Bulletin of the *Transilvania* University of Braşov • Vol 12(61), No. 2 - 2019 Series III: Mathematics, Informatics, Physics, 419-428 https://doi.org/10.31926/but.mif.2019.12.61.2.19

A FIXED POINT THEOREM IN G - METRIC SPACES FOR MAPPINGS USING AUXILIARY FUNCTIONS

Alina-Mihaela PATRICIU^{*,1} and Valeriu POPA²

Abstract

In this paper we introduce a new type of implicit relation and we prove a general fixed point theorem in G - metric spaces using two auxiliary functions, generalizing Theorem 3.3 [1].

2000 Mathematics Subject Classification: 54H25, 47H10. Key words: fixed point, G - metric space, auxiliary function, implicit relation.

1 Introduction

In [2], [3] Dhage introduced a new class of generalized metric space, named D metric spaces. Mustafa and Sims [5], [6] proved that most of the claims concerning the fundamental topological structures on D - metric spaces are incorrect and introduced an appropriate notion of generalized metric space, named G - metric space.

In fact, Mustafa, Sims and other authors studied many fixed point results for self mappings in G - metric spaces.

Several classical fixed point theorems and common fixed point theorems have been unified considering a general condition by an implicit function [7], [8] and in other papers. The study of fixed points for mappings satisfying implicit relations in G - metric spaces is initiated in [9] - [11] and in other papers.

Recently, in [1], new fixed point results for mappings in G - metric spaces using a new type of auxiliary mappings are obtained.

M. S. Khan et al. [4] introduced the notion of altering distance. Some results using altering distance in metric spaces are obtained in [13], [14] and in other papers. Recently results in G - metric spaces are obtained in [12].

The purpose of this paper is to introduce a new type of implicit relation and to prove a general fixed point theorem using two auxiliary functions, generalizing Theorem 3.3 [1].

^{1*} Corresponding author Department of Mathematics and Computer Sciences, Faculty of Sciences and Environment, Dunărea de Jos University of Galați, Romania, e-mail: Alina.Patriciu@ugal.ro

²Faculty of Sciences, Vasile Alecsandri University of Bacău, Romania, e-mail: vpopa@ub.ro

2 Preliminaries

Definition 1 ([6]). Let X be a nonempty set and $G : X^3 \to \mathbb{R}_+$ be a function satisfying the following conditions:

 $(G_1): G(x, y, z) = 0$ for x = y = z,

 $(G_2): G(x, x, y) > 0$ for all $x, y \in X$ with $x \neq y$,

 $(G_3): G(x, y, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$,

 $(G_4): G(x, y, z) = G(y, z, x) = \dots$ (symmetry in all three variables),

 $(G_5): G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$ (triangle inequality).

The function G is called a G - metric on X and (X,G) is called a G - metric space.

Note that if G(x, y, z) = 0, then x = y = z.

Remark 1. Let (X,G) be a G - metric space. If y = z, then G(x, y, y) is a quasi - metric on X. Hence, (X,Q), where Q(x,y) = G(x,y,y), is a quasi - metric space and since every metric space is a quasi - metric space it follows that the notion of G - metric space is a generalization of metric space.

Definition 2 ([6]). Let (X,G) be a G - metric space. A sequence $\{x_n\}$ in X is said to be:

a) G - convergent if for $\varepsilon > 0$, there exist $x \in X$ and $k \in \mathbb{N}$ such that for all $m, n \in \mathbb{N}, m, n \ge k, G(x_n, x_m, x) < \varepsilon$.

b) G - Cauchy if for $\varepsilon > 0$, there exists $k \in \mathbb{N}$ such that for all $m, n, p \in \mathbb{N}$, $m, n, p \geq k$, $G(x_n, x_m, x_p) < \varepsilon$, that is $G(x_n, x_m, x_p) \to 0$ as $n, m, p \to \infty$.

c) A G - metric space is said to be G - complete if every G - Cauchy sequence in X is G - convergent.

