SOME NEW FIXED POINT THEOREMS FOR \mathcal{F}-METRIC SPACES

Cristina Maria PĂCURAR ${ }^{1}$

Abstract

The present paper introduces some new fixed point and coupled fixed point theorems for \mathcal{F}-metric spaces. We introduce a new fixed point theorem, a Kannan type theorem for asymptotically regular operators and basic coupled fixed point theorems along with some consequences.

2000 Mathematics Subject Classification: 47H10, 54H25, 54E50.
Key words: \mathcal{F}-metric spaces, fixed point, coupled fixed point, asymptotically regular operator.

1 Introduction

Over the past years, generalizations of the metric space concept have been intensively studied. Starting with the emergence of b-metric spaces in Czerwik paper [3], many more new concepts of extensions and generalizations of metric spaces have appeared. Fagin et al. introduced the notion of s-relaxed ${ }_{p}$ metric in [5]. There have also been generalizations on an $X \times X \times X$ product set, like Gähler's 2-metric in [6], and in Dhage's paper [4] where the D-metric is defined.

Jleli and Samet [9] have recently introduced a new type of metric space, called an \mathcal{F}-metric space. Thereby, let \mathcal{F} be the set of functions $f:(0, \infty) \rightarrow \mathbb{R}$ satisfying the following conditions:
$\left(\mathcal{F}_{1}\right) \mathrm{f}$ is non-decreasing, i.e. $0<s<t \Rightarrow f(s) \leq f(t) ;$
$\left(\mathcal{F}_{2}\right)$ for every sequence $\left\{t_{n}\right\} \subset(0, \infty)$, we have

$$
\lim _{n \rightarrow \infty} t_{n}=0 \Leftrightarrow \lim _{n \rightarrow \infty} f\left(t_{n}\right)=-\infty
$$

The concept of metric space is thus generalized as follows.

[^0]Definition 1. Let X be a nonempty set, and let $D: X \times X \rightarrow[0, \infty)$ be a given mapping. Suppose that there exists $(f, \alpha) \in \mathcal{F} \times[0, \infty)$ such that
$\left(D_{1}\right)(x, y) \in X \times X, D(x, y)=0 \Leftrightarrow x=y ;$
$\left(D_{2}\right) D(x, y)=D(y, x), \forall(x, y) \in X \times X$;
(D_{3}) For every $(x, y) \in X \times X$, for every $N \in \mathbb{N}, N \geq 2$ and for every $\left(u_{i}\right)_{i=1}^{N} \subset X$ with $\left(u_{1}, u_{N}\right)=(x, y)$, we have

$$
D(x, y)>0 \Rightarrow f(D(x, y)) \leq f\left(\sum_{i=1}^{N-1} D\left(x_{i}, x_{i+1}\right)\right)+\alpha
$$

Then D is said to be an \mathcal{F}-metric on X, and the pair (X, D) is said to be an \mathcal{F}-metric space.

2 Main Results

2.1 A new fixed point theorem for \mathcal{F}-metric spaces

Based on the results for b-metric spaces by Huang, Deng and Radenovic from [7], we give a fixed point theorem for \mathcal{F}-metric spaces which involves one similar inequality.

Theorem 1. Let (X, D) be a complete bounded F-metric space and $T: X \rightarrow X$ be an operator such that there exists $\lambda_{1}, \lambda_{2}, \lambda_{3} \in(0,1)$ for which:

$$
\begin{equation*}
D(T x, T y) \leq \lambda_{1} D(x, y)+\lambda_{2} \frac{D(x, T y) D(y, T x)}{1+D(x, y)}+\lambda_{3} \frac{D(x, T x) D(x, T y)}{1+D(x, y)} \tag{1}
\end{equation*}
$$

