A FIXED POINT THEOREM IN G - METRIC SPACES FOR MAPPINGS USING AUXILIARY FUNCTIONS

Alina-Mihaela PATRICIU ${ }^{*, 1}$ and Valeriu POPA ${ }^{2}$

Abstract

In this paper we introduce a new type of implicit relation and we prove a general fixed point theorem in G - metric spaces using two auxiliary functions, generalizing Theorem 3.3 [1].

2000 Mathematics Subject Classification: $54 \mathrm{H} 25,47 \mathrm{H} 10$.
Key words: fixed point, G - metric space, auxiliary function, implicit relation.

1 Introduction

In [2], [3] Dhage introduced a new class of generalized metric space, named D metric spaces. Mustafa and Sims [5], [6] proved that most of the claims concerning the fundamental topological structures on D - metric spaces are incorrect and introduced an appropriate notion of generalized metric space, named G - metric space.

In fact, Mustafa, Sims and other authors studied many fixed point results for self mappings in G - metric spaces.

Several classical fixed point theorems and common fixed point theorems have been unified considering a general condition by an implicit function $[7],[8]$ and in other papers. The study of fixed points for mappings satisfying implicit relations in G - metric spaces is initiated in [9] - [11] and in other papers.

Recently, in [1], new fixed point results for mappings in G - metric spaces using a new type of auxiliary mappings are obtained.
M. S. Khan et al. [4] introduced the notion of altering distance. Some results using altering distance in metric spaces are obtained in [13], [14] and in other papers. Recently results in G - metric spaces are obtained in [12].

The purpose of this paper is to introduce a new type of implicit relation and to prove a general fixed point theorem using two auxiliary functions, generalizing Theorem 3.3 [1].

[^0]
2 Preliminaries

Definition 1 ([6]). Let X be a nonempty set and $G: X^{3} \rightarrow \mathbb{R}_{+}$be a function satisfying the following conditions:
$\left(G_{1}\right): G(x, y, z)=0$ for $x=y=z$,
$\left(G_{2}\right): G(x, x, y)>0$ for all $x, y \in X$ with $x \neq y$,
$\left(G_{3}\right): G(x, y, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$,
$\left(G_{4}\right): G(x, y, z)=G(y, z, x)=\ldots$ (symmetry in all three variables),
$\left(G_{5}\right): G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$ (triangle inequality).
The function G is called a - metric on X and (X, G) is called $a G$ - metric space.

Note that if $G(x, y, z)=0$, then $x=y=z$.
Remark 1. Let (X, G) be a G-metric space. If $y=z$, then $G(x, y, y)$ is a quasi - metric on X. Hence, (X, Q), where $Q(x, y)=G(x, y, y)$, is a quasi - metric space and since every metric space is a quasi - metric space it follows that the notion of G - metric space is a generalization of metric space.

Definition 2 ([6]). Let (X, G) be a G-metric space. A sequence $\left\{x_{n}\right\}$ in X is said to be:
a) G - convergent if for $\varepsilon>0$, there exist $x \in X$ and $k \in \mathbb{N}$ such that for all $m, n \in \mathbb{N}, m, n \geq k, G\left(x_{n}, x_{m}, x\right)<\varepsilon$.
b) G - Cauchy if for $\varepsilon>0$, there exists $k \in \mathbb{N}$ such that for all $m, n, p \in \mathbb{N}$, $m, n, p \geq k, G\left(x_{n}, x_{m}, x_{p}\right)<\varepsilon$, that is $G\left(x_{n}, x_{m}, x_{p}\right) \rightarrow 0$ as $n, m, p \rightarrow \infty$.
c) $A G$-metric space is said to be G - complete if every G - Cauchy sequence in X is G - convergent.

Lemma 1 ([6]). Let (X, G) be a G - metric space. Then, the following conditions are equivalent:

1) $\left\{x_{n}\right\}$ is G - convergent to x;
2) $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$;
3) $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow \infty$;
4) $G\left(x_{n}, x_{m}, x\right) \rightarrow 0$ as $n, m \rightarrow \infty$.

Lemma 2 ([6]). Let (X, G) be a G - metric space. Then, the function $G(x, y, z)$ is jointly continuous in all three of its variables.

