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NEW FIXED POINT THEOREM FOR GENERALIZED
CONTRACTIONS
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Abstract

In this paper we give a Ciric type fixed point theorem in a complete met-
ric space; this theorem extends other well-known fixed point theorems ([7],
[8], [9]). Two examples are given to demonstrate the importance of our work.
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1 Introduction and preliminaries

Definition 1. Let (X, d) be a metric space. A mapping T : X — X is a contrac-
tion if there exists a number q, 0 < q < 1, such that the condition

holds, for all z,y € X.
The well-known Banach contraction principle (BCP) [1] is the following:

Theorem 1. If the T : X — X is a contraction mapping of a complete metric
space, then:
(i) () z* € X, fized point for T';
(ii) {T"x} — x* forn — oo, (V) z € X;
n

(iii) d (T"z, z*) < 1L d(z,Tz).
- q
Because of its importance in mathematical theory, many authors gave gen-

eralisations of it in many directions (see [1]-[18]). One of the most well-known
generalisation of the BCP is Ciric fixed point theorem (see [7],[8], [9] ).
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Definition 2. Let (X,d) be a metric space. An operator T : X — X is a Picard
operator if and only if

(i) (A z* € X, fized point for T';

(ii) {T"x} — x* for n — oo, (V) x € X.

Ciric gives the next theorem in [7] , which is a very important result in fixed
point theory:

Theorem 2. [7] Let (X,d) be a complete metric space,and an operator T : X —
X. If there exists a € [0,1) such that

d(Tz,Ty) < a-max {d(m,y),d(a:,Ta;), d(y, Ty), d(z,Ty) ‘;d(yanE)}

(V)z,y € X, then T is a Picard operator.

After then, many authors give important generalizations of Ciric’s theorem in
a complete metric space ([11], [15], [16]) or in partial metric space [13].

2 Main results

In this paper we give a generalisation of Ciric type fixed point theorem, by
replacing the value of the maximum with

M*(z,y) = max{d(z,y) + |d(z,Tz) —d(y, Ty)l,
d(z,Tz) + |d (z,y) — d(y,Ty)], (1)
d(y, Ty) + |d (z,y) — d(z,Tx)],
d(z,Ty) + d(y, Tx) + |d(z, Tz) — d(y, Ty)| }
2

Theorem 3. Let (X,d) be a complete metric space, T : X — X such that there
exist a € [0,1) and

d(Tz,Ty) <a-M"(z,y), (V)z,ye€X, (2)
where M*(x,y) is defined in (1). Then, T is a Picard operator.

Proof. Let g € X. Put x, = T"xg, z9 € X,(¥)n € N. If there exists n € N
such that x, 1 = x,, then 2,11 = T"29 = T'x;,, = xy, then, by induction x4, =
Zn, Vp € N. That is x,, is a fixed point of T. Now, we suppose that x,+1 # z,, for
all n € N. Then, d(xy,, zp+1) > 0, for all n € N.

We denote by d,, = d(x, xnt1). For any n € N; we have

d (Txna T$n+1) =d (anrlv xn+2) =dpt1 (3)
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and

M*(wna xn—l—l) = max {d(%n, xn—&—l) + ’d(xna T$n) - d($n+17 Txn+l)| )

d(.%'n, Txn) + ‘d(xna xn—&—l) - d(xn—‘rlu Txn-i—l)’ ’
d(@ns1, Topyr) + |d(zn, ng1) — d(zn, Toy)l,

2
T d(@ T) — (s, Tmn+1>|>} ()

(d(xn, Trpi1) + d(xpi1, Trn)+

— max {d(:cn, Eni1) + |, Tns1) — d@nsr, Tns2)].

d((L‘n, xn-{—l) + ‘d(xna xn—l—l) - d(‘rn—f—l? mn+2)| )

d(xn—‘rla xn—&—?) + ‘d(xrw xn—l—l) - d(l’n, xn+1)| )
1

2

(@ ) — ATt Trss)]) }

(d(Tn, Tnt2) + d(Tpt1, Tnpr)+

If dpy1 > dp, then |d, —dp+1| = dpy1 — dn, and from triangle inequality
d(xp, Tni2) < d(Tn, Tny1) + d (Tpq1, Tnye) we obtain

dn + dp, dpt1 — dp,
M (wm mn-‘rl) < max {dn—i-la T Ont1 ¥ Gni }

2
= dn+1.