$\forall x, y \in X$.Then, T has a fixed point.
Proof. Let $f \in \mathcal{F}$ and $\alpha \in[0, \infty)$ such that $\left(D_{3}\right)$ is satisfied. By \mathcal{F}_{2}, for $\varepsilon>0$, there exists $\delta>0$ such that

$$
\begin{equation*}
0<t<\delta \Rightarrow f(t)<f(\varepsilon)<f(\varepsilon)+\alpha \Rightarrow f(t)<f(\varepsilon)-\alpha \tag{2}
\end{equation*}
$$

For $x_{n}=T x_{n-1}=T^{n} x_{o}$, by (1), we have

$$
\begin{gathered}
D\left(T x_{n}, T x_{n-1}\right)=D\left(x_{n+1}, x_{n}\right) \leq \\
\lambda_{1} D\left(x_{n}, x_{n-1}\right)+\lambda_{2} \frac{D\left(x_{n}, T x_{n-1}\right) D\left(x_{n-1}, T x_{n}\right)}{1+D\left(x_{n}, x_{n-1}\right)}+\lambda_{3} \frac{D\left(x_{n}, T x_{n}\right) D\left(x_{n}, T x_{n-1}\right)}{1+D\left(x_{n}, x_{n-1}\right)} \\
\leq \lambda_{1} D\left(x_{n}, x_{n-1}\right) \leq \ldots \leq \lambda_{1}^{n} D\left(x_{1}, x_{0}\right) .
\end{gathered}
$$

Thus we have

$$
\begin{equation*}
\sum_{i=n}^{m-1} D\left(x_{i}, x_{i+1}\right) \leq \frac{\lambda_{1}^{n}}{1-\lambda_{1}} D\left(x_{0}, x_{1}\right), \quad m>n \tag{3}
\end{equation*}
$$

and since

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{1}^{n}}{1-\lambda_{1}} D\left(x_{0}, x_{1}\right)=0
$$

there exists an $N \in \mathbb{N}$ such that

$$
\begin{equation*}
0 \leq \frac{\lambda_{1}^{n}}{1-\lambda_{1}} D\left(x_{0}, x_{1}\right) \leq \delta, \quad n \geq N \tag{4}
\end{equation*}
$$

From (2) and (4) we get

$$
\begin{equation*}
f\left(\sum_{i=n}^{m-1} D\left(x_{i}, x_{i+1}\right)\right) \leq f\left(\frac{\lambda_{1}^{n}}{1-\lambda_{1}} D\left(x_{0}, x_{1}\right)\right) \leq f(\varepsilon)-\alpha, \quad m>n \geq N . \tag{5}
\end{equation*}
$$

Using $\left(D_{3}\right)$ we have for $D\left(x_{n}, x_{m}\right)>0, m>n \geq N$

$$
f\left(D\left(x_{n}, x_{m}\right)\right) \leq f\left(\sum_{i=n}^{m+1} D\left(x_{i}, x_{i+1}\right)\right)+\alpha<f(\varepsilon) .
$$

Thus, we get $D\left(x_{n}, x_{m}\right)<\varepsilon$ for $n>m \geq N$ which proves that the sequence $\left\{x_{n}\right\}$ is \mathcal{F}-Cauchy, and because X is \mathcal{F}-complete, then $\left\{x_{n}\right\}$ is \mathcal{F}-convergent, so there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$.

We prove that x^{*} is a fixed point of T . If we suppose that $D\left(T x^{*}, x^{*}\right)>0$ then

$$
f\left(D\left(T x^{*}, x^{*}\right)\right) \leq f\left(D\left(T x^{*}, T x_{n}\right)+D\left(T x_{n}, x^{*}\right)\right)+\alpha
$$

and using the inequality from (1) we have

$$
\begin{gathered}
f\left(D\left(T x^{*}, x^{*}\right)\right) \leq f\left(\lambda_{1} D\left(x_{n}, x^{*}\right)+\lambda_{2} \frac{D\left(x^{*}, T x_{n}\right) D\left(x_{n}, T x^{*}\right)}{1+D\left(x_{n}, x^{*}\right)}+\right. \\
\left.\lambda_{3} \frac{D\left(x^{*}, T x^{*}\right) D\left(x^{*}, T x_{n}\right)}{1+D\left(x_{n}, x^{*}\right)}+D\left(T x_{n}, x^{*}\right)+\alpha\right) .
\end{gathered}
$$

