
Bulletin of the Transilvania University of Braşov • Vol 12(61), No. 1 - 2019

Series III: Mathematics, Informatics, Physics, 177-198

https://doi.org/10.31926/but.mif.2019.12.61.1.14

MAXIMUM FLOWS IN BIPARTITE DYNAMIC NETWORKS

Camelia SCHIOPU1

Dedicated to the 75th birthday of Professor Eleonor Ciurea

Abstract

In this paper we study the maximum flow in bipartite dynamic network
and make a synthesis of the papers [17], [18], [19], [20]. We solve this problem
by dynamic approach and static approach. In a bipartite static network the
several maximum algorithms can be substantially improved. The basic idea
in these improvements is a two arcs push rule in case of maximum algorithms.
For these problems we give examples.

2000 Mathematics Subject Classification: 0B10, 90C35, 05C35, 68R10.
Key words: bipartite static network, bipartite dynamic network, maxi-

mum flow.

1 Introduction

The problem of flows in network is the fundamental and the most important
part of graph theory and combinatorial optimization. The static network flow
models arise directly in problems as far reaching as machine scheduling, the as-
signment of computer modules to computer processor, tanker scheduling etc. [1].
In the network flow literature the difference between dynamic flow and static flow
is given by the crossing time of the arc flow in the network. In some applications,
time is an essential ingredient [3], [4], [7], [9], [14], [21], [22]. In this case we need
to use dynamic network flow model. On the other hand, the bipartite static net-
work also arises in practical context such as baseball elimination problem, network
reliability testing etc. and hence it is of interest to find fast flow algorithms for
this class of networks [2], [13].

The static approach of maximum flow problem in bipartite dynamic networks
with lower bounds zero is treated in the paper [18] and the dynamic approach
is treated in the paper [17]. The static approach of maximum flows problem in
bipartite dynamic networks with positive lower bounds is treated in the paper
[19], [20].

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
camelia.s@unitbv.ro

178 Camelia Schiopu

In this paper we present a syhthesis of the problem of maximum flows in
bipartite dynamic networks from paper [17], [18], [19], [20]. Further on, in Section
2 we discuss some basic notions and results for maximum flow problem in general
static networks and in dynamic networks. Section 3 deals with the maximum
flow problem in bipartite dynamic networks with lower bound zero, static and
dynamic approach, and the maximum flow problem in bipartite dynamic networks
with lower bounds positive (static approach) and we give some examples for the
problems presented.

2 Terminology and preliminaires

2.1 Maximum flows in general static networks

In this section we discuss some notions and results about maximum flows in
static networks.

Let G = (N,A, u, l) be a general static network with the set of nodes N =
{1, . . . , n} where 1 is the source node and n is the sink node, the set of arcs A =
{a1, . . . , ak, . . . , am}, ak = (i, j), i, j ∈ N , the upper bound (capacity) function u,
u : A→ N with N the natural number set, the lower bound function l, l : A→ N
with N the natural number set. The capacity u(i, j) of (i, j) from A represent the
maximum quantity that can cross the arc, the lower bound l(i, j) of (i, j) form
A represent the minimum quantity that can cross the arc and v(i) represent the
value of node i.

A flow is a function f : A→ N satisfying the next conditions:

f(i,N)− f(N, i) =


v, if i = 1

0, if i 6= 1, n

−v, if i = n

(1a)

l(i, j) ≤ f(i, j) ≤ u(i, j), (i, j) ∈ A (1b)

for some v ≥ 0. We refer to v as the value of the flow f .
The maximum flow problem is to determine a flow f for which v is maximum.
Many efficient algorithms have been developed to solve this problem and are

presented in the book of authors Ahuja, Magnanti and Orlin [1] and in the paper
of other authors presented in the bibliography.

Definition 1. For the maximum flow problem we define the capacity of the cut
1− n [X, X̄] as follows:

c[X, X̄] =
∑

(X,X̄)

u(i, j)−
∑

(X̄,X)

l(j, i) (2)

If we use the notation
∑

(X,X̄) b(i, j) = b(X, X̄) then for the capacity of cut

[X, X̄] we can use the relation:

c[X, X̄] = u(X, X̄)− l(X̄,X) (3)

Maximum flows in bipartite dynamic networks 179

If l(i, j) = 0 for all (i, j) ∈ A then c[X, X̄] = u(X, X̄) is the relationship of
defining the capacity of a cut if the lower bound is null.

Definition 2. A 1− n cut whose capacity is minimum between all the 1− n cuts
is called the minimum cut and is noted with [X∗, X̄∗].

Theorem 1. If f is a flow with value v in the network G = (N,A, l, u) and [X, X̄]
a 1− n cut then f checks the relations:

v = f [X, X̄] ≤ c[X, X̄], f [X, X̄] = f(X, X̄)− f(X̄,X) (4)

Theorem 2. In a network G = (N,A, l, u) the maximum flux value from the
source node 1 to the sink node n is equal with the 1 − n minimum cut capacity
[X∗, X̄∗], namely:

v = f [X∗, X̄∗] = c[X∗, X̄∗] (5)

For the maximum flow problem a preflow f is a function f : A→ N satisfying
the next conditions:

f(N, i)− f(i,N) ≥ 0, i ∈ N − {1, n} (6a)

l(i, j) ≤ f(i, j) ≤ u(i, j), (i, j) ∈ A (6b)

A pseudoflow is a function satisfying only the constraint 6b.

For a preflow f the excess of each node i ∈ N is

e(i) = f(N, i)− f(i,N) (7)

and if e(i) > 0, i ∈ N − {1, n} then we say that node i is an active node. If
e(i) = 0 then i is called a balanced node. A preflow which satisfies the condition
e(i) = 0, i ∈ N − {1, n} is a flow. So, a flow is a particular case of preflow.