Definition 3 ([6]). A G-metric on a nonempty set X is said to be symmetric if $G(x, y, y)=G(y, x, x)$ for all $x, y \in X$. Then, (X, G) is said to be symmetric G - metric space.

Lemma 3 ([1]). Let (X, G) be a G-metric space and $\left\{x_{n}\right\}$ be a sequence in X such that $G\left(x_{n}, x_{n+1}, x_{n+1}\right)$ is decreasing and $\lim _{n \rightarrow \infty} G\left(x_{n}, x_{n+1}, x_{n+1}\right)=0$. If $\left\{x_{2 n}\right\}$ is not a Cauchy sequence, then there exists $\varepsilon>0$ and two sequences $\left\{m_{k}\right\}$ and $\left\{n_{k}\right\}$ of positive integers such that

$$
\lim _{n \rightarrow \infty} G\left(x_{2 n_{k}+1}, x_{2 m_{k}}, x_{2 m_{k}}\right)=\varepsilon,
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} G\left(x_{2 n_{k}}, x_{2 m_{k}-1}, x_{2 m_{k}-1}\right)=\varepsilon, \\
& \lim _{n \rightarrow \infty} G\left(x_{2 m_{k}-1}, x_{2 n_{k}+1}, x_{2 n_{k}+1}\right)=\varepsilon, \\
& \lim _{n \rightarrow \infty} G\left(x_{2 n_{k}}, x_{2 m_{k}}, x_{2 m_{k}}\right)=\varepsilon .
\end{aligned}
$$

Definition 4 ([4]). An altering distance is a function $\psi:[0, \infty) \rightarrow[0, \infty)$ satisfying:
$\left(\psi_{1}\right): \psi$ is increasing and continuous;
$\left(\psi_{2}\right): \psi(t)=0$ if and only if $t=0$.
The set of all altering distances is denoted by Ψ.
In the following we denote by Φ the set of all continuous nondecreasing functions $\varphi:[0, \infty) \rightarrow[0, \infty)$.

Lemma 4 ([1]). If $\varphi \in \Phi$ and $\psi \in \Psi$ such that $\psi(t)>\varphi(t)$ for $t>0$, then $\varphi(0)=0$.

The following theorem is proved in [1].
Theorem $1([1])$. Let (X, G) be a complete G - metric space and $T: X \rightarrow X$ be a mapping. If there exist $\varphi \in \Phi$ and $\psi \in \Psi$ with condition $\psi(t)>\varphi(t)$ for $t>0$ such that

$$
\psi(G(T x, T y, T z)) \leq \varphi \max \left(\left\{\begin{array}{c}
G(x, y, y), G(x, T x, T x) \tag{1}\\
G(y, T y, T y), G(z, T z, T z) \\
\alpha G(y, T x, T x)+(1-\alpha) G(z, T y, T y), \\
\beta G(x, T x, T x)+(1-\beta) G(y, T y, T y),
\end{array}\right\}\right)
$$

for all $x, y, z \in X$, where $\alpha, \beta \in(0,1)$. Then T has a unique fixed point.
Remark 2. Since

$$
\beta G(x, T x, T x)+(1-\beta) G(y, T y, T y) \leq \max \{G(x, T x, T x), G(y, T y, T y)\}
$$

then $\beta G(x, T x, T x)+(1-\beta) G(y, T y, T y)$ is redundant in the inequality (1).

$3 \psi-\phi-$ implicit relations

Let \mathfrak{F}_{5} be the set of all continuous functions $F: \mathbb{R}_{+}^{5} \rightarrow \mathbb{R}$ such that:
$\left(F_{1}\right): F$ is decreasing in variables t_{2} and t_{4},
$\left(F_{2}\right)$: for all $u, v \geq 0, F(u, v, v, u, 0) \leq 0$ implies $u \leq v$,
$\left(F_{3}\right): F\left(t, t, 0,0, t^{\prime}\right) \leq 0$ implies $t \leq t^{\prime}$ for $t, t^{\prime}>0$.
Remark 3. 1) In the following examples $\psi \in \Psi, \phi \in \Phi$ and $\psi(t)>\phi(t), \forall t>0$.
2) Since $\phi(t)$ is nondecreasing, then

$$
\phi\left(\max \left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}\right)=\max \left\{\phi\left(t_{1}\right), \phi\left(t_{2}\right), \phi\left(t_{3}\right), \phi\left(t_{4}\right)\right\} .
$$

3) In the following examples, the proofs of property $\left(F_{1}\right)$ is obviously.