Since $\lim _{n \rightarrow \infty} D\left(x_{n}, x^{*}\right)=0$ and $T x_{n}=x_{n+1}$ we get

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} f\left(\lambda_{1} D\left(x_{n}, x^{*}\right)+\lambda_{2} \frac{D\left(x^{*}, T x_{n}\right) D\left(x_{n}, T x^{*}\right)}{1+D\left(x_{n}, x^{*}\right)}+\right. \\
& \left.\lambda_{3} \frac{D\left(x^{*}, T x^{*}\right) D\left(x^{*}, T x_{n}\right)}{1+D\left(x_{n}, x^{*}\right)}+D\left(T x_{n}, x^{*}\right)\right)+\alpha=-\infty
\end{aligned}
$$

and thus $D\left(x^{*}, T x^{*}\right)=0$ which implies $x^{*}=T x^{*}$, meaning that x^{*} is a fixed point of T .

Remark 1. Moreover, if $\lambda_{1}+\lambda_{2}<1$, the fixed point is unique.

Proof. We suppose that there exists $x^{*}, y^{*} \in X$ such that $T x^{*}=x^{*}$ and $T y^{*}=y^{*}$.
We get

$$
\begin{gathered}
D\left(T x^{*}, T y^{*}\right)=D\left(x^{*}, y^{*}\right) \leq \lambda_{1} D\left(x^{*}, y^{*}\right)+\lambda_{2} \frac{D\left(x^{*}, T y^{*}\right) D\left(y^{*}, T x^{*}\right)}{1+D\left(x^{*}, y^{*}\right)}+ \\
+\lambda_{3} \frac{D\left(x^{*}, T x^{*}\right) D\left(x^{*}, T y^{*}\right)}{1+D\left(x^{*}, y^{*}\right)}
\end{gathered}
$$

and so

$$
D\left(x^{*}, y^{*}\right) \leq \lambda_{1} D\left(x^{*}, y^{*}\right)+\lambda_{2} \frac{D\left(x^{*}, y^{*}\right) D\left(y^{*}, x^{*}\right)}{1+D\left(x^{*}, y^{*}\right)}+\lambda_{3} \frac{D\left(x^{*}, x^{*}\right) D\left(x^{*}, y^{*}\right)}{1+D\left(x^{*}, y^{*}\right)}
$$

and grouping by $D\left(x^{*}, y^{*}\right)$

$$
\begin{equation*}
D\left(x^{*}, y^{*}\right) \leq D\left(x^{*}, y^{*}\right)\left(\lambda_{1}+\lambda_{2} \frac{D\left(x^{*}, y^{*}\right)}{1+D\left(x^{*}, y^{*}\right)}\right) \tag{6}
\end{equation*}
$$

If we suppose that $\lambda_{1}+\lambda_{2} \frac{D\left(x^{*}, y^{*}\right)}{1+D\left(x^{*}, y^{*}\right)} \geq 1$ we get

$$
\begin{equation*}
\lambda_{1}-1 \geq\left(1-\lambda_{1}-\lambda_{2}\right) D\left(x^{*}, y^{*}\right) . \tag{7}
\end{equation*}
$$

However, since $\lambda_{1} \in(0,1)$ and $\lambda_{1}+\lambda_{2}<1$, the inequality (7) holds only if $D\left(x^{*}, y^{*}\right)<0$ which is impossible. Thus, we have $\lambda_{1}+\lambda_{2} \frac{D\left(x^{*}, y^{*}\right)}{1+D\left(x^{*}, y^{*}\right)}<1$ and from (6) we get $D\left(x^{*}, y^{*}\right)=0$ and so x^{*} is the unique fixed point of T.