Given a flow (preflow) f , the residual capacity r(i, j) of any arc (i, j) ∈ A is
r(i, j) = u(i, j) − f(i, j) + f(j, i) − l(j, i). The residual network with respect to
the flow (preflow) f is G̃ = (N, Ã, r) with Ã = {(i, j)|(i, j) ∈ A, r(i, j) > 0}. In
the residual network G̃ = (N, Ã, r) we define the distance function d : N → N.
We say that a distance function is valid if it satisfies the following two conditions

d(n) = 0 (8a)

d(i) ≤ d(j) + 1, (i, j) ∈ Ã (8b)

We refer to d(i) as the distance label of node i. We say that an arc (i, j) ∈ Ã
is admissible if satisfies the condition that d(i) = d(j) + 1; we refer to all other
arcs as inadmissible. We also refer to a path from node 1 to node k consisting
entirely of admissible arcs as an admissible path.

180 Camelia Schiopu

Whereas the maximum flow problem with zero lower bounds always has a
feasible solution (since the zero flow is feasible), the problem with non-negative
lower bounds could be infeasible. Therefore, the maximum flow problem with
non-negative lower bounds can be solved in two phases:

(P1) this phase determines a feasible flow if one exists;
(P2) this phase converts a feasible flow into a maximum flow.

The problem in each phase essentially reduces to solving a maximum flow problem
with zero lower bounds. Consequently, it is possible to solve the maximum flow
problem with non-negative lower bounds by solving two maximum flow problems,
each with zero lower bounds. For more details see the book [1].

The flows f(i, j) and f(j, i), are calculated with the relations: f(i, j) = l(i, j)+
max{0, u(i, j)−r(i, j)−l(i, j)} and f(j, i) = l(j, i)+max{0, u(j, i)−r(j, i)−l(j, i}.

To determine the maximum flow we can use the increasing path algorithms or
preflows algorithms.

In the next presentation we assume familiarity with maximum flow algorithms,
and we omit many details. The reader interested in further details is urged to
consult the book [1].

2.2 Maximum flows in bipartite static networks

Definition 3. We say that G = (N,A) is a bipartite graph if the set of nodes N
can be partitioned into two disjoint subsets N1 and N2 so for each arc (i, j) ∈ A
we have either i ∈ N1 and j ∈ N2, or i ∈ N2 and j ∈ N1, where N1 6= Ø, N2 6= Ø,
N1 ∩N2 = Ø, N1 ∪N2 = N .

We denote with G = (N1 ∪N2, A, l, u) the bipartite network corresponding to
the bipartite graph introduced by the definition 3. Let n1 = |N1| and n2 = |N2|.
We deduct that |N | = n1 + n2.

One of the problems is whether or not a graph is a bipartite graph. Fortunately,
there are many simple ways to solve this problem. One of these is based on the
following idea that characterizes bipartite networks, Jungnickel [15].

Property 1. A graph G is a bipartite graph if and only if every cylce in G contains
an even number of arcs.

By improving the complexity of the Dinic algorithm [8] and Karzanov and Naor
[16], Gusfield, Martel and Fernandez-Baca [13] described maximal flow algorithms
on bipartite networks. Ahuja, Orlin, Stein and Tarjan [2] have made significant
improvements and have shown that it is possible to obtain a new time limit for
bipartite networks. In paper [13] Gusfield, Martel and Fernandez-Baca describe
problems that can be solved with flow in networks in bipartite graphs.

Without any loss of generality, we assume that n1 ≤ n2. We also assume that
the source node 1 belongs to N2 (if the source node 1 belonged to N1, then we
could create a new source node 1

′ ∈ N2, and we could add an arc (1
′
, 1) with

u(1
′
, 1) =∞). A bipartite network is called unbalanced if n1 << n2 and balanced

otherwise [2].

Maximum flows in bipartite dynamic networks 181

The observation of Gusfield, Martel, and Fernandez-Baca [13] that time bounds
for several maximum flow algorithms automatically improves when the algorithms
are applied without modification to unbalanced networks. A careful analysis of
the running times of these algorithms reveals that the worst case bounds depend
on the number of arcs in the longest node simple path in the network. We denote
this length by L. For a general network, L ≤ n − 1 and for a bipartite network
L ≤ 2n1 + 1. Hence, for unbalanced bipartite network L << n. Column 3 of
Table 1 summarizes these improvements for several network flow algorithms.
Ahuja, Orlin, Stein, and Tarjan [2] obtained further running time improvements

Algorithm Running time, Running time, Running time

general network bipartite network modified version

Maximum flows

Dinic n2m n2
1m does not apply

Karazanov n3 n2
1n n1m+ n3

1

FIFO preflow n3 n2
1n n1m+ n3

1

Highest label n2√m n1n
√
m n1m

Excess scaling nm+ n2 log ū n1m+ n1n log ū n1m+ n2
1 log ū

Table 1: Several maximum flows algorithms

by modifying the algorithms. This modification applies only to preflow push
algorithms. They called it the two arcs push rule. According to this rule, always
push flow from a node in N1 and push flow on two arcs at a time, in a step called
a bipush, so that no excess accumulates at nodes in N2. Column 4 of Table 1
summarizes the improvements obtained using this approach.

We recall that the FIFO preflow algorithm might perform several saturating
pushes followed either by a nonsaturating push or relabeled operation [1]. We refer
to this sequence of operations as a node examination. The algorithm examines
active nodes in the FIFO order. The algorithm maintains the list Q of active
nodes as a queue. Consequently, the algorithm selects a node i from the front of
Q, performs pushes from this node, and adds newly active nodes to the rear of Q.
The algorithm examines node i until either it becomes inactive or it is relabeled.
In the latter case, we add node i to the rear of the queue Q. The algorithm
terminates when the queue Q of active nodes is empty. (see [1])

The modified version of FIFO preflow algorithm for maximum flow in bipartite
network is called bipartite FIFO preflow algorithm. A bipush is a push over two
consecutive admissible arcs. It moves excess from a node i ∈ N1 to another node
k ∈ N1. This approach means that the algorithm moves the flow over the path
D̃ = (i, j, k), j ∈ N2, and ensures that no node in N2 ever has any excess. A push
of α units from node i to node j decreases both e(i) and r0(i, j) by α units and

182 Camelia Schiopu

increases both e(j) and r0(j, i) by α units (see [2]). We specify that for l = 0 and
f = 0 we get r = u.