Example 1. $F\left(t_{1}, \ldots, t_{5}\right)=\psi\left(t_{1}\right)-\phi\left(\max \left\{t_{2}, t_{3}, t_{4}, t_{5}\right\}\right)$.
$\left(F_{2}\right) \quad$ Let $u, v \geq 0$ be and $F(u, v, v, u, 0)=\psi(u)-\phi(\max \{u, v\}) \leq 0$. If $u>v$, then $\psi(u)-\phi(u) \leq 0$. Hence, $\psi(u) \leq \phi(u)<\psi(u)$, a contradiction. Hence, $u \leq v$.
(F_{3}) Let $t, t^{\prime}>0$ and $F\left(t, t, 0,0, t^{\prime}\right)=\psi(t)-\phi\left(\max \left\{t, t^{\prime}\right\}\right) \leq 0$. If $t>t^{\prime}$, then $\psi(t)-\phi\left(t^{\prime}\right) \leq 0$, which implies $\psi(t) \leq \phi(t)<\psi(t)$, a contradiction. Hence, $t \leq t^{\prime}$.

Example 2. $F\left(t_{1}, \ldots, t_{5}\right)=\psi\left(t_{1}\right)-\phi\left(\max \left\{t_{2}, t_{3}, t_{4}, \alpha t_{5}+(1-\alpha) t_{4}\right\}\right)$, where $\alpha \in(0,1)$.

$$
\psi\left(t_{1}\right)-\phi\left(\max \left\{t_{2}, t_{3}, t_{4}, \alpha t_{5}+(1-\alpha) t_{4}\right\}\right) \leq 0
$$

implies

$$
\psi\left(t_{1}\right) \leq \phi\left(\max \left\{t_{2}, t_{3}, t_{4}, \max \left\{t_{4}, t_{5}\right\}\right\}\right)=\phi\left(\max \left\{t_{2}, t_{3}, t_{4}, t_{5}\right\}\right) .
$$

So, Example 2 is reduced to Example 1.
Example 3. $F\left(t_{1}, \ldots, t_{5}\right)=\psi\left(t_{1}\right)-\phi\left(\max \left\{t_{2}, \frac{t_{3}+t_{4}}{2}, t_{5}\right\}\right)$.
Since $\frac{t_{3}+t_{4}}{2} \leq \max \left\{t_{3}, t_{4}\right\}$, Example 3 is reduced to Example 1 .
Example 4. $F\left(t_{1}, \ldots, t_{5}\right)=\psi\left(t_{1}\right)-\phi\left(a t_{2}+b t_{3}+c t_{4}+d t_{5}\right)$, where $a, b, c, d \geq 0$ and $a+b+c+d<1$.

Since $\phi\left(a t_{2}+b t_{3}+c t_{4}+d t_{5}\right) \leq \phi\left((a+b+c+d) \max \left\{t_{2}, t_{3}, t_{4}, t_{5}\right\}\right)$, the study of Example 4 is reduced to the study of Example 1.

Example 5. $F\left(t_{1}, \ldots, t_{5}\right)=\left[\psi\left(t_{1}\right)\right]^{2}-a \phi\left(t_{2}\right) \phi\left(t_{3}\right)-b \phi\left(t_{3}\right) \phi\left(t_{4}\right)-c \phi^{2}\left(t_{5}\right)$, where $a, b, c \geq 0$ and $a+b+c<1$.
$\left(F_{2}\right) \quad$ Let $u, v \geq 0$ be and $F(u, v, v, u, 0)=[\psi(u)]^{2}-a \phi(u) \phi(v)-b \phi(u) \phi(v) \leq 0$. If $u>v$, then $[\psi(u)]^{2}-(a+b)[\phi(u)]^{2} \leq 0$, which implies $[\psi(u)]^{2} \leq(a+b) \phi^{2}(u) \leq$ $\phi^{2}(u)<\psi^{2}(u)$, a contradiction. Hence, $u \leq v$.
$\left(F_{3}\right)$ Let $t, t^{\prime}>0$ and $F\left(t, t, 0,0, t^{\prime}\right)=\psi^{2}(t)-c \phi^{2}\left(t^{\prime}\right) \leq 0$. If $t>t^{\prime}$, then $\psi(t) \leq \sqrt{c} \phi\left(t^{\prime}\right) \leq \phi(t)<\psi(t)$, a contradiction. Hence, $t \leq t^{\prime}$.