Example 1. Let $X=[0,1]$ with the metric $D: X \times X \rightarrow[0, \infty)$ defined as $D(x, y)=|x-y|$ for all $(x, y) \in X \times X$. As stated in [2], for $f(t)=\ln t$ and $\alpha=0,(X, D)$ is an \mathcal{F}-metric space which is also \mathcal{F}-complete.

Taking $T x=\frac{x}{2}$ we can easily see that for $\lambda_{1}=\frac{1}{2}$ and $\lambda_{2}=\lambda_{3}=\frac{1}{3}$ we have

$$
D(T x, T y)=\left|\frac{x}{2}-\frac{y}{2}\right| \leq \frac{1}{2}|x-y|+\frac{1}{3} \frac{\left|x-\frac{y}{2}\right|\left|y-\frac{x}{2}\right|}{1+|x-y|}+\frac{1}{3} \frac{\left|x-\frac{x}{2}\right|\left|x-\frac{y}{2}\right|}{1+|x-y|}
$$

which obviously holds since $\frac{1}{3} \frac{\left|x-\frac{y}{2}\right|\left|y-\frac{x}{2}\right|}{1+|x-y|}+\frac{1}{3} \frac{\left|x-\frac{x}{2}\right|\left|x-\frac{y}{2}\right|}{1+|x-y|} \geq 0$.
Since T satisfies the conditions in Theorem 1, and also $\frac{1}{2}+\frac{1}{3} \leq 1$, the operator has a unique fixed point $x^{*}=0 \in[0,1]$.

2.2 Kannan type theorem for an asymptotically regular operator

Bera et al. gave a Kannan type [11] fixed point result for \mathcal{F}-metric spaces in [2]. We now give a similar result, but for asymptotically regular operators.

Definition 2. For T a continuous operator, we say that T is orbitally continuous if for all $x \in X$ and for all $\varepsilon>0$, there exists $\delta>0$, such that $D\left(T^{i} x, T^{j} x\right)<\varepsilon+\delta$ implies $D\left(T^{i+1} x, T^{j+1} x\right) \leq \varepsilon, \forall i, j \in \mathbb{N}$.

Definition 3. Let (X, D) be an \mathcal{F}-metric space. The operator $T: X \rightarrow X$ is asymptotically regular if for every $x \in X$

$$
\lim _{n \rightarrow \infty}\left(T^{n} x, T^{n+1} x\right)=0
$$

Theorem 2. Let (X, D) be a complete \mathcal{F}-metric space and $T: X \rightarrow X$ be an asymptotically regular operator which is orbitally continuous such that there exists an $a \in(0,1)$ for which

$$
\begin{equation*}
D(T x, T y) \leq a[D(x, T x)+D(y, T y)], \quad \forall x, y \in X \tag{8}
\end{equation*}
$$

Then, T has an unique fixed point.
Proof. Let $f \in \mathcal{F}$ and $\alpha \in[0, \infty]$ such that $\left(D_{3}\right)$ is satisfied. By \mathcal{F}_{2}, for $\varepsilon>0$, there exists $\delta>0$ such that

$$
\begin{gather*}
0<t<\delta \Rightarrow f(t)<f(\varepsilon)<f(\varepsilon)+\alpha \Rightarrow f(t)<f(\varepsilon)-\alpha \tag{9}\\
D\left(x_{n}, x_{n+p}\right)=D\left(T x_{n-1}, T x_{n+p-1}\right) \leq a\left[D\left(x_{n-1}, T x_{n-1}\right)+D\left(x_{n+p-1}, T x_{n+p-1}\right)\right] \\
=a\left[D\left(x_{n-1}, x_{n}\right)+D\left(x_{n+p-1}, x_{n+p}\right)\right]=a\left[D\left(T^{n-1} x, T^{n} x\right)+D\left(T^{n+p-1} x, T^{n+p} x\right)\right]
\end{gather*}
$$

As T is asymptotically regular, this implies $D\left(x_{n}, x_{n+p}\right) \leq 0$ which means that the sequence $\left\{x_{n}\right\}$ is \mathcal{F}-Cauchy, and because X is \mathcal{F}-complete, therefore $\left\{x_{n}\right\}$ is \mathcal{F}-convergent.