In the paper [2] the following bipartite FIFO preflow (BFIFOP) algorithm is
presented :

1: ALGORITHM BFIFOP;
2: BEGIN
3: PREPROCESS;
4: while Q 6= ∅ do
5: BEGIN
6: select the node i from the front of Q
7: BIPUSH/RELABEL(i)
8: END
9: END.

1: PROCEDURE PREPROCESS;
2: BEGIN
3: f =: 0; Q := ∅;
4: push u(1, j) units of flow on each (1, j) ∈ A and add j to rear of Q if

e(j) > 0 and j 6= n;
5: compute the exact distance labels d(i) from t to i in the residual network;

d(1) = 2n1 + 1;
6: END;

1: PROCEDURE BIPUSH/RELABEL(i);
2: BEGIN
3: if there is an admissible arc (i, j)
4: then BEGIN
5: select an admissible arc (i, j);
6: if there is an admissible arc (j, k)
7: then BEGIN
8: select an admissible arc (j, k);
9: push α := min {e(i), r(i, j), r(j, k)} units of flow along

the path (i, j, k) and adds k to Q if k /∈ Q and k 6= n;
10: END
11: else
12: d(j) := min{d(k) + 1|(j, k) ∈ A, r(j, k) > 0}
13: END
14: else
15: d(i) := min{d(j) + 1|(i, j) ∈ A, r(i, j) > 0}
16: END;

Figure 1: The FIFO bipartite preflux algorithm (BFIFOP) for the maximum flow

Theorem 3. The FIFO preflux algorithm establishes a maximum flow in the
network G = (N1 ∪N2, A, u).

Maximum flows in bipartite dynamic networks 183

Theorem 4. The FIFO preflux algorithm has complexity n2
1n.

For more information see [2]. We remark the fact that we have used the
notations from this paper and have specified that this algorithm runs on networks
G with l = 0, a single source node 1, a single sink node n.

2.3 Maximum flows in general dynamic networks

Definition 4. A network D = (N,A, h, e, q,H) with N the set of nodes, A the set
of arcs, h the transit time function h : A×H → N, the time lower bound function
e : A ×H → N, the time upper bound function q : A ×H → N and H the set of
time periods H = {0, 1, . . . , T} is called dynamic network.

Definition 5. A network D = (N,A, h, e, q,H) is a stationary dynamic network
if functions h, e, q for all arcs (i, j) ∈ A are time independent h(i, j; θ) = h(i, j),
e(i, j; θ) = e(i, j) and q(i, j; θ) = q(i, j), ∀(i, j) ∈ A and θ ∈ {0, 1, . . . , T}.

Dynamic network models arise in many problem settings, especially in eco-
nomic problems, such as production-distribution systems and economic planning.

Let D = (N,A, h, q,H) be a dynamic network with e = 0, the set of nodes
N = {1, . . . , n}, the set of arcs A = {a1, . . . , am}, 1 the source node and n the
sink node. The parameter h(i, j; t) is the transit time needed to traverse an arc
(i, j). The parameter q(i, j; t) represents the maximum amount of flow that can
travel over arc (i, j) when the flow departs from i at time t and arrives at j at
time θ = t+ h(i, j; t).

The maximal dynamic flow problem for T time periods is to determine a flow
function g : A×H → N, which should satisfy the following conditions in dynamic
network D = (N,A, h, e = 0, q,H) :

T∑
t=0

(g(1, N ; t)−
∑
τ

g(N, 1; τ)) = w (9a)

g(i,N ; t)−
∑
τ

g(N, i; τ) = 0, i 6= 1, n, t ∈ H (9b)

T∑
t=0

(g(n,N ; t)−
∑
τ

g(N,n; τ)) = −w (9c)

0 ≤ g(i, j; t) ≤ q(i, j; t), (i, j) ∈ A , t ∈ H (10)

max w, (11)

where τ = t−h(k, i; τ), w =
T∑
t=0

v(t), v(t) is the flow value at time t and g(i, j; t) =

0 for all t ∈ {T − h(i, j; t) + 1, . . . , T}.
Obviously, the problem of finding a maximum flow in the dynamic network

D = (N,A, h, e = 0, q,H) is more complex than the problem of finding a maximum

184 Camelia Schiopu

flow in the static network G = (N,A, u). Fortunately, this issue can be solved by
rephrasing the problem in the dynamic network D into a problem in the static
network R = (V,E, u) called the reduced expanded network, [4], [9].

The static expanded network of dynamic network D = (N,A, h, e = 0, q,H)
is a network R = (V,E, u) with V = {it|i ∈ N, t ∈ H}, E = {(it, jθ)|(i, j) ∈ A, t ∈
{0, 1, . . . , T − h(i, j; t)}, θ = t+ h(i, j; t), θ ∈ H}, u(it, jθ) = q(i, j; t), (it, jθ) ∈ E.
The number of nodes in the static expanded network R is n(T +1) and number of

arcs is bounded by m(T + 1)−
∑
A

◦
h(i, j), where

◦
h (i, j) = min{h(i, j; 0), . . . , h(i, j;

T)}. It is easy to see that any flow in the dynamic network D from the source
node 1 to the sink node n is equivalent to a flow in the static expanded network
R from the source nodes 10, 11, . . . , 1T to the sink nodes n0, n1, . . . , nT and vice
versa. We can further reduce the multiple source, multiple sink problem in the
static expanded network R to a single source, single sink problem by introducing
a supersource node 0 and a supersink node n + 1 constructing the static super
expanded network R2 = (V2, E2, u2), where V2 = V ∪ {0, n + 1}, E2 = E ∪
{(0, 1t)|t ∈ H} ∪ {(nt, n + 1)|t ∈ H}, u2(it, jθ) = u(it, jθ), (it, jθ) ∈ E, l2(0, 1t) =
l2(nt, n+ 1) = 0, u2(0, 1t) = u2(nt, n+ 1) =∞, t ∈ H.