Example 6. $F\left(t_{1}, \ldots, t_{5}\right)=\psi\left(t_{1}\right)-a \max \left\{\phi\left(t_{2}\right), \phi\left(t_{3}\right), \phi\left(t_{4}\right)\right\}-b \phi\left(t_{5}\right)$, where $a, b \geq 0$ and $a+b<1$.
$\left(F_{2}\right) \quad$ Let $u, v \geq 0$ be and $F(u, v, v, u, 0)=\psi(u)-a \max \{\phi(u), \phi(v)\} \leq 0$. If $u>v$, then $\psi(u)-a \phi(v) \leq 0$, which implies $\psi(u) \leq a \phi(u)<\psi(u)$, a contradiction. Hence, $u \leq v$.
$\left(F_{3}\right)$ Let $t, t^{\prime}>0$ and $F\left(t, t, 0,0, t^{\prime}\right)=\psi(t)-a \phi(t)-b \phi\left(t^{\prime}\right) \leq 0$. If $t>t^{\prime}$, then $\psi(t)-(a+b) \phi(t) \leq 0$, which implies $\psi(t) \leq(a+b) \phi(t) \leq \phi(t)<\psi(t)$, a contradiction. Hence, $t \leq t^{\prime}$.

Example 7. $F\left(t_{1}, \ldots, t_{5}\right)=\psi\left(t_{1}\right)-a \phi\left(t_{2}\right)-b \max \left\{2 \phi\left(t_{3}\right), \phi\left(t_{4}\right)+\phi\left(t_{5}\right)\right\}$, where $a, b \geq 0$ and $a+2 b<1$.
$\left(F_{2}\right) \quad$ Let $u, v \geq 0$ be and $F(u, v, v, u, 0)=\psi(u)-a \phi(v)-b \max \{2 \phi(v), \phi(u)\} \leq$ 0 . If $u>v$, then $\psi(u) \leq(a+2 b) \phi(u) \leq \phi(u)<\psi(u)$, a contradiction. Hence, $u \leq v$.
$\left(F_{3}\right)$ Let $t, t^{\prime}>0$ and $F\left(t, t, 0,0, t^{\prime}\right)=\psi(t)-a \phi(t)-b \phi\left(t^{\prime}\right) \leq 0$. If $t>t^{\prime}$, then $\psi(t) \leq(a+b) \phi(t) \leq \phi(t)<\psi(t)$, a contradiction. Hence, $t \leq t^{\prime}$.

Example 8. $F\left(t_{1}, \ldots, t_{5}\right)=\psi\left(t_{1}\right)-a \phi\left(t_{2}\right)-b \max \left\{\phi\left(t_{3}\right)+\phi\left(t_{4}\right), 2 \phi\left(t_{5}\right)\right\}$, where $a, b \geq 0$ and $a+2 b<1$.

The proof is similar to the proof of Example 7.

4 Main results

Theorem 2. Let (X, G) be a complete G - metric spaces and

$$
\begin{equation*}
F\binom{\psi(G(f x, f y, f y)), \phi(G(x, y, y)), \phi(G(x, f x, f x)),}{\phi(G(y, f y, f y)), \phi(G(y, f x, f x))} \leq 0 \tag{2}
\end{equation*}
$$

for all $x, y \in X, \psi \in \Psi, \phi \in \Phi$ with $\psi(t)>\phi(t)$ for $t>0$.
Then f has a unique fixed point.
Proof. Let $x_{0} \in X$ be and $x_{n}=f x_{n-1}$ for $n=1,2, \ldots$. If there exists n_{0} such that $x_{n_{0}}=x_{n_{0}+1}$, then $x_{n_{0}}$ is a fixed point of f. We suppose that $x_{n} \neq x_{n+1}$ for all $n \in \mathbb{N}$. Then, by (2) we obtain