We have proven that $x_{n} \rightarrow x^{*}$, and from T being orbitally continuous we have that $\left\{T x_{n}\right\}$ tends to $T x^{*}$ as n approaches infinity. Since $T x_{n}=x_{n+1}$ and from the fact that the limit of the sequence is unique, we get that $T x^{*}=x^{*}$ which means that x^{*} is a fixed point of T.

We prove that x^{*} is the only fixed point of T and supposing that there exists another $y^{*} \in F_{T}$ and we calculate the distance

$$
D\left(T x^{*}, T y^{*}\right) \leq a\left[D\left(T x^{*}, x^{*}\right)+D\left(T y^{*}, y^{*}\right)\right]=a\left[D\left(y^{*}, y^{*}\right)+D\left(x^{*}, x^{*}\right)\right]=0
$$

which implies $D\left(x^{*}, y^{*}\right)=0$ and so $x^{*}=y^{*}$. We have proven that T has a unique fixed point.

2.3 Common fixed point theorems

The following results are an equivalent for \mathcal{F}-metric spaces of the results given and proved by Jungck in [10].

Lemma 1. Let (X, D) be an \mathcal{F}-complete \mathcal{F} metric space and $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in X. If there exists an $\alpha \in(0,1)$ such that $D\left(x_{n}, x_{n+1}\right) \leq \alpha D\left(x_{n-1}, x_{n}\right)$, for all $n \in \mathbb{N}$, then $\left\{x_{n}\right\}$ is convergent.

Proof. Let $D\left(x_{n}, x_{n+1}\right) \leq \alpha D\left(x_{n-1}, x_{n}\right) \leq \alpha^{2} D\left(x_{n-2}, x_{n-1}\right) \leq \ldots \leq \alpha^{n} D\left(x_{1}, x_{0}\right)$ and thus we get

$$
\sum_{i=n}^{m+1} D\left(x_{i}, x_{i+1}\right) \leq \frac{\alpha^{n}}{1-\alpha} D\left(x_{0}, x_{1}\right), \quad m>n
$$

On the other hand

$$
\lim _{n \rightarrow \infty} \frac{\alpha^{n}}{1-\alpha} D\left(x_{0}, x_{1}\right)=0
$$

which means that there exists $N \in \mathbb{N}$ such that

$$
0 \leq \frac{\alpha^{n}}{1-\alpha} D\left(x_{0}, x_{1}\right) \leq \delta, \quad n \geq N
$$

From property \mathcal{F}_{2} and (2.3) we get

$$
f\left(\sum_{i=n}^{m+1} D\left(x_{i}, x_{i+1}\right)\right) \leq f\left(\frac{\alpha^{n}}{1-\alpha} D\left(x_{0}, x_{1}\right)\right) \leq f(\varepsilon)-\alpha, \quad m>n \geq N
$$

Using the definition from $\left(D_{3}\right)$ we have that $D\left(x_{n}, x_{m}\right)>0, m>n \geq N$ implies

$$
f\left(D\left(x_{n}, x_{m}\right)\right) \leq f\left(\sum_{i=n}^{m+1} D\left(x_{i}, x_{i+1}\right)\right)+\alpha<f(\varepsilon), .
$$

Thus, we get $D\left(x_{n}, x_{m}\right)<\varepsilon$ for $n>m \geq N$ which proves that the sequence $\left\{x_{n}\right\}$ is \mathcal{F}-Cauchy, and because X is \mathcal{F}-complete, then $\left\{x_{n}\right\}$ is \mathcal{F}-convergent.

