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Abstract

Parametric flow problems may be regarded as some extensions of the
classical maximum/minimum flow problems in which the capacities of cer-
tain arcs are not fixed but are functions of a parameter. Consequently, these
problems consist of solving several nonparametric, ordinary maximum/min-
imum flow problems for all the parameter values within certain subintervals
of the parameter values. During the last few decades, research that has been
conducted resulted in new solution methods and in improvements of the algo-
rithms for known methods. This paper presents the continuous improvements
that have been made during the last years as well as recent techniques and al-
gorithms related to parametric maximum and minimum flow problems. The
paper also constitutes a synthesis of the different approaches that have been
proposed by us for solving the parametric flow problem in static networks.
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1 Introduction

In our everyday lives we encounter many different types of real networks,
including electrical networks, telephone cable, highway networks, railways, manu-
facturing networks or computer networks. Flow networks are very useful to model
any real world problem confronting with any commodity flowing through a net-
work (pipes, electric wires, highways, rails, and so on).

Generally, networks consist of special points called nodes and links connecting
pairs of nodes called arcs. Network flow problems have always been among the
best studied [1] combinatorial optimization problems. Maximum flow problem is
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the classical network flow problem in network flow theory and has been extensively
investigated. In this problem, the maximum flow which can be moved from the
source to the sink is calculated without exceeding the maximum capacity. Once
the maximum flow problem is solved, it can be used to solve other network flow
problems too [14].

The parametric maximum flow problem, as well as that of the related minimum
flow one represent generalizations of ordinary problems for the maximum, respec-
tively minimum flow in which the upper/lower bounds of some arcs depend on a
single parameter, being monotonically increasing (or decreasing) functions of the
parameter.

Beside the applications of the ordinary maximum/minimum flows, those of para-
metric flows include: multiprocessor scheduling with release times and deadlines
[10], integer programming problems [2], computing sub-graph density and net-
work vulnerability and partitioning a data base between fast and slow memory
[3], product selection [5], [20], flow sharing [10], database record segmentation in
large shared databases [9], and optimizing field repair kits [16].

For the parametric maximum flow problem, Gallo, Grigoriadis and Tarjan [10]
use a modified version of the push-relabel method using amortization and graph
contraction and obtain an algorithm that solves the parametric maximum flow
problem in the same asymptotic running time as the original algorithm. Apply-
ing their idea to the network of King, Rao and Tarjan [15] they obtained the same
O(nm · log

m/(nlogn)
n) complexity limit for the parametric flow problem as for the

ordinary maximum flow problem.

Using a divide and conquer approach that uses an ordinary push-relabel al-
gorithm [12] on a network with n vertices, m arcs, and integer upper bounds
bounded by U , Tarjan et al. [23] achieved a running time which is bounded by
O(min

{
n2/3,m1/2

}
·m·log(n2/m)·logU), that is by a factor (i.e. min {n, log(nU)})

worse than that of the ordinary maximum flow algorithm [11].
For the parametric maximum flow problem with linear capacity functions of a
single parameter, Hamacher and Foulds [13] investigated an augmentation path
approach for determining in each iteration an improvement of the flow defined on
the whole interval of the parameter. For the same problem, Ruhe [21], [22] pro-
posed a piece-by-piece approach which assumes that the maximum flow is known
for a given value of the parameter and computes the supplementary maximum
flow to be added to the current flow in order to preserve the optimality of the
flow for greater parameter values and also the maximum value of the parameter
for which the computed flow is maximal.
Zhang, Ward and Feng [24], [25] proposed a balancing technique based algorithm
for the parametric flow problem in a special bipartite network. With an enhance-
ment suggested by Tarjan et al.[23] the algorithm runs in O(mn2 · log(nU)) time.
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The partitioning type approach, which will be presented in this paper, proposes
original algorithms for computing both maximum and minimum flows in para-
metric networks with linear upper / lower bound functions of a single parameter.
As Bichot and Siarry showed, the parametric flow problem is of genuine practical
and theoretical interest since graph partitioning applications are described on a
wide variety of subjects as: data distribution in parallel-computing, VLSI circuit
design, image processing, computer vision, route planning, air traffic control, mo-
bile networks, social networks, etc [4].