$$
\begin{aligned}
& F\left(\begin{array}{c}
\psi\left(G\left(f x_{n-1}, f x_{n}, f x_{n}\right)\right), \phi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right) \\
\phi\left(G\left(x_{n-1}, f x_{n-1}, f x_{n-1}\right)\right), \\
\phi\left(G\left(x_{n}, f x_{n}, f x_{n}\right)\right), \phi\left(G\left(x_{n}, f x_{n-1}, f x_{n-1}\right)\right)
\end{array}\right) \leq 0 \\
& F\binom{\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right), \phi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right),}{\phi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right), \phi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right), 0} \leq 0
\end{aligned}
$$

Since $\phi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)<\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)$, then by $\left(F_{1}\right)$ we obtain

$$
F\binom{\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right), \phi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right)}{\phi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right), \psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right), 0} \leq 0
$$

By $\left(F_{2}\right)$ we obtain

$$
\begin{equation*}
\psi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right) \leq \phi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right)<\psi\left(G\left(x_{n-1}, x_{n}, x_{n}\right)\right) \tag{3}
\end{equation*}
$$

Since ψ is nondecreasing we obtain

$$
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq G\left(x_{n-1}, x_{n}, x_{n}\right)
$$

Hence $\left\{G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right\}$ is a decreasing positive sequence and then $\left\{G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right\}$ is a convergent sequence. Hence, there exists $r \geq 0$ such that
$\lim _{n \rightarrow \infty} G\left(x_{n}, x_{n+1}, x_{n+1}\right)=r$. We prove that $r=0$. If $r>0$, then letting n tend to infinity in the first part of (3) we obtain $\psi(r) \leq \phi(r)<\psi(r)$, a contradiction. Hence, $\lim _{n \rightarrow \infty} G\left(x_{n}, x_{n+1}, x_{n+1}\right)=0$. We prove that $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Suppose that $\left\{x_{2 n}\right\}$ is not a Cauchy sequence. By Lemma 3, there exists $\varepsilon>0$ and two sequences $\left\{n_{k}\right\}$ and $\left\{m_{k}\right\}$ of positive integers such that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} G\left(x_{2 n_{k}+1}, x_{2 m_{k}}, x_{2 m_{k}}\right)=\varepsilon \\
\lim _{n \rightarrow \infty} G\left(x_{2 n_{k}}, x_{2 m_{k}-1}, x_{2 m_{k}-1}\right)=\varepsilon \\
\lim _{n \rightarrow \infty} G\left(x_{2 m_{k}-1}, x_{2 n_{k}+1}, x_{2 n_{k}+1}\right)=\varepsilon .
\end{gathered}
$$

By (2) we obtain

$$
\begin{aligned}
& F\left(\begin{array}{c}
\psi\left(G\left(f x_{2 n_{k}}, f x_{2 m_{k}-1}, f x_{2 m_{k}-1}\right)\right), \phi\left(G\left(x_{2 n_{k}}, x_{2 m_{k}-1}, x_{2 m_{k}-1}\right)\right), \\
\phi\left(G\left(x_{2 n_{k}}, f x_{2 n_{k}}, f x_{2 n_{k}}\right)\right), \\
\phi\left(G\left(x_{2 m_{k}-1}, f x_{2 m_{k}}, f x_{2 m_{k}}\right)\right), \phi\left(G\left(x_{2 m_{k}-1}, f x_{2 n_{k}}, f x_{2 n_{k}}\right)\right)
\end{array}\right) \leq 0, \\
& F\left(\begin{array}{c}
\psi\left(G\left(x_{2 n_{k}+1}, f x_{2 m_{k}-1}, f x_{2 m_{k}-1}\right)\right), \phi\left(G\left(x_{2 n_{k}}, x_{2 m_{k}-1}, x_{2 m_{k}-1}\right)\right), \\
\phi\left(G\left(x_{2 n_{k}}, x_{2 n_{k}+1}, x_{2 n_{k}+1}\right)\right), \\
\phi\left(G\left(x_{2 m_{k}-1}, x_{2 m_{k}+1}, x_{2 m_{k}+1}\right)\right), \phi\left(G\left(x_{2 m_{k}-1}, x_{2 n_{k}+1}, x_{2 n_{k}+1}\right)\right)
\end{array}\right) \leq 0 .
\end{aligned}
$$