Theorem 3. Let (X, D) be an \mathcal{F}-complete \mathcal{F} metric space and $T: X \rightarrow X$ be a continuous operator. T has a fixed point if and only if there exists $\alpha \in(0,1)$ and an operator $S: X \rightarrow X$ such that $T(S x)=S(T x), \forall x \in X$ and satisfies $S(X) \subset T(X)$ and $D(S x, S y) \leq \alpha D(T x, T y), \forall x, y \in X$. Moreover, T and S have a unique common fixed point.

Proof. Let us suppose that T with the Picard iteration $T^{n} x=x_{n+1}$ has a fixed point $a \in X$ such that $T a=a$ and let $S: X \rightarrow X$ with $S x=a, \forall x \in X$. Then, we have $S(T x)=T(S x)=a, \forall x \in X$ and $S x=T x=a, \forall x \in X$ from which $S(X) \subset T(X)$.

If we have $\alpha \in(0,1)$, from the hypothesis we have

$$
D(S x, S y)=D(a, a)=0 \leq \alpha D(T x, T y), \forall x, y \in X
$$

so the condition holds.
Conversely, let us suppose that there exists an operator $S: X \rightarrow X$ such that $T(S x)=S(T x), \forall x \in X$ and $D(S x, S y) \leq \alpha D(T x, T y), \forall x, y \in X$.

Let $x_{0} \in X$ and x_{1} such that $T x_{1}=S x_{0}$. Because we have $S(X) \subset T(X)$, we choose x_{n} such that $T x_{n}=S x_{n-1}$. As a consequence, we have

$$
D\left(T x_{n}, T x_{n+1}\right) \leq \alpha D\left(T x_{n-1}, T x_{n}\right), \forall x \in X
$$

and from Lemma 1 we have that $T x_{n} \rightarrow x^{*}$ and as a result from $T x_{n}=S x_{n-1}$ we obtain $S x_{n} \rightarrow x^{*}$. Moreover, since T is continuous, S is continuous, which along with the previous result implies $S\left(T x_{n}\right) \rightarrow S x^{*}$ and $T\left(S x_{n}\right) \rightarrow T x^{*}$. Since T and S commute, we get $T\left(S x_{n}\right)=S\left(T x_{n}\right)$ which means that $S x^{*}=T x^{*}$. Moreover, $T\left(T x^{*}\right)=T\left(S x^{*}\right)=S\left(S x^{*}\right)$, and we can state that

$$
D\left(S x^{*}, S\left(S x^{*}\right)\right) \leq \alpha D\left(T x^{*}, T\left(S x^{*}\right)\right)=\alpha D\left(S x^{*}, S\left(S x^{*}\right)\right)
$$

Since $\alpha \in(0,1)$, and $D\left(S x^{*}, S\left(S x^{*}\right)\right)(1-\alpha) \leq 0$, we get $S x^{*}=S\left(S x^{*}\right)$. Thus, we proved that $S x^{*}=S\left(S x^{*}\right)=T\left(S x^{*}\right)$, which means that T and S have a common fixed point.

To prove that x^{*} is the unique fixed point of S and T, we argue by contradiction. We suppose that there exists $x^{*}, y^{*} \in X$ such that $x^{*}=T x^{*}=S x^{*}$ and $y^{*}=$ $T y^{*}=S y^{*}$. Then we have $D(x, y)=D\left(S x^{*}, S y^{*}\right) \leq \alpha D\left(T x^{*}, T y^{*}\right)=\alpha D\left(y^{*}, y^{*}\right)$, which implies $D(x, y)(1-\alpha) \leq 0$ and for $\alpha \in(0,1)$ we have $x^{*}=y^{*}$.