Lemma 1 ([6]). Let (X, G) be a G - metric space. Then, the following conditions are equivalent:

1) $\{x_n\}$ is G - convergent to x;

2) $G(x_n, x_n, x) \to 0$ as $n \to \infty$;

3) $G(x_n, x, x) \to 0$ as $n \to \infty$;

4) $G(x_n, x_m, x) \to 0 \text{ as } n, m \to \infty.$

Lemma 2 ([6]). Let (X, G) be a G - metric space. Then, the function G(x, y, z) is jointly continuous in all three of its variables.

Definition 3 ([6]). A G - metric on a nonempty set X is said to be symmetric if G(x, y, y) = G(y, x, x) for all $x, y \in X$. Then, (X, G) is said to be symmetric G - metric space.

Lemma 3 ([1]). Let (X, G) be a G - metric space and $\{x_n\}$ be a sequence in X such that $G(x_n, x_{n+1}, x_{n+1})$ is decreasing and $\lim_{n\to\infty} G(x_n, x_{n+1}, x_{n+1}) = 0$. If $\{x_{2n}\}$ is not a Cauchy sequence, then there exists $\varepsilon > 0$ and two sequences $\{m_k\}$ and $\{n_k\}$ of positive integers such that

$$\lim_{n \to \infty} G\left(x_{2n_k+1}, x_{2m_k}, x_{2m_k}\right) = \varepsilon,$$

$$\lim_{n \to \infty} G\left(x_{2n_k}, x_{2m_k-1}, x_{2m_k-1}\right) = \varepsilon,$$
$$\lim_{n \to \infty} G\left(x_{2m_k-1}, x_{2n_k+1}, x_{2n_k+1}\right) = \varepsilon,$$
$$\lim_{n \to \infty} G\left(x_{2n_k}, x_{2m_k}, x_{2m_k}\right) = \varepsilon.$$

Definition 4 ([4]). An altering distance is a function $\psi : [0, \infty) \to [0, \infty)$ satisfying:

 $(\psi_1): \psi$ is increasing and continuous; $(\psi_2): \psi(t) = 0$ if and only if t = 0.

The set of all altering distances is denoted by Ψ .

In the following we denote by Φ the set of all continuous nondecreasing functions $\varphi : [0, \infty) \to [0, \infty)$.

Lemma 4 ([1]). If $\varphi \in \Phi$ and $\psi \in \Psi$ such that $\psi(t) > \varphi(t)$ for t > 0, then $\varphi(0) = 0$.

The following theorem is proved in [1].

Theorem 1 ([1]). Let (X, G) be a complete G - metric space and $T : X \to X$ be a mapping. If there exist $\varphi \in \Phi$ and $\psi \in \Psi$ with condition $\psi(t) > \varphi(t)$ for t > 0such that

$$\psi\left(G\left(Tx,Ty,Tz\right)\right) \leq \varphi \max\left(\left\{\begin{array}{c}G\left(x,y,y\right),G\left(x,Tx,Tx\right),\\G\left(y,Ty,Ty\right),G\left(z,Tz,Tz\right),\\\alpha G\left(y,Tx,Tx\right)+\left(1-\alpha\right)G\left(z,Ty,Ty\right),\\\beta G\left(x,Tx,Tx\right)+\left(1-\beta\right)G\left(y,Ty,Ty\right),\end{array}\right\}\right)$$
(1)

for all $x, y, z \in X$, where $\alpha, \beta \in (0, 1)$. Then T has a unique fixed point.

Remark 2. Since

$$\beta G(x, Tx, Tx) + (1 - \beta) G(y, Ty, Ty) \le \max \left\{ G(x, Tx, Tx), G(y, Ty, Ty) \right\},\$$

then $\beta G(x, Tx, Tx) + (1 - \beta) G(y, Ty, Ty)$ is redundant in the inequality (1).