From the assumption of the theorem, we get

dpy1 = d($n+17 $n+2)
= d(Tzp, Txny1) < a- M*(xn, Tpi1)
a-dpiq

A

<:>(1—a)-dn+1§0,

which is false, because a € [0,1). So, dy11 < dy, (V)n € N.
For d,+1 < d,,, we have |d,, — dp41| = dy, — dy41 and

1
M* (I'ny fL'n—I—l) < maX{Zdn - dn—f—la dn+1’ 5 (d” + dn+1 +dn — dn+1)} (5)
= max{2d, — dpt+1,dn+1,dn}

Combining (2), (3) and (5), for d,+1 < d,, we obtain

dpy1 = d (T(L‘n, Txn+1) <a-M* (:Ena anrl)
a-max{2d, — dp+1,dnt1,dp}
= a- (2dn — dn+1)

IN
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(because 2d,, — dp4+1 > dy, > dp41). Hence

2a
d <
nl = a+1

2a .. . .
1 <1, (V)a € [0,1). This implies that {z,} is Cauchy
sequence. By completeness of (X, d), the sequence {z,} converges to some point
z* e X.

From the assumption of Theorem 3, for z = z,, and y = z*, we have:

if we denote by k = .

d(xp41,Tx*) = d(Txy, Tx™) = d(xps1, Tz") <
< @ - max {d(mn,x*) +|d (zp, Txy) — d(z*, Tx")|,

d(zy, Try) + |d(xp, 2%) —d (", Tx™)|,
d(z*,Tz") + |d (zp,x") — d(xpn, Txy)|,

N | =

(d(zp, Tx™) + d(x*, Txy) + |d (xpn, Tzy) — d(a:*,Tx*)D} (7)

= @ - max {d($n,x*) + |d(xn, py1) — d (2, Tx™)|,

d(xn, Tpy1) + |d (zn, ") — d (2", Tx")|,
d(z*,Tx") + |d (zn, ") — d(Tn, Tni1)],
1

3 (d(xpn, Tx") + d(z*, 2pt1) + |d (Tn, Tny1) — d(x*,T:c*))} .

Taking the limit as n — oo in (7), we deduce
dz*,Tz*) <a-d(z",Tx").
Since a € [0,1) it results that
d(z*,Tz*) =0,

that is z* is a fixed point of 7.

Finally, we prove that the fixed point of T is unique. For this, let z*, y* be
two fixed points of T, and suppose that x* # y*. It follows, from the assumption
of the theorem:

d ($*>y*) <a- d(IE*, y*) )
so d (z*,y*) = 0. Hence z* = y*. Therefore, T' has a unique fixed point. O
Example 1. Let X ={A, B,C, D}, d the usual distance, d(A, B) = d(B,C) = 8,

d(A,C) = d(B,D) = 10, d(A,D) =5, d(C,D) =7 and T : X — X such that
TA=ATB=C,TC=D,TD = A. We observe that X is a metric space.
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For x = A and y = B, we have d(TA,TB) = d(A,C) =10 and

M(A,B) = max{d(A,B),d(A,TA),d(B,TB),

% (d(A, TB) + d(B,TA))}

1
= maX{S,O,S, 0;8}—9.

Therefore, T does not satisfy conditions from Theorem 2 . Next, we prove that T
satisfies hypothesis of Theorem 3.

1. Forx = A andy = B, d(Tz,Ty) < a- M*(z,y) we have d(TA,TB) =
d(A,C) <a-M*(A,B), where M*(A, B) = 26, so we obtain 10 < a - 26

2. Forx = Aand y = C, dTx,Ty) < a- M*(x,y) we have d(TA,TC) =
d(A,D) < a- M*(A,B), where M*(A,C) = 17 and d(A,D) = 5, so we
obtain 5 <a-17

3. Forz = A andy = D, we have TA =TD = A, and the relation d(Tx,Ty) <
a- M*(x,y) hold for Va € [0,1)

4. For x = B and y = C,, the relation d(Tz,Ty) < a-M*(z,y) is7<a-9
5. For x = B and y = D,, the relation d(Tx,Ty) < a- M*(z,y) is 10 < a-13
6. For x = C and y = D,, the relation d(Tx,Ty) < a- M*(x,y) is5<a-9

It is sufficient that a = 7/9, and we can apply Theorem 3. We deduce that T
is a Picard mapping. Therefore, we have a real generalisation of Ciric’s theorem.