Corollary 1. Let (X, D) be an \mathcal{F}-complete \mathcal{F} metric space and $T, S: X \rightarrow X$ be commuting operators. For T continuous and $S(X) \subset T(X)$, if there exists $\alpha \in(0,1)$ and $k \in \mathbb{N}$ such that

$$
D\left(S^{k} x, S^{k} y\right) \leq \alpha D(T x, T y), \forall x, y \in X
$$

then S and T have a unique common fixed point.
Proof. Since S and T commute, it is clear that $S^{k}(X) \subset S(X) \subset T(X)$ and we can apply Theorem 3 to T and S^{k} such that there is a unique point x^{*} so that $S^{k} x^{*}=T x^{*}=x^{*}$.

We get $S x^{*}=S\left(T x^{*}\right)=T\left(S x^{*}\right)=S^{k}\left(S x^{*}\right)$ which means that $S x^{*}$ is the common fixed point for $S^{k} x^{*}$ and T. But since x^{*} is unique, we get $S x^{*}=T x^{*}=$ x^{*}.

Remark 2. As a consequence of Corollary 1, we can get the proof for the Banach contraction principle that is presented in [9].

We can give another consequence of Corollary 1.
Corollary 2. Let (X, D) be an \mathcal{F}-complete \mathcal{F} metric space and $T: X \rightarrow X$ be a continuous onto operator. If there exists $K>1$ and $n \in \mathbb{N}$ such that

$$
D\left(T^{n} x, T^{n} y\right) \geq K D(x, y), \forall x, y \in X
$$

then T has a unique fixed point.
Proof. Let $T=T^{n}$ and S the identity operator such that $S x=x, \forall x \in X$.
It is true that T and S commute and $T^{n} x=S\left(T^{n} x\right)=T^{n}(S x)=T^{n} x, \forall x \in$ X and we have $X=S(X) \subset T^{n}(X)$ since T is onto.

We can apply Theorem 3, for $T=T^{n}$ and $S x=x D(x, y)=D(S x, S y) \leq$ $\alpha D(T x, T y), \forall x, y \in X$ and $\alpha \in(0,1)$ implies that S and T^{n} have a unique fixed point.

Thus, taking $K=\frac{1}{\alpha}>1$, in Theorem 3 we have

$$
D\left(T^{n} x, T^{n} y\right) \geq K D(S x, S y)=K D(x, y)
$$

which implies that T has a unique fixed point.

References

[1] Banach, S., Sur les opérations dans les ensambles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181.
[2] Bera, A., Dey, L. K., Garai, H. and Chanda, A., Topological developments of \mathcal{F}-metric spaces, arXiv:1806.05890 (2018).
[3] Czerwik, S., Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis 1 (1993), no 1, 5-11.
[4] Dhage, B.C., Generalized metric spaces and topological structure I, An. Ştiinţ. Univ. Al. I. Cuza, Iaşi Mat. (N.S.) 24 (2000), 1-22.
[5] Fagin, R., Kumar, R. and Sivakumar, D., Comparing top k lists, SIAM J. Discrete Math. 17 (2003), no. 1, 134-160.
[6] Gähler, V. S. 2-Metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963/1964), 115-118.
[7] Huang, H., Deng, G. and Radenović, S., Fixed point theorems in b-metric spaces with applications to differential equations, J. Fixed Point Theory Appl. 20 (2018), Article no. 52.
[8] Jleli, M. and Samet, B., On a new generalization of metric spaces, Fixed Point Theory Appl. 20 (2018), no. 3, Article no. 128.
[9] Jleli, M. and Samet, B., A generalized metric space and related fixed point theorems, Fixed Point Theory Appl. (2015), Article no. 61.
[10] Jungck, G., Commuting mappings and fixed points, The American Mathematical Monthly 83 (1976) no. 4, 261-263.
[11] Kannan, R., Some results on fixed points- II, The American Mathematical Monthly 76 (1969), 405-408.

[^0]: ${ }^{1}$ Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Romania, e-mail: maria.pacurar@student.unitbv.ro