3 $\psi - \phi -$ implicit relations

Let \mathfrak{F}_5 be the set of all continuous functions $F : \mathbb{R}^5_+ \to \mathbb{R}$ such that: $(F_1) : F$ is decreasing in variables t_2 and t_4 , $(F_2) :$ for all $u, v \ge 0$, $F(u, v, v, u, 0) \le 0$ implies $u \le v$, $(F_3) : F(t, t, 0, 0, t') \le 0$ implies $t \le t'$ for t, t' > 0.

Remark 3. 1) In the following examples $\psi \in \Psi$, $\phi \in \Phi$ and $\psi(t) > \phi(t)$, $\forall t > 0$. 2) Since $\phi(t)$ is nondecreasing, then

$$\phi(\max\{t_1, t_2, t_3, t_4\}) = \max\{\phi(t_1), \phi(t_2), \phi(t_3), \phi(t_4)\}.$$

3) In the following examples, the proofs of property (F_1) is obviously.

421

Example 1. $F(t_1, ..., t_5) = \psi(t_1) - \phi(\max\{t_2, t_3, t_4, t_5\}).$

(F₂) Let $u, v \ge 0$ be and $F(u, v, v, u, 0) = \psi(u) - \phi(\max\{u, v\}) \le 0$. If u > v, then $\psi(u) - \phi(u) \le 0$. Hence, $\psi(u) \le \phi(u) < \psi(u)$, a contradiction. Hence, $u \le v$.

(F₃) Let t, t' > 0 and $F(t, t, 0, 0, t') = \psi(t) - \phi(\max\{t, t'\}) \leq 0$. If t > t', then $\psi(t) - \phi(t') \leq 0$, which implies $\psi(t) \leq \phi(t) < \psi(t)$, a contradiction. Hence, $t \leq t'$.

Example 2. $F(t_1, ..., t_5) = \psi(t_1) - \phi(\max\{t_2, t_3, t_4, \alpha t_5 + (1 - \alpha) t_4\}), where \alpha \in (0, 1).$

$$\psi(t_1) - \phi(\max\{t_2, t_3, t_4, \alpha t_5 + (1 - \alpha) t_4\}) \le 0$$

implies

$$\psi(t_1) \le \phi(\max\{t_2, t_3, t_4, \max\{t_4, t_5\}\}) = \phi(\max\{t_2, t_3, t_4, t_5\})$$

So, Example 2 is reduced to Example 1.

Example 3.
$$F(t_1, ..., t_5) = \psi(t_1) - \phi\left(\max\left\{t_2, \frac{t_3 + t_4}{2}, t_5\right\}\right)$$

Since $\frac{t_3 + t_4}{2} \le \max{\{t_3, t_4\}}$, Example 3 is reduced to Example 1.

Example 4. $F(t_1, ..., t_5) = \psi(t_1) - \phi(at_2 + bt_3 + ct_4 + dt_5)$, where $a, b, c, d \ge 0$ and a + b + c + d < 1.

Since $\phi(at_2 + bt_3 + ct_4 + dt_5) \leq \phi((a + b + c + d) \max\{t_2, t_3, t_4, t_5\})$, the study of Example 4 is reduced to the study of Example 1.

Example 5. $F(t_1, ..., t_5) = [\psi(t_1)]^2 - a\phi(t_2)\phi(t_3) - b\phi(t_3)\phi(t_4) - c\phi^2(t_5)$, where $a, b, c \ge 0$ and a + b + c < 1.

(F₂) Let $u, v \ge 0$ be and $F(u, v, v, u, 0) = [\psi(u)]^2 - a\phi(u)\phi(v) - b\phi(u)\phi(v) \le 0$. If u > v, then $[\psi(u)]^2 - (a+b)[\phi(u)]^2 \le 0$, which implies $[\psi(u)]^2 \le (a+b)\phi^2(u) \le \phi^2(u) < \psi^2(u)$, a contradiction. Hence, $u \le v$.

(F₃) Let t, t' > 0 and $F(t, t, 0, 0, t') = \psi^2(t) - c\phi^2(t') \leq 0$. If t > t', then $\psi(t) \leq \sqrt{c}\phi(t') \leq \phi(t) < \psi(t)$, a contradiction. Hence, $t \leq t'$.