Example 2. Let X = {(0,a),a € [30,40]} U {(0,10)} U {(7,0)} U {(10,0)} U
{(11,0)} . We denote by

A = {(0,a), a€[30,40]},
B = (0,10), C = (7,0), D = (10,0),
F = (11,0), 0(0,0)

and let T : X — X with

(0,10) , = € AU{(10,0)}
7o) (0,0)  @=(0,10)
7Y (7,00, 2=(0,0)
(11,0) , = € {(7,0),(11,0)}

F is the fized point for mapping T, X is a complete metric space with euclidian
metric and for the following cases we prove that T does not satisfy the hypothesis
of Theorem 2, but satisfies Theorem 3. Therefore, from Theorem 3, T is Picard
mapping.

Case 1. z,y € A= d(Tz,Ty) =0.



440 Alexandrina Maria Proca

Case 2. r€ Ajy=D = d(Tx,Ty) = 0.

Case 3. x€c A,y=B=Tx=B=y,TB=0 = d(Tz,Ty) = 10,d(x,y) > 20.
For a > 1/2, the hypothesis of Theorem 3 is true.

Case 4. For x € A,y = O, we deduce that d(Txz,Ty) = /149,d(x,y) > 30. For
a > 2/5 the hypothesis of Theorem 8 is true.

Case 5. Forxz € A,y € {C,F},d(Tx,Ty) = V10? + 112 = /221, d(z, Tx) > 20,
so, for a > 0 we can apply Theorem 3.

Case 6. For x = B,y =0,d(Tz,Ty) = 7,d(z,y) = 10. For a = 0.9, relation (2)

15 true.
Case 7. For x = B,y = C,d(Tz,Ty) = 11,d(z,y) = V10> + 7?,d(x,y) +

11
dlx,Tx) —d(y, Ty)| = v149 + |10 — 4|. Fora > —
(2, Tw) ~ d(y. Ty)| = VI + |10~ 4 NG

Case 8. For x = B,y = D,d(Tx,Ty) = 10,d(x,y) = v/200 and (2) is true for
a=10.9.

Case 9. Forx = B and y = F give us d(Tz,Ty) = 11,d(z,y) = /221 and (2)
is true for a = 0.9.

Case 10. For x = O,y = C, we deduce d(Tz,Ty) = 4,d(z,y) = 7 and (2) is
true for a = 0.9.

Case 11. For x = O,y = D give us d(Tz,Ty) = /149, d(z,y) = 10.d(x,y) +
d(z, Tz) — d(y, Ty)| = 10 + |7 — v/200| = v/200 + 3. The value a = 0.9 is right
and (2) stays true.

Case 12. For v = O,y = F,d(Tz,Ty) = 4,d(x,y) = 11 and (2) is true for
a=0.9.

Case 13. For x = C, y = D,d(Tx,Ty) = v221,d(z,y) + |d(z, Tx) — d(y, Ty)| =

, relation (2) is true.

3+ [4—v200] = v200 — 1,d(y, Ty) + |d(z,y) — d(z, Tz)| = v/200 + [3 —4| =
V221
v200 4+ 1 so, in this case, for a = ——, (2) is true.
f V200 +1 2)

Case 14. Forx =C,y = F,d(Tx,Ty) =0 and (2) is true for all a € [0,1).
Case 15. Forx = D,y = F,d(Tz,Ty) = v221,d(x,y) + |d(z,Tz) — d(y, Ty)| =
V221
14+ |v200 — 0] =200+ 1, so, fora = ——
| ‘ 4 v200 + 1
V221
v200+1

(Y)z,y € X, and, from Theorem 3, we deduce that T is a Picard operator. Also,
we can observe that the hypothesis of Ciric’s Theorem 2 is not satisfied in case
15. Because

, relation (2) is true.

In conclusion, for the value a = € [0,1), relation (2) is true,

d(Tz,Ty) = d(TD,TF) =221,
d(z,y) = 1,d(z,Tz)=d(D,TD) =200,
d(y,Ty) = d(F,TF)=0,
d(z,Ty) +d(y,Tx)  d(D,F)+d(F,B) 1++221

2 2 a 2
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we have

max {d(:r, y),d(x, Tx),d(y, Ty), d(z,Ty) —; Ay, Tz) } = /200.

Relation

d(Tz,Ty) < a - max {d(m, y),d(z, Tx),d(y, Ty), d(x, Ty) + d(y, Tr) }

2

is false for all a € [0,1).
Therefore, Theorem 3 is a real generalisation of Theorem 2.
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