Now, we construct the static reduced expanded network R1 = (V1, E1, u1) as
follows: we define the function h2 : E2 −→ N, with h2(0, 1t) = h2(nt, n + 1) = 0,
t ∈ H, h2(it, jθ) = h(i, j; t), (it, jθ) ∈ E. Let d2(0, it) be the length of the shortest
path from the source node 0 to the node it, and d2(it, n + 1) the length of the
shortest path from node it to the sink node n+ 1, with respect to h2 in network
R2. The computation of d2(0, it) and d2(it, n + 1) for all it ∈ V is performed by
means of the usual shortest path algorithms. The network R1 = (V1, E1, u1) has
V1 = {0, n+1}∪{it|it ∈ V, d2(0, it)+d2(it, n+1) ≤ T}, E1 = {(0, 1t)|d2(1t, n+1) ≤
T, t ∈ H} ∪ {(it, jθ)|(it, jθ) ∈ E, d2(0, it) + h2(it, jθ) + d2(jθ, n + 1) ≤ T} ∪
{(nt, n+ 1)|d2(0, nt) ≤ T, t ∈ H} and u1 is restriction of u2 at E1[19].

We remark that the static reduced expanded network R1 is always a partial
subnetwork of static super expanded network R2. In references [7], [9] it is shown
that a dynamic flow for T time periods in the dynamic network D with e = 0
is equivalent with a static flow in a static reduced expanded network R1. Since
an item released from a node at a specific time does not return to that location
at the same or an earlier time, the static networks R,R2, R1 cannot contain any
circuit, and therefore they are always acyclic.

In the most general dynamic model, the parameter h(i) = 1 is the waiting
time at node i, and the parameter q(i; t) is upper bound for flow g(i; t) that can
wait at node i from time t to t+ 1.

The maximum flow problem for T time periods in the dynamic network D
as stated in the conditions (9), (10), (11) is equivalent with the maximum flow
problem in the static reduced expanded network R1, as follows:

∑
jθ

f1(it, jθ)−
∑
kτ

f1(kτ , it) =


v1(it), if it = 1t

0, if it 6= 1t, nt
−v1(it), if it = nt

(12a)

Maximum flows in bipartite dynamic networks 185

0 ≤ f1(it, jθ) ≤ u1(it, jθ), (it, jθ) ∈ E1 (12b)

max v1, (12c)

with v1 =
∑

t v1(1t).

In the case of h(i, j; t) = h(i, j), t ∈ H the dynamic distances d(1, i; t), d(i, n; t)
become static distances d(1, i), d(i, n).

There are two approaches to determining a maximum flow in the dynamic
network D = (N,A, h, e = 0, q,H): static approach and dynamic approach. The
static approach consists of determining a maximum flux in the static reduced ex-
panded network R1 = (V1, E1, u1). The dynamic approach is used in the station-
ary case [23]. It is not necessary to construct a static reduced expanded network
to solve the problem of maximum dynamic flow for any T . The maximum dy-
namic flow in the stationary case can be generated from the f flow of maximum
value and minimum time in the static network D = (N,A, h, e = 0, q,H), where
h(i, j) is the cost (time) for any arc (i, j) ∈ A[19]. The algorithm for maximum
dynamic flow in the stationary case (SMDF) is presented below:

1: ALGORITHM SMDF;
2: BEGIN
3: AMVMCF(G, f)
4: ADFEF(f, r(P1), . . . , r(Pk))
5: ARF(r(P1), . . . , r(Pk))
6: END.

Figure 2: Algorithm for maximum dynamic flow in stationary dynamic network
(SMDF)

The procedure AMVMCF performs the algorithm for minimum cost and maxi-
mum value flow f in the network G. For statements we suppose that the algorithm
of Klein variant is used (minimum mean cycle canceling algorithm, see [1]). This
algorithm has the complexity O

(
n2m3 log n

)
.

The procedure ADFEF performs the algorithm for decomposition of flow f
in elementary flows with r(P1), ..., r(Pk) path flows. Is necessary that h(Pi) ≤
T . This algorithm has complexity O(m2). The procedure ARF performs the
algorithm for send r(Pi) flow, i = 1 . . . , k, starting out from source node 1 at time
periods 0 and repeat it after each time period as long as there is enough time
left in the horizon for the flow along the path to arrive at the sink node n. This
algorithm has complexity O(kT). Hence, the algorithm for stationary maximum
dynamic flow has complexity O(n2m3 log n) (we consider that kT ≤ n2m3 log n).
The flow obtained with SMDF is called a temporally repeated flow for the obvious
reason that it consists of repeated shipments along the same flow paths from 1 to
n. The maximum value of a temporally repeated flow obtained with SMDF is:

186 Camelia Schiopu

vH = (T + 1)v −
∑
A

h(i, j)f(i, j) (13)

where v is the maximum value of the flow f obtained with AMVMCF.

Theorem 5. The algorithm correctly calculates the maximum dynamic flow in
the D = (N,A, h, e = 0, q,H) network.

Theorem 6. The SMDF algorithm has complexity O(n2m3 log n).

3 Maximum flows in bipartite dynamic networks

3.1 The maximum flows in bipartite dynamic network with e = 0

First, we present the static approach of the maximum flows in bipartite dy-
namic network with e = 0. We consider that the dynamic networkD = (N,A, h, e =
0, q,H) is bipartite.