Example 6. $F(t_1, ..., t_5) = \psi(t_1) - a \max \{\phi(t_2), \phi(t_3), \phi(t_4)\} - b\phi(t_5), where a, b \ge 0 \text{ and } a + b < 1.$

(F₂) Let $u, v \ge 0$ be and $F(u, v, v, u, 0) = \psi(u) - a \max \{\phi(u), \phi(v)\} \le 0$. If u > v, then $\psi(u) - a\phi(v) \le 0$, which implies $\psi(u) \le a\phi(u) < \psi(u)$, a contradiction. Hence, $u \le v$.

(F₃) Let t, t' > 0 and $F(t, t, 0, 0, t') = \psi(t) - a\phi(t) - b\phi(t') \leq 0$. If t > t', then $\psi(t) - (a+b)\phi(t) \leq 0$, which implies $\psi(t) \leq (a+b)\phi(t) \leq \phi(t) < \psi(t)$, a contradiction. Hence, $t \leq t'$.

422

A fixed point theorem in G - metric spaces using auxiliary functions

Example 7. $F(t_1, ..., t_5) = \psi(t_1) - a\phi(t_2) - b \max \{2\phi(t_3), \phi(t_4) + \phi(t_5)\}, where a, b \ge 0 \text{ and } a + 2b < 1.$

(F₂) Let $u, v \ge 0$ be and $F(u, v, v, u, 0) = \psi(u) - a\phi(v) - b\max\{2\phi(v), \phi(u)\} \le 0$. If u > v, then $\psi(u) \le (a + 2b)\phi(u) \le \phi(u) < \psi(u)$, a contradiction. Hence, $u \le v$.

(F₃) Let t, t' > 0 and $F(t, t, 0, 0, t') = \psi(t) - a\phi(t) - b\phi(t') \le 0$. If t > t', then $\psi(t) \le (a+b)\phi(t) \le \phi(t) < \psi(t)$, a contradiction. Hence, $t \le t'$.

Example 8. $F(t_1, ..., t_5) = \psi(t_1) - a\phi(t_2) - b \max \{\phi(t_3) + \phi(t_4), 2\phi(t_5)\}, where a, b \ge 0 \text{ and } a + 2b < 1.$

The proof is similar to the proof of Example 7.

4 Main results

Theorem 2. Let (X, G) be a complete G - metric spaces and

$$F\left(\begin{array}{c}\psi\left(G(fx,fy,fy)\right),\phi\left(G(x,y,y)\right),\phi\left(G(x,fx,fx)\right),\\\phi\left(G(y,fy,fy)\right),\phi\left(G(y,fx,fx)\right)\end{array}\right) \leq 0,$$
(2)

for all $x, y \in X$, $\psi \in \Psi$, $\phi \in \Phi$ with $\psi(t) > \phi(t)$ for t > 0. Then f has a unique fixed point.

Proof. Let $x_0 \in X$ be and $x_n = fx_{n-1}$ for n = 1, 2, If there exists n_0 such that $x_{n_0} = x_{n_0+1}$, then x_{n_0} is a fixed point of f. We suppose that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N}$. Then, by (2) we obtain

$$F\left(\begin{array}{c}\psi\left(G(fx_{n-1}, fx_n, fx_n)\right), \phi\left(G(x_{n-1}, x_n, x_n)\right), \\ \phi\left(G(x_{n-1}, fx_{n-1}, fx_{n-1})\right), \\ \phi\left(G(x_n, fx_n, fx_n)\right), \phi\left(G(x_n, fx_{n-1}, fx_{n-1})\right)\end{array}\right) \le 0,$$

$$F\left(\begin{array}{c}\psi\left(G(x_n, x_{n+1}, x_{n+1})\right), \phi\left(G(x_{n-1}, x_n, x_n)\right), \\ \phi\left(G(x_{n-1}, x_n, x_n)\right), \phi\left(G(x_n, x_{n+1}, x_{n+1})\right), 0\end{array}\right) \le 0.$$