Letting n tend to infinity we obtain

$$
F(\psi(\varepsilon), \phi(\varepsilon), 0,0, \phi(\varepsilon)) \leq 0
$$

Since $\psi(\varepsilon)>\phi(\varepsilon)$, by $\left(F_{1}\right)$ we obtain

$$
F(\psi(\varepsilon), \psi(\varepsilon), 0,0, \phi(\varepsilon)) \leq 0 .
$$

By $\left(F_{3}\right)$ we obtain

$$
\psi(\varepsilon) \leq \phi(\varepsilon)<\psi(\varepsilon)
$$

a contradiction.
Hence $\left\{x_{2 n}\right\}$ is a Cauchy sequence of (X, G), which implies that $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, G). Since (X, G) is complete, there exists $u \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=u$. We prove that u is a fixed point of f.

By (2) for $x=x_{n}$ and $y=u$ we obtain

$$
\begin{gathered}
F\binom{\psi\left(G\left(f x_{n}, f u, f u\right)\right), \phi\left(G\left(x_{n}, u, u\right)\right), \phi\left(G\left(x_{n}, f x_{n}, f x_{n}\right)\right),}{\phi(G(u, f u, f u)), \phi\left(G\left(u, f x_{n}, f x_{n}\right)\right)} \leq 0 \\
F\binom{\psi\left(G\left(x_{n+1}, f u, f u\right)\right), \phi\left(G\left(x_{n}, u, u\right)\right), \phi\left(G\left(x_{n}, x_{n+1}, x_{n+1}\right)\right),}{\phi(G(u, f u, f u)), \phi\left(G\left(u, x_{n+1}, x_{n+1}\right)\right)} \leq 0
\end{gathered}
$$

Letting n tend to infinity we obtain

$$
F(\psi(G(u, f u, f u)), 0,0, \phi(G(u, f u, f u)), 0) \leq 0
$$

By $\left(F_{1}\right)$ we obtain

$$
F(\psi(G(u, f u, f u)), 0,0, \psi(G(u, f u, f u)), 0) \leq 0
$$

which implies $u=f u$ and u is a fixed point of f.
Suppose that there exists another fixed point $v \neq u$. By (2) for $x=u$ and $y=v$ we obtain

$$
\begin{gathered}
F(\psi(G(f u, f v, f v)), \psi(G(u, v, v)), 0,0, \phi(G(v, f u, f u))) \leq 0, \\
F(\psi(G(u, v, v)), \phi(G(u, v, v)), 0,0, \phi(G(v, u, u))) \leq 0
\end{gathered}
$$

By $\left(F_{1}\right)$ we obtain

$$
F(\psi(G(u, v, v)), \psi(G(u, v, v)), 0,0, \phi(G(v, u, u))) \leq 0 .
$$

By $\left(F_{3}\right)$ we have

$$
\psi(G(u, v, v)) \leq \phi(G(v, u, u)) .
$$

Similarly we obtain

$$
\psi(G(v, u, u)) \leq \phi(G(u, v, v)) .
$$

Then

$$
\psi(G(u, v, v)) \leq \phi(G(v, u, u)) \leq \psi(G(v, u, u)) \leq \phi(G(u, v, v))<\psi(G(u, v, v)),
$$

a contradiction. Hence, $u=v$ and u is the unique fixed point of f.
Corollary 1. Let (X, G) be a complete G-metric spaces and $f: X \rightarrow X$ be a mapping. If there exists $\psi \in \Psi$ and $\phi \in \Phi$ with $\psi(t)>\phi(t)$ for $t>0$, such that

$$
\begin{aligned}
& \psi(G(f x, f y, f z)) \\
\leq & \phi(\max \{G(x, y, y), G(x, f x, f x), G(y, f y, f y), G(y, f x, f x)\}) \\
= & \max \{\phi(G(x, y, y)), \phi(G(x, f x, f x)), \phi(G(y, f y, f y)), \phi(G(y, f x, f x))\}
\end{aligned}
$$

for all $x, y \in X$, then f has a unique fixed point.
Proof. The proof it follows by Theorem 2, Example 2 and by the fact that ϕ is nondecreasing.