We construct the static reduced expanded network R0 = (V0, E0, l0, u0) using
the shortest path problem presented in [4]. Let d(1, i; t) be the length of the
dynamic shortest path at time t from the source node 1 to the node i, and let
d(i, n; t) be the length of the dynamic shortest path at time t from the node i
to the sink node n, with respect to h in the dynamic network D. Let us consider
Hi = {t|t ∈ H, d(1, i; t) ≤ t ≤ T−d(i, n; t)}, i ∈ N , and Hi,j = {t|t ∈ H, d(1, i; t) ≤
t ≤ T − h(i, j; t) − d(j, n; θ)}, (i, j) ∈ A. The multiple source, multiple sinks
static reduced expanded network R0 = (V0, E0, u0) has V0 = {it|i ∈ N, t ∈ Hi},
E0 = {(it, jθ)|(i, j) ∈ A, t ∈ Hi,j}, u0(it, jθ) = u1(i, j; t), (it, jθ) ∈ E0. The static
reduced expanded network R1 = (V1, E1, u1) is constructed from the network R0

as follows: V1 = V0 ∪ {0, n + 1}, E1 = E0 ∪ {(0, 1t)|1t ∈ V0} ∪ {(nt, n + 1)|nt ∈
V0}, u1(0, 1t) = u1(nt, n+ 1) =∞, 1t, nt ∈ V0 and u1(it, jθ) = u0(it, jθ), (it, jθ) ∈
E0.

Theorem 7. If the dynamic network D = (N,A, h, e = 0, q,H) is bipartite, then
the static reduced expanded network R0 = (V0, E0, u0) is bipartite.

The proof of this Theorem is presented in the paper [18].

Let w1, w2, ε0 with w1 = |W1| w2 = |W2|, ε0 = |E0|. If n1 << n2 then it
is obvious that w1 << w2. In the static bipartite network R0 we determine a
maximum flow f0 with a generalization of bipartite FIFO preflow algorithm.

The modified version of FIFO preflow algorithm for maximum flow in bipar-
tite is called bipartite FIFO preflow algorithm. A bipush is a push over two
consecutive admissible arcs. It moves excess from a node it ∈ W1 to another
node kτ ∈ W1. This approach means that the algorithm moves the flow over
the path D̃ = (it, jθ, kτ), jθ ∈ W2, and ensures that no node in W2 ever has
any excess. A push of α units from node it to node jθ decreases both e(it) and
r0(it, jθ) by α units and increases both e(jθ) and r0(jθ, it) by α units, where
α = min{e(it), r0(it, jθ), r0(j0, it)}.

Maximum flows in bipartite dynamic networks 187

We specify that we maintain the arc list E+
0 (it) = {(it, jθ)|(it, jθ) ∈ E0}. We

can arrange the arcs in these lists arbitrarily, but the order, once decided, remains
unchanged throughout the algorithm. Each node i has a current arc, which is an
arc in E+

0 (it) and is the next candidate for admissibility testing. Initially, the
current arc of node it is the first arc in E+

0 (it). Whenever the algorithm attempts
to find an admissible arc emanating from node it, it tests whether the node’s
current arc is admissible. If not, it designates the next arc in the arc list as the
current arc. The algorithm repeats this process until it either finds admissible arc
or it reaches the end of the arc list.

The generalization bipartite FIFO preflow (GBFIFOP1) algorithm is pre-
sented in Figure 3.

1: ALGORITHM GBFIFOP1;
2: BEGIN
3: PREPROCESS;
4: while Q 6= ∅ do
5: BEGIN
6: select the node it from the front of Q;
7: BIPUSH/RELABE(it);
8: END
9: END.

1: PROCEDURE PREPROCESS;
2: BEGIN
3: f0 := 0;Q := ∅;
4: compute the exact distance labels d(it);
5: for t ∈ H1 do
6: BEGIN
7: f0(1t, jθ) := u0(1t, jθ) and adds node jθ to the rear of Q for all

(1t, jθ) ∈ E0

8: d(1t) := 2w2 + 1;
9: END

10: END;

1: PROCEDURE BIPUSH/RELABEL(it);
2: BEGIN
3: select the first arc (it, jθ) in E+

0 (it) with r0(it, jθ) > 0;
4: β := 1;
5: repeat
6: if (it, jθ) is admissible arc;
7: then
8: BEGIN
9: select the first arc (jθ, kτ) in E+

0 (jθ) with r0(jθ, kτ) > 0;
10: if (jθ, kτ) is admissible arc
11: then
12: BEGIN
13: push α := min {e(it), r0(it, jθ), r0(jθ, kτ)} units of flow over

188 Camelia Schiopu

the arcs (it, jθ), (jθ, kτ);
14: if kτ /∈ Q
15: then
16: adds node kτ to the rear of Q;
17: end if
18: END
19: else

20: if (jθ, kτ) is not the last arc in E+
0 (jθ) with r0(jθ, kτ) > 0

21: then
22: select the next arc in E+

0 (jθ)
23: else
24: d(jθ) := min

{
d(kτ) + 1|(jθ, kτ) ∈ E+

0 (jθ), r0(jθ, kτ) > 0
}

25: end if
26: end if
27: if e(it) > 0
28: then
29: if (it, jθ) is not the last arc in E+

0 (jθ) with r0(it, jθ) > 0
30: then
31: select the next arc in E+

0 (jθ)
32: else
33: BEGIN
34: d(it) := min

{
d(jθ) + 1|(it, jθ) ∈ E+

0 (jθ), r0(it, jθ) > 0
}

35: β := 0;
36: END
37: end if
38: end if
39: END
40: end if
41: until e(it) = 0 or β = 0
42: if e(it) > 0
43: adds node it to the rear of Q
44: end if
45: END;

Figure 3: The generalized bipartite FIFO preflow algorithm (GBFIFOP1)

We notice that any path in the residual network R̃0 = (V0, Ẽ0, r0) can have
at most 2w2 + 1 arcs. Therefore, we set d(1t) := 2w2 + 1 in PROCEDURE
PREPROCES.

The correctness of the GBFIFOP1 algorithm results from correctness of the
algorithm for maximum flow in bipartite network [2].

Theorem 8. The GBFIFOP1 algorithm which determines a maximum flow into
the bipartite dynamic network D = (N,A, h, e = 0, q,H), has the complexity
O(n1mT

2 + n3
1T

3)[18].

Maximum flows in bipartite dynamic networks 189

We present an example for determining the maximum flow in bipartite dy-
namic network.

The support digraph of the bipartite dynamic network is presented in Figure 4
and time horizon being set T = 5, therefore H = {0, 1, 2, 3, 4, 5}. The transit times
h(i, j; t) = h(i, j), t ∈ H and the upper bounds (capacities) q(i, j; t) = q(i, j), t ∈
H for all arcs are indicated in Table 2.