Since $\phi(G(x_n, x_{n+1}, x_{n+1})) < \psi(G(x_n, x_{n+1}, x_{n+1}))$, then by (F_1) we obtain

$$F\left(\begin{array}{c}\psi(G(x_{n}, x_{n+1}, x_{n+1})), \phi(G(x_{n-1}, x_{n}, x_{n})),\\\phi(G(x_{n-1}, x_{n}, x_{n})), \psi(G(x_{n}, x_{n+1}, x_{n+1})), 0\end{array}\right) \leq 0.$$

By (F_2) we obtain

$$\psi(G(x_n, x_{n+1}, x_{n+1})) \le \phi(G(x_{n-1}, x_n, x_n)) < \psi(G(x_{n-1}, x_n, x_n)).$$
(3)

Since ψ is nondecreasing we obtain

$$G(x_n, x_{n+1}, x_{n+1}) \le G(x_{n-1}, x_n, x_n)$$

Hence $\{G(x_n, x_{n+1}, x_{n+1})\}$ is a decreasing positive sequence and then $\{G(x_n, x_{n+1}, x_{n+1})\}$ is a convergent sequence. Hence, there exists $r \ge 0$ such that

 $\lim_{n\to\infty} G(x_n, x_{n+1}, x_{n+1}) = r$. We prove that r = 0. If r > 0, then letting n tend to infinity in the first part of (3) we obtain $\psi(r) \leq \phi(r) < \psi(r)$, a contradiction. Hence, $\lim_{n\to\infty} G(x_n, x_{n+1}, x_{n+1}) = 0$. We prove that $\{x_n\}$ is a Cauchy sequence in X. Suppose that $\{x_{2n}\}$ is not a Cauchy sequence. By Lemma 3, there exists $\varepsilon > 0$ and two sequences $\{n_k\}$ and $\{m_k\}$ of positive integers such that

$$\lim_{n \to \infty} G\left(x_{2n_k+1}, x_{2m_k}, x_{2m_k}\right) = \varepsilon,$$
$$\lim_{n \to \infty} G\left(x_{2n_k}, x_{2m_k-1}, x_{2m_k-1}\right) = \varepsilon,$$
$$\lim_{n \to \infty} G\left(x_{2m_k-1}, x_{2n_k+1}, x_{2n_k+1}\right) = \varepsilon.$$

By (2) we obtain

$$\begin{split} F\left(\begin{array}{c} \psi\left(G(fx_{2n_{k}},fx_{2m_{k}-1},fx_{2m_{k}-1})\right),\phi\left(G(x_{2n_{k}},x_{2m_{k}-1},x_{2m_{k}-1})\right),\\ \phi\left(G(x_{2n_{k}},fx_{2n_{k}},fx_{2n_{k}})\right),\\ \phi\left(G(x_{2m_{k}-1},fx_{2m_{k}},fx_{2m_{k}})\right),\phi\left(G(x_{2m_{k}-1},fx_{2n_{k}},fx_{2n_{k}})\right)\end{array}\right) &\leq 0\;,\\ F\left(\begin{array}{c} \psi\left(G(x_{2n_{k}+1},fx_{2m_{k}-1},fx_{2m_{k}-1})\right),\phi\left(G(x_{2n_{k}},x_{2m_{k}-1},x_{2m_{k}-1})\right),\\ \phi\left(G(x_{2n_{k}},x_{2n_{k}+1},x_{2n_{k}+1})\right),\\ \phi\left(G(x_{2m_{k}-1},x_{2m_{k}+1},x_{2m_{k}+1})\right),\phi\left(G(x_{2m_{k}-1},x_{2n_{k}+1},x_{2n_{k}+1})\right)\right)\end{array}\right) &\leq 0\;. \end{split}$$

Letting n tend to infinity we obtain

$$F(\psi(\varepsilon), \phi(\varepsilon), 0, 0, \phi(\varepsilon)) \leq 0$$
.

