| = dn − dn+1 and

M∗ (xn, xn+1) ≤ max{2dn − dn+1, dn+1,
1

2
(dn + dn+1 + dn − dn+1)} (5)

= max {2dn − dn+1, dn+1, dn}

Combining (2), (3) and (5), for dn+1 < dn we obtain

dn+1 = d (Txn, Txn+1) ≤ a ·M∗ (xn, xn+1)

≤ a ·max {2dn − dn+1, dn+1, dn}
= a · (2dn − dn+1)
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(because 2dn − dn+1 > dn > dn+1). Hence

dn+1 ≤
2a

a+ 1
· dn = k · dn, (6)

if we denote by k =
2a

a+ 1
< 1, (∀) a ∈ [0, 1). This implies that {xn} is Cauchy

sequence. By completeness of (X, d), the sequence {xn} converges to some point
x∗ ∈ X.

From the assumption of Theorem 3, for x = xn and y = x∗, we have:

d(xn+1, Tx
∗) = d(Txn, Tx

∗) = d(xn+1, Tx
∗) ≤

≤ a ·max

{
d (xn, x

∗) + |d (xn, Txn)− d (x∗, Tx∗)| ,

d (xn, Txn) + |d (xn, x
∗)− d (x∗, Tx∗)| ,

d (x∗, Tx∗) + |d (xn, x
∗)− d (xn, Txn)| ,

1

2
(d(xn, Tx

∗) + d(x∗, Txn) + |d (xn, Txn)− d (x∗, Tx∗)|)
}

(7)

= a ·max

{
d (xn, x

∗) + |d (xn, xn+1)− d (x∗, Tx∗)| ,

d (xn, xn+1) + |d (xn, x
∗)− d (x∗, Tx∗)| ,

d (x∗, Tx∗) + |d (xn, x
∗)− d (xn, xn+1)| ,

1

2
(d(xn, Tx

∗) + d(x∗, xn+1) + |d (xn, xn+1)− d (x∗, Tx∗)|)
}
.

Taking the limit as n→∞ in (7), we deduce

d(x∗, Tx∗) ≤ a · d (x∗, Tx∗) .

Since a ∈ [0, 1) it results that

d(x∗, Tx∗) = 0,

that is x∗ is a fixed point of T.

Finally, we prove that the fixed point of T is unique. For this, let x∗, y∗ be
two fixed points of T, and suppose that x∗ 6= y∗. It follows, from the assumption
of the theorem:

d (x∗, y∗) ≤ a · d (x∗, y∗) ,

so d (x∗, y∗) = 0. Hence x∗ = y∗. Therefore, T has a unique fixed point.

Example 1. Let X = {A,B,C,D}, d the usual distance, d(A,B) = d(B,C) = 8,
d(A,C) = d(B,D) = 10, d(A,D) = 5, d(C,D) = 7 and T : X → X such that
TA = A, TB = C, TC = D, TD = A. We observe that X is a metric space.
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For x = A and y = B, we have d(TA, TB) = d(A,C) = 10 and

M(A,B) = max{d(A,B), d(A, TA), d(B, TB),

1

2
(d(A, TB) + d(B, TA))}

= max

{
8, 0, 8,

10 + 8

2

}
= 9.

Therefore, T does not satisfy conditions from Theorem 2 . Next, we prove that T
satisfies hypothesis of Theorem 3.

1. For x = A and y = B, d(Tx, Ty) ≤ a · M∗(x, y) we have d(TA, TB) =
d(A,C) ≤ a ·M∗(A,B), where M∗(A,B) = 26, so we obtain 10 ≤ a · 26

2. For x = A and y = C, d(Tx, Ty) ≤ a · M∗(x, y) we have d(TA, TC) =
d(A,D) ≤ a · M∗(A,B), where M∗(A,C) = 17 and d(A,D) = 5, so we
obtain 5 ≤ a · 17

3. For x = A and y = D, we have TA = TD = A, and the relation d(Tx, Ty) ≤
a ·M∗(x, y) hold for ∀a ∈ [0, 1)

4. For x = B and y = C,, the relation d(Tx, Ty) ≤ a ·M∗(x, y) is 7 ≤ a · 9

5. For x = B and y = D,, the relation d(Tx, Ty) ≤ a ·M∗(x, y) is 10 ≤ a · 13

6. For x = C and y = D,, the relation d(Tx, Ty) ≤ a ·M∗(x, y) is 5 ≤ a · 9

It is sufficient that a = 7/9, and we can apply Theorem 3. We deduce that T
is a Picard mapping. Therefore, we have a real generalisation of Ciric’s theorem.