Figure 4: The support digraph of network D = (N,A, h, e = 0, q,H)

(i, j) (1, 2) (1, 3) (2, 4) (2, 5) (2, 6) (3, 4) (3, 6) (4, 7) (5, 3) (5, 7) (6, 7)

h(i, j) 1 1 3 1 2 3 1 1 1 1 1

q(i, j) 12 10 8 3 3 4 5 12 3 4 10

Table 2: The functions h, q

We have N1 = {2, 3, 7} and N2 = {1, 4, 5, 6}.
Applying the GBFIFOP1 algorithm we obtain the flows f0(it, jθ) which are

indicated in Figure 5. We have W1 = {21, 22, 23, 31, 32, 33, 73, 74, 75} and W2 =
{10, 11, 12, 44, 52, 53, 54, 62, 63, 64}. A minimum (10, 11, 12)− (73, 74, 75) cut in the
static networkR0 is

[
Y0, Ȳ0

]
= (Y0, Ȳ0)

⋃
(Ȳ0, Y0) with Y0 = {10, 11, 12, 22, 23, 31, 32,

33} and Ȳ0 = {21, 44, 52, 53, 54, 62, 63, 64, 73, 74, 75}. Hence,
[
Y0, Ȳ0

]
= {(10, 21),

(22, 53), (22, 64), (23, 54), (31, 62), (31, 44), (32, 64)} ∪ {(52, 33)}. We have w0 =
f0(Y0, Ȳ0) −f0(Ȳ0, Y0) = 40 − 0 = 40 = u0(Y0, Ȳ0). Hence, f0 is a maximum
flow.

Next, we present the dynamic approach of the maximum flows in bipartite
dynamic network with e = 0.

In this section we consider the maximum flows in bipartite dynamic networks
in the stationary case i.e. h(i, j; t) = h(i, j), q(i, j; t) = q(i, j), (i, j) ∈ A, t ∈ H.
We use the algorithm SMDF which was presented in Section 2.3. In this Section
the dynamic network D = (N,A, h, q) is bipartite.

We consider the bipartite static network G = (N,A, c, u) where c(i, j) =
h(i, j), u(i, j) = q(i, j), (i, j) ∈ A. The procedure AMVMCF from algorithm

190 Camelia Schiopu

Figure 5: The network R0 = (V0, E0, f0).

SMDF performs the algorithm for maximum value and minimum cost flow
∗
f∗ in

bipartite static network. The modified version of cost scaling algorithm for bipar-
tite static network G starts with any feasible flow. In this case the feasible flow

is a maximum flow
∗
f . We determine a flow

∗
f with maximum value with modified

version of FIFO preflow which has the complexity O(n1m + n3
1). The modi-

fied version of cost scaling algorithm has the complexity O(n1m+ n3
1 log(n1c̄)) =

O(n1m+ n3
1 log(n1h̄)).

Theorem 9. The algorithm SMDF correctly computes the maximum flow in bi-
partite stationary dynamic network [17].

Theorem 10. The algorithm SMDF applied to bipartite stationary dynamic net-
work has the complexity O(max{n1m+ n3

1 log(n1h̄), nT}) [17].

We present an example for this problem.

The support digraph of bipartite stationary dynamic network is presented
in Figure 6 and time horizon being set T = 5, therefore H = {0, 1, 2, 3, 4, 5}.
The transit times h(i, j) and the upper bounds (capacities) q(i, j) for all arcs are
indicated in Table 3.

Maximum flows in bipartite dynamic networks 191

Figure 6: The support digraph of network D = (N,A, h, q)

(i, j) (1, 2) (1, 3) (2, 4) (2, 5) (2, 6) (3, 4) (3, 6) (4, 7) (5, 3) (5, 7) (6, 7)

h(i, j) 1 1 3 1 2 3 1 1 1 1 1

q(i, j) 12 10 8 3 3 4 5 12 3 4 10
∗
f(i, j) 12 9 8 1 3 4 5 12 0 1 8
∗
f∗(i, j) 12 9 6 3 3 4 5 10 0 3 8

Table 3: The functions h, q,
∗
f ,
∗
f∗

The maximum flow
∗
f and the maximum flow of minimum cost

∗
f∗ obtained

with the procedure AMVMCF in bipartite static network G = (N,A, c, u) are
presented in Table 3.

Applying the procedure ADFEF we obtain the results which are indicated in
Table 4.

Ps r(Ps) h(Ps) γ(Ps)

P1 = (1, 2, 5, 7) 3 3 3

P2 = (1, 3, 6, 7) 5 3 3

P3 = (1, 2, 6, 7) 3 4 2

P4 = (1, 2, 4, 7) 6 5 1

P5 = (1, 3, 4, 7) 4 5 1

Table 4: The results of procedure ADFEF

192 Camelia Schiopu

Figure 7: The network R0 = (V0, E0, u0) with flow
∗
f0 = f0

The procedure ARF generates the flow f0 in network R0 = (V0, E0, u0). The
network R0 with the flow f0 are presented in Figure 7. With formula (12) we

obtain
∗
w0 = (5 + 1) · 21 − (1 · 12 + 1 · 9 + 3 · 6 + 1 · 3 + 2 · 3 + 3 · 4 + 1 ·

5 + 1 · 10 + 1 · 0 + 1 · 3 + 1 · 8) = 126 − 86 = 40. A minimum (10, 11, 12) −
(73, 74, 75) cut in static network R0 is

[
Y0, Ȳ0

]
= (Y0, Ȳ0)

⋃
(Ȳ0, Y0) with Y0 =

{10, 11, 12, 22, 23, 31, 32, 33} and Ȳ0 = {21, 44, 52, 53, 54, 62, 63, 64, 73, 74, 75}. Hence[
Y0, Ȳ0

]
= {(10, 21), (22, 53), (22, 64), (23, 54), (31, 62), (31, 44), (32, 64)} ∪ {(52, 33)}.