Example 9. Let $X=[0, \infty)$ and $G: X^{3} \rightarrow \mathbb{R}_{+}$be a G - metric on X defined by $G(x, y, z)=\max \{|x-y|,|x-z|,|y-z|\}$, for all $x, y, z \in X$. Then (X, G) is a complete metric space. Let $\psi(t)=t, \phi(t)=\frac{3}{4} t$, then $\psi(t) \in \psi, \phi(t) \in \phi$ and $\phi(t)<\psi(t)$, for all $t>0$. Let $T:(X, G) \rightarrow(X, G)$ with $T x=\frac{1}{2} x$. Then

$$
G(T x, T y, T y)=|T x-T y|=\frac{1}{2}|x-y|
$$

and

$$
G(x, y, y)=|x-y| .
$$

Hence

$$
\begin{aligned}
G(T x, T y, T y) & =\frac{1}{2}|x-y| \leq \frac{3}{4}|x-y|=\frac{3}{4} G(x, y, y) \\
& \leq \frac{3}{4} \max \left\{\begin{array}{c}
G(x, y, y), G(x, T x, T x), \\
G(y, T y, T y), G(y, T x, T x)
\end{array}\right\} .
\end{aligned}
$$

Hence,

$$
\Psi(G(T x, T y, T y)) \leq \phi\left(\max \left\{\begin{array}{c}
G(x, y, y), G(x, T x, T x) \\
G(y, T y, T y), G(y, T x, T x)
\end{array}\right\}\right)
$$

By Corollary 1, f has a unique fixed point $x=0$.

References

[1] M. Bousselsal, S. Hamidou Jah, Property P and some fixed point results on a new φ - weakly contractive mappings, J. Adv. Fixed Point Theory 4 (2014), no. 2, 169-183.
[2] B. C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc. 84 (1992), no. 4, 329-336.
[3] B. C. Dhage, Generalized metric spaces and topological structures I, An. Ştiinţ. Univ. Al. I. Cuza, Iaşi, Mat. 46 (2000), no. 1, 3-24.
[4] M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distance between two points, Bull. Austral. Math. Sci. 30 (1984), 1-9.
[5] Z. Mustafa and B. Sims, Some remarks concerning D - metric spaces, Proc. Conf. Fixed Point Theory Appl., Valencia (Spain), 2003, 189-198.
[6] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289-297.
[7] V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cerc. Ştiinţ., Ser. Mat., Univ. Bacău 7 (1997), 127-134.
[8] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstr. Math. 32 (1999), no. 1, 157-163.
[9] V. Popa, A general fixed point theorem for several mappings in G - metric spaces, Sci. Stud. Res., Ser. Math. Inform. 21 (2011), no. 1, 205-214.
[10] V. Popa and A.-M. Patriciu, A general fixed point theorem for pairs of weakly compatible mappings in G - metric spaces, J. Nonlinear Sci. Appl. 5 (2012), no. 2, 151-160.
[11] V. Popa and A.-M. Patriciu, Fixed point theorems for mappings satisfying an implicit relation in complete G - metric spaces, Bul. Inst. Politeh. Iaşi, Secţ. I, Mat. Mec. Teor. Fiz. 59 (2013), no. 63, 97-123.
[12] V. Popa and A.-M. Patriciu, Fixed point theorems for rwo pairs of mappings satisfying common limit range property in G - metric spaces, Bul. Inst. Politeh. Iaşi, Secţ. I, Mat. Mec. Teor. Fiz. 62 (2016), no. 66, 19-42.
[13] K. P. Sastri and G. V. R. Babu, Fixed point theorems in metric spaces by altering distances, Bull. Calcutta Math. Soc. 90 (1998), 175-182.
[14] K. P. Sastri and G. V. R. Babu, Some fixed point theorems by altering distances between two points, Indian J. Pure Appl. Math. 30 (1999), 641-647.

[^0]: ${ }^{1 *}$ Corresponding author Department of Mathematics and Computer Sciences, Faculty of Sciences and Environment, Dunărea de Jos University of Galaţi, Romania, e-mail: Alina.Patriciu@ugal.ro
 ${ }^{2}$ Faculty of Sciences, Vasile Alecsandri University of Bacău, Romania, e-mail: vpopa@ub.ro