Example 2. Let X = {(0, a) , a ∈ [30, 40]} ∪ {(0, 10)} ∪ {(7, 0)} ∪ {(10, 0)} ∪
{(11, 0)} . We denote by

A = {(0, a) , a ∈ [30, 40]} ,
B = (0, 10) , C = (7, 0) , D = (10, 0) ,

F = (11, 0) , O (0, 0)

and let T : X → X with

Tx =


(0, 10) , x ∈ A ∪ {(10, 0)}
(0, 0) , x = (0, 10)
(7, 0) , x = (0, 0)
(11, 0) , x ∈ {(7, 0) , (11, 0)}

F is the fixed point for mapping T, X is a complete metric space with euclidian
metric and for the following cases we prove that T does not satisfy the hypothesis
of Theorem 2, but satisfies Theorem 3. Therefore, from Theorem 3, T is Picard
mapping.
Case 1. x, y ∈ A⇒ d(Tx, Ty) = 0.
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Case 2. x ∈ A, y = D ⇒ d(Tx, Ty) = 0.

Case 3. x ∈ A, y = B ⇒ Tx = B = y, TB = O ⇒ d(Tx, Ty) = 10, d(x, y) ≥ 20.
For a > 1/2, the hypothesis of Theorem 3 is true.

Case 4. For x ∈ A, y = O, we deduce that d(Tx, Ty) =
√

149, d(x, y) ≥ 30. For
a > 2/5 the hypothesis of Theorem 3 is true.

Case 5. For x ∈ A, y ∈ {C,F} , d(Tx, Ty) =
√

102 + 112 =
√

221, d(x, Tx) ≥ 20,

so, for a >

√
221

20
we can apply Theorem 3.

Case 6. For x = B, y = 0, d(Tx, Ty) = 7, d(x, y) = 10. For a = 0.9, relation (2)
is true.

Case 7. For x = B, y = C, d(Tx, Ty) = 11, d(x, y) =
√

102 + 72, d(x, y) +

|d(x, Tx)− d(y, Ty)| =
√

149 + |10− 4| . For a >
11√

149 + 6
, relation (2) is true.

Case 8. For x = B, y = D, d(Tx, Ty) = 10, d(x, y) =
√

200 and (2) is true for
a = 0.9.

Case 9. For x = B and y = F give us d(Tx, Ty) = 11, d(x, y) =
√

221 and (2)
is true for a = 0.9.

Case 10. For x = O, y = C, we deduce d(Tx, Ty) = 4, d(x, y) = 7 and (2) is
true for a = 0.9.

Case 11. For x = O, y = D give us d(Tx, Ty) =
√

149, d(x, y) = 10.d(x, y) +
|d(x, Tx)− d(y, Ty)| = 10 +

∣∣7−√200
∣∣ =
√

200 + 3. The value a = 0.9 is right
and (2) stays true.

Case 12. For x = O, y = F, d(Tx, Ty) = 4, d(x, y) = 11 and (2) is true for
a = 0.9.

Case 13. For x = C, y = D, d(Tx, Ty) =
√

221, d(x, y) + |d(x, Tx)− d(y, Ty)| =
3 +

∣∣4−√200
∣∣ =

√
200 − 1, d(y, Ty) + |d(x, y)− d(x, Tx)| =

√
200 + |3− 4| =

√
200 + 1 so, in this case, for a =

√
221√

200 + 1
, (2) is true.

Case 14. For x = C, y = F, d(Tx, Ty) = 0 and (2) is true for all a ∈ [0, 1) .

Case 15. For x = D, y = F, d(Tx, Ty) =
√

221, d(x, y) + |d(x, Tx)− d(y, Ty)| =

1 +
∣∣√200− 0

∣∣ =
√

200 + 1, so, for a =

√
221√

200 + 1
, relation (2) is true.

In conclusion, for the value a =

√
221√

200 + 1
∈ [0, 1) , relation (2) is true,

(∀)x, y ∈ X, and, from Theorem 3, we deduce that T is a Picard operator. Also,
we can observe that the hypothesis of Ciric’s Theorem 2 is not satisfied in case
15. Because

d(Tx, Ty) = d(TD, TF ) =
√

221,

d(x, y) = 1, d(x, Tx) = d(D,TD) =
√

200,

d(y, Ty) = d(F, TF ) = 0,

d(x, Ty) + d(y, Tx)

2
=

d(D,F ) + d(F,B)

2
=

1 +
√

221

2
.
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we have

max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
=
√

200.

Relation

d(Tx, Ty) ≤ a ·max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
is false for all a ∈ [0, 1) .

Therefore, Theorem 3 is a real generalisation of Theorem 2.
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