We have w0 = f0(Y0, Ȳ0) − f0(¯Y0, Y0) = 40 − 0 = 40 = u0(Y0, Ȳ0). Hence f0 is a

maximum flow, i.e.
∗
f0 = f0 and

∗
w0 = 40 = w0.

We remark that γ(Ps) = (T + 1)− h(Ps).

3.2 Maximum flows in bipartite dynamic network with e > 0

Next, we present the problem of maximum flow in bipartite dynamic networks
with lower bounds. In this case the dynamic network D = (N,A, h, e, q,H) is
bipartite.

We construct the static reduced expanded network R0 = (V0, E0, l0, u0) and
we notice the fact that the network R0 is a bipartite network with V0 = W1 ∪W2,
W1 = {it|i ∈ N1, t ∈ H}, W2 = {it|i ∈ N2, t ∈ H}. Let w1, w2, ε0 be w1 = |W1|,
w2 = |W2|, ε0 = |E0|. If n1 << n2 then it is obvious that w1 << w2. In the static

Maximum flows in bipartite dynamic networks 193

bipartite network R0 we determine a maximum flow f0 with a generalization of
bipartite FIFO preflow algorithm.

We generalize the BFIFOP for a network R0 = (V0, E0, l0, u0) where l0 > 0,
there are multiple source nodes 1t, t ∈ H1 and there are multiple sink nodes
nt, t ∈ Hn. Also, we present a pseudocode in detail.

The generalised bipartite FIFO preflow (GBFIFOP2) algorithm is presented
below.

1: ALGORITHM GBFIFOP2;
2: BEGIN
3: PREPROCESS;
4: while Q 6= ∅ do
5: BEGIN
6: select the node it from the front of Q;
7: BIPUSH/RELABE(it);
8: END
9: END.

1: PROCEDURE PREPROCESS;
2: BEGIN
3: f0 is a feasible flow in R0; Q := ∅;;
4: compute the exact distance labels d(it);
5: for t ∈ H1 do
6: BEGIN
7: f0(1t, jθ) := u0(1t, jθ) and adds node jθ to the rear of Q for all

(1t, jθ) ∈ E0

8: d(1t) := 2w2 + 1;
9: END

10: END;

1: PROCEDURE BIPUSH/RELABEL(it);
2: BEGIN
3: select the first arc (it, jθ) in E+

0 (it) with r0(it, jθ) > 0;
4: β := 1;
5: repeat
6: if (it, jθ) is admissible arc;
7: then
8: BEGIN
9: select the first arc (jθ, kτ) in E+

0 (jθ) with r0(jθ, kτ) > 0;
10: if (jθ, kτ) is admissible arc
11: then
12: BEGIN
13: push α := min {e(it), r0(it, jθ), r0(jθ, kτ)} units of flow over

the arcs (it, jθ), (jθ, kτ);
14: if kτ /∈ Q
15: then
16: adds node kτ to the rear of Q;

194 Camelia Schiopu

17: end if
18: END
19: else
20: if (jθ, kτ) is not the last arc in E+

0 (jθ) with r0(jθ, kτ) > 0
21: then
22: select the next arc in E+

0 (jθ)
23: else
24: d(jθ) := min

{
d(kτ) + 1|(jθ, kτ) ∈ E+

0 (jθ), r0(jθ, kτ) > 0
}

25: end if
26: end if
27: if e(it) > 0
28: then
29: if (it, jθ) is not the last arc in E+

0 (jθ) with r0(it, jθ) > 0
30: then
31: select the next arc in E+

0 (it)
32: else
33: BEGIN
34: d(it) := min

{
d(jθ) + 1|(it, jθ) ∈ E+

0 (jθ), r0(it, jθ) > 0
}

35: β := 0;
36: END
37: end if
38: end if
39: END
40: end if
41: until e(it) = 0 or β = 0
42: if e(it) > 0
43: adds node it to the rear of Q
44: end if
45: END;

Figure 8: The generalized bipartite FIFO preflow algorithm (GBFIFOP2)

We notice that any path in the residual network R̃0 = (V0, Ẽ0, r0) can have
at most 2w1 + 1 arcs. Therefore, we set d(1t) := 2w1 + 1 in PROCEDURE
PREPROCES.

The correctness of the GBFIFOP2 algorithm results from correctness of the
algorithm for maximum flow in bipartite network [2].

Theorem 11. The GBFIFOP2 algorithm which determines a maximum flow into
the bipartite dynamic network D = (N,A, h, e, q,H) has the complexity O(n1mT

2+
n3

1T
3).

The proof of this Theorem is presented in the papers [19] and [20].

We present an example for determining the maximum flow in bipartite dy-
namic network with lower bound.

Maximum flows in bipartite dynamic networks 195

The support digraph of the bipartite dynamic network is presented in Figure
9 and time horizon being set T = 5, therefore H = {0, 1, 2, 3, 4, 5}. The transit
times h(i, j; t) = h(i, j), t ∈ H, the lower bounds e(i, j; t) = e(i, j) and the upper
bounds (capacities) q(i, j; t) = q(i, j), t ∈ H for all arcs are indicated in Table 5.

Figure 9: The support digraph of network D = (N,A, h, e, q,H)

(i, j) (1, 2) (1, 3) (2, 4) (2, 5) (2, 6) (3, 4) (3, 6) (4, 7) (5, 3) (5, 7) (6, 7)

h(i, j) 1 1 3 1 2 3 1 1 1 1 1

e(i, j) 3 5 1 1 1 0 4 1 0 1 5

q(i, j) 12 10 8 3 3 4 5 12 3 4 10

Table 5: The functions h, e, q

We have N1 = {2, 3, 7} and N2 = {1, 4, 5, 6}.
Applying the GBFIFOP2 algorithm in the first phase and the second phase we

obtain the flows f0(it, jθ), f
∗
0 (it, jθ) (the feasible flow, the maximum flow) which

are indicated in Figure 10. We have W1 = {21, 22, 23, 31, 32, 33, 73, 74, 75} and
W2 = {10, 11, 12, 44, 52, 53, 54, 62, 63, 64}. A minimum (10, 11, 12)− (73, 74, 75) cut
in the static network R0 is [Y0, Ȳ0] = (Y0, Ȳ0) ∪ (Ȳ0, Y0) with Y0 = {10, 11, 12, 22, 23,
31, 32, 33} and Ȳ0 = {21, 44, 52, 53, 54, 62, 63, 64, 73, 74, 75}. Hence [Y0, Ȳ0] = {(10, 21

), (22, 53), (22, 64), (23, 54), (31, 62), (31, 44), (32, 63)} ∪ {(52, 33)}. We have w̄0 =
f∗0 (Y0, Ȳ0)− f∗0 (Ȳ0, Y0) = 40− 0 = 40 = u0(Y0, Ȳ0). Hence f∗0 is a maximum flow.