Since $\psi(\varepsilon) > \phi(\varepsilon)$, by (F_1) we obtain

$$F(\psi(\varepsilon), \psi(\varepsilon), 0, 0, \phi(\varepsilon)) \le 0$$
.

By (F_3) we obtain

$$\psi\left(\varepsilon\right) \leq \phi\left(\varepsilon\right) < \psi\left(\varepsilon\right),$$

a contradiction.

Hence $\{x_{2n}\}$ is a Cauchy sequence of (X, G), which implies that $\{x_n\}$ is a Cauchy sequence in (X, G). Since (X, G) is complete, there exists $u \in X$ such that $\lim_{n\to\infty} x_n = u$. We prove that u is a fixed point of f.

By (2) for $x = x_n$ and y = u we obtain

$$F \left(\begin{array}{c} \psi \left(G(fx_n, fu, fu) \right), \phi \left(G(x_n, u, u) \right), \phi \left(G(x_n, fx_n, fx_n) \right), \\ \phi \left(G(u, fu, fu) \right), \phi \left(G(u, fx_n, fx_n) \right) \end{array} \right) \leq 0 ,$$

$$F \left(\begin{array}{c} \psi \left(G(x_{n+1}, fu, fu) \right), \phi \left(G(x_n, u, u) \right), \phi \left(G(x_n, x_{n+1}, x_{n+1}) \right), \\ \phi \left(G(u, fu, fu) \right), \phi \left(G(u, x_{n+1}, x_{n+1}) \right) \end{array} \right) \leq 0 .$$

Letting n tend to infinity we obtain

$$F\left(\psi\left(G(u,fu,fu)\right),0,0,\phi\left(G(u,fu,fu)\right),0\right)\leq 0\;.$$

By (F_1) we obtain

$$F(\psi(G(u, fu, fu)), 0, 0, \psi(G(u, fu, fu)), 0) \le 0,$$

which implies u = fu and u is a fixed point of f.

Suppose that there exists another fixed point $v \neq u$. By (2) for x = u and y = v we obtain

$$\begin{split} F\left(\psi\left(G(fu, fv, fv)\right), \psi\left(G(u, v, v)\right), 0, 0, \phi\left(G(v, fu, fu)\right)\right) &\leq 0 \ , \\ F\left(\psi\left(G(u, v, v)\right), \phi\left(G(u, v, v)\right), 0, 0, \phi\left(G(v, u, u)\right)\right) &\leq 0 \ . \end{split}$$

By (F_1) we obtain

$$F(\psi(G(u, v, v)), \psi(G(u, v, v)), 0, 0, \phi(G(v, u, u))) \le 0.$$

By (F_3) we have

$$\psi\left(G(u, v, v)\right) \le \phi\left(G(v, u, u)\right).$$

Similarly we obtain

$$\psi\left(G(v, u, u)\right) \le \phi\left(G(u, v, v)\right).$$

Then

$$\psi\left(G(u,v,v)\right) \le \phi\left(G(v,u,u)\right) \le \psi\left(G(v,u,u)\right) \le \phi\left(G(u,v,v)\right) < \psi\left(G(u,v,v)\right),$$

a contradiction. Hence, u = v and u is the unique fixed point of f.

425

Corollary 1. Let (X, G) be a complete G - metric spaces and $f : X \to X$ be a mapping. If there exists $\psi \in \Psi$ and $\phi \in \Phi$ with $\psi(t) > \phi(t)$ for t > 0, such that

$$\psi (G(fx, fy, fz)) \leq \phi (\max \{G(x, y, y), G(x, fx, fx), G(y, fy, fy), G(y, fx, fx)\}) = \max \{\phi (G(x, y, y)), \phi (G(x, fx, fx)), \phi (G(y, fy, fy)), \phi (G(y, fx, fx))\}$$

for all $x, y \in X$, then f has a unique fixed point.

Proof. The proof it follows by Theorem 2, Example 2 and by the fact that ϕ is nondecreasing.