4 Conclusions

In this paper we have presented algorithms for maximum flow problem in
bipartite dynamic networks with lower bounds zero using static approach and dy-
namic approach and algorithms for maximum flow problem in bipartite dynamic
networks with lower bounds positive. We have demonstrated the fact that if the
dynamic network D = (N,A, h, q) is bipartite, then the static reduced expanded

196 Camelia Schiopu

Figure 10: The network R0 = (V0, E0, f0, f
∗
0).

network R0 = (V0, E0, u0) is bipartite. Therefore, we solved the problems in bipar-
tite dynamic networks by rephrasing into a problem in bipartite static network.
We have extended the bipartite FIFO preflow algorithm of Ahuja et al. [2] to
the static reduced expanded network R0 = (V0, E0, u0) which is a network with
multiple source and multiple sinks. For the generalization bipartite FIFO preflow
algorithm we have presented the complexity. For each of the problems mentioned
above, we present an example for the clarity of the paper.

Many interesting flow problems in bipartite dynamic networks are still open:
the generalization of the highest label preflow push algorithm, the generalization of
the excess scaling algorithm, the parametric maximum flow problem, the minimum
cost flow problem. Other research directions are possible.

References

[1] Ahuja, R., Magnanti, T. and Orlin, J. (1993) Network flows. Theory, algo-
rithms and applications, Prentice Hall, Inc., Englewood Clifss, New Jersey

[2] Ahuja, R., Orlin, J., Stein, C. and Tarjan, R., Improved algorithms for bipar-
tite network flows, SIAM Journal of Computing, 23, (1994), 906-933.

Maximum flows in bipartite dynamic networks 197

[3] Aronson, J. E., A survey of dynamic network flows, Annals of Operation
Research, 20:1-66, (1989).

[4] Cai, X., Sha, D. and Wong, C. Time-varying Network Optimization, Springer,
(2007).

[5] Ciurea, E. and Ciupală, L. (2004) Sequential and parallel algorithms for min-
imum flows, Journal of Applied Mathematics and Computing, vol. 15, no.
1-2, 53–75.

[6] Ciurea, E. An algorithm for minimal dynamic flow, Korean Journal of Com-
putaional and Applied Mathematics 7, 2, (2000), 259-270.

[7] E. Ciurea, Second best temporally repeated flow, Korean Journal of Compu-
tational and Applied Mathematics, 9, no.1, (2002), 77-86.

[8] Dinic, E. Algorithm for solution of a problem of maximum flow in network
with power estimation, Soviet Mathematics Doklady 11 (1970), 1277–1280.

[9] Ford, L. and Fulkerson, D. (1962) Flows in Networks, Princenton University
Press, Princenton, New Jersey.

[10] Ford, L. and Fulkerson, D. Maximal flows throgh a network, Canadian Journal
Mathematics 8 (1956), 399–404.

[11] Ciurea, E., Georgescu, O. and Marinescu, D. Improved algorithms for mini-
mum flows in bipartite networks, it International Journal of Computers, vol.
2, no. 4, (2008), 351–360.

[12] Georgescu, O. and Ciurea, E. Decreasing path algorithm for minimum flow.
Dynamic tree implementation, Proceedings of the 12st WSEAS International
Conference on Computers, (2008), pp. 235–240.

[13] Gusfield, D., Martel, C. and Fernandez-Baca, D. Fast algorithms for bipartite
network flow, SIAM Journal of Computing, vol. 16, (1987), 237-251.

[14] Hamacher, H.W., Tjandra, S.A., Mathematical modelling of evacuation prob-
lems: a state of the art, Berichte des Fraunhofer ITWM, no. 24 (2001).

[15] Jungnickel, D., Graphs, networks and algorithms, Springer, Berlin, (1999).

[16] Karzanov, A. and Naor, J., Determining the maximal flow in a network by
the method of preflows. Algorithmica 15 (1974), 434-437.

[17] Schiopu, C., The maximum flows in bipartite dynamic networks, Bulletin of
the Transilvania University of Braşov, 7(56), no. 1, (2014), 193-202.

[18] Schiopu, C., The maximum flows in bipartite dynamic networks. The static
approach, Annals of the University of Craiova, Mathematics and Computer
Science Series, 43, no. 2, (2016), 200-209.

198 Camelia Schiopu

[19] Schiopu, C. and Ciurea, E., The maximum flows in bipartite dynamic net-
works with lower bounds. The static approach., Proceedings in IEEE Xplore of
the 6th International Conference on Computers, Communications and Con-
trol (ICCCC), Oradea, România, (2016), pp. 10–15.

[20] Schiopu, C. and Ciurea, E. Two flow problems in dynamic networks, Inter-
national Journal of Computers Communications & Control 12(1) (2017), 1,
103–115.

[21] Skutella, M. An Introduction to Network Flows Over Time, In book: Re-
search Trends in Combinatorial Optimization, (2009), 451-482.

[22] Tjandra, S.A., Dynamic Network Optimization with Application to the Evac-
uation Problem, Dissertation, Universitat Kaiserslautern, 2003.

[23] Wilkinson, W., An algorithm for universal maximal dynamic flows in net-
work, Operation Research, 19, (1971), 1602-1612.