Example 9. Let $X = [0, \infty)$ and $G : X^3 \to \mathbb{R}_+$ be a G - metric on X defined by $G(x, y, z) = \max\{|x - y|, |x - z|, |y - z|\}$, for all $x, y, z \in X$. Then (X, G) is a complete metric space. Let $\psi(t) = t$, $\phi(t) = \frac{3}{4}t$, then $\psi(t) \in \psi$, $\phi(t) \in \phi$ and $\phi(t) < \psi(t)$, for all t > 0. Let $T : (X, G) \to (X, G)$ with $Tx = \frac{1}{2}x$. Then $G(Tx, Ty, Ty) = |Tx - Ty| = \frac{1}{2}|x - y|$ and

$$G(x, y, y) = |x - y|.$$

Hence

$$\begin{array}{lll} G\left(Tx,Ty,Ty\right) &=& \frac{1}{2}\left|x-y\right| \leq \frac{3}{4}\left|x-y\right| = \frac{3}{4}G\left(x,y,y\right) \\ &\leq& \frac{3}{4}\max\left\{ \begin{array}{c} G\left(x,y,y\right),G\left(x,Tx,Tx\right), \\ G\left(y,Ty,Ty\right),G\left(y,Tx,Tx\right) \end{array} \right\}. \end{array}$$

Hence,

$$\Psi\left(G\left(Tx,Ty,Ty\right)\right) \le \phi\left(\max\left\{\begin{array}{c}G\left(x,y,y\right),G\left(x,Tx,Tx\right),\\G\left(y,Ty,Ty\right),G\left(y,Tx,Tx\right)\end{array}\right\}\right).$$

By Corollary 1, f has a unique fixed point x = 0.

References

- M. Bousselsal, S. Hamidou Jah, Property P and some fixed point results on a new φ - weakly contractive mappings, J. Adv. Fixed Point Theory 4 (2014), no. 2, 169-183.
- [2] B. C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc. 84 (1992), no. 4, 329-336.
- [3] B. C. Dhage, Generalized metric spaces and topological structures I, An. Ştiinţ. Univ. Al. I. Cuza, Iaşi, Mat. 46 (2000), no. 1, 3-24.
- [4] M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distance between two points, Bull. Austral. Math. Sci. 30 (1984), 1-9.
- [5] Z. Mustafa and B. Sims, Some remarks concerning D metric spaces, Proc. Conf. Fixed Point Theory Appl., Valencia (Spain), 2003, 189-198.
- [6] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289-297.
- [7] V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cerc. Stiint., Ser. Mat., Univ. Bacău 7 (1997), 127-134.
- [8] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstr. Math. 32 (1999), no. 1, 157-163.
- [9] V. Popa, A general fixed point theorem for several mappings in G metric spaces, Sci. Stud. Res., Ser. Math. Inform. 21 (2011), no. 1, 205-214.

- [10] V. Popa and A.-M. Patriciu, A general fixed point theorem for pairs of weakly compatible mappings in G - metric spaces, J. Nonlinear Sci. Appl. 5 (2012), no. 2, 151-160.
- [11] V. Popa and A.-M. Patriciu, Fixed point theorems for mappings satisfying an implicit relation in complete G - metric spaces, Bul. Inst. Politeh. Iaşi, Secţ. I, Mat. Mec. Teor. Fiz. 59 (2013), no. 63, 97-123.
- [12] V. Popa and A.-M. Patriciu, Fixed point theorems for rwo pairs of mappings satisfying common limit range property in G - metric spaces, Bul. Inst. Politeh. Iaşi, Sect. I, Mat. Mec. Teor. Fiz. 62 (2016), no. 66, 19-42.
- [13] K. P. Sastri and G. V. R. Babu, Fixed point theorems in metric spaces by altering distances, Bull. Calcutta Math. Soc. 90 (1998), 175-182.
- [14] K. P. Sastri and G. V. R. Babu, Some fixed point theorems by altering distances between two points, Indian J. Pure Appl. Math. 30 (1999), 641-647.