The rest of this paper has the following structure and content. Section 2 reviews
the preliminaries and terminology for ordinary flows in static networks, as follows:
Subsection 2.1 deals with maximum flow in static networks and Subsection 2.2
is dedicated to the minimum flow in static networks. Section 3 describes in its
Subsection 3.1 the parametric maximum flow problem while the parametric min-
imum flow problem is described in Subsection 3.2. Subsection 3.3 presents some
personal, efficient implementations of the approaches that resolve the parametric
flow problem in static networks. Finally, Section 4 brings in an original example
which illustrate the partitioning approach for both the parametric maximum and
minimum flow in static network and Section 5 contains some concluding remarks.

2 Terminology and preliminaries

Given a capacitated network G = (N,A, `, u, s, t) with N = {. . . , i, . . .} being
the set of nodes i and A = {. . . , a, . . .} being the set of arcs a so that for every
a ∈ A, a = (i, j) with i, j ∈ N , let n = |N | and m = |A|. The upper bound
function u(a) and the lower bound function `(a) are two nonnegative functions
associated with each arc a = (i, j) ∈ A. The network has two special nodes: a
source node s and a sink node t. A flow is a function f : A → <+ satisfying the
following conditions:

∑
j|(i,j)∈A

f(i, j)−
∑

j|(j,i)∈A

f(j, i) =


v, i = s
0, i 6= s, t
−v, i = t

(1)

for some v ≥ 0, where v is referred to as the value of the flow f . Any flow on a
directed network satisfying the flow bound constraints:

`(i, j) ≤ f(i, j) ≤ u(i, j), ∀(i, j) ∈ A (2)

for every arc (i, j) ∈ A is referred to as a feasible flow.

A cut is a partition of the node set N into two subsets S and T = N − S,
denoted by [S, T ]. Alternatively, a cut can be defined as the set of arcs whose
endpoints belong to different subsets S and T . An arc (i, j) ∈ A with i ∈ S and
j ∈ T is referred to as a forward arc of the cut while an arc (i, j) ∈ A with i ∈ T
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and j ∈ S as a backward arc of the cut. Let (S, T ) denote the set of forward arcs
in the cut and let (T, S) denote the set of backward arcs. A cut [S, T ] is an s− t
cut if s ∈ S and t ∈ T .

2.1 Maximum flows in static networks

The maximum flow problem is to determine a flow f̃ for which v is maximized.
For a feasible flow f in network G = (N,A, `, u, s, t), the residual capacity of any
arc (i, j) ∈ A for the maximum flow problem represents the maximum additional
flow that can be sent from node i to node j over both arcs (i, j) and (j, i). For the
maximum flow problem, the residual capacity r̃(i, j) of any arc (i, j) ∈ A, with
respect to a given flow f , is given by:

r̃(i, j) = u(i, j)− f(i, j) + f(j, i)− `(j, i). (3)

For a network G = (N,A, `, u, s, t) and a feasible solution f , the network denoted
by G̃(f) = (N, Ã), where Ã is the set of residual arcs (i, j) with r̃(i, j) > 0
is referred to as the residual network with respect to the given flow f for the
maximum flow problem. From the residual capacities r̃(i, j), the flow can be
determined using the following expression:

f(i, j) = `(i, j) +max {u(i, j)− r̃(i, j)− `(i, j), 0} . (4)

For the maximum flow problem, the capacity c̃[S, T ] of an s−t cut [S, T ] is defined
as:

c̃[S, T ] = u(S, T )− `(T, S). (5)

The s− t cut with the lowest capacity value among all s− t cuts is referred to as
a minimum cut [S̃, T̃ ].

Theorem 1. (Max-Flow Min-Cut Theorem): If there is a feasible flow in the
network, the value of the maximum flow from a source s to a sink t in a capacitated
network equals the capacity of the minimum s− t cut, ṽ = c̃[S̃, T̃ ] .

A path in G = (N,A, `, u, s, t) from the source node s to the sink node t is
referred to as an augmentation path if the corresponding directed path in the
residual network consists only of arcs with positive residual capacities. There is
a one-to-one correspondence between augmentation paths P in G and directed
paths P̃ from s to t in the residual network G̃(f). For a directed path P̃ in G̃(f)
we have r̃(P̃ ) = min{r̃(i, j)|(i, j) ∈ P̃}.

Theorem 2. (Augmentation Path Theorem): A flow f̃ is a maximum flow if and
only if the residual network G̃(f̃) contains no directed path from the source node
to the sink node.
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2.2 Minimum flows in static networks

The minimum flow problem is to determine a flow f̂ for which v is minimized.
The problem can be solved in two phases:
(1) establishing a feasible flow;
(2) from a given feasible flow, establishing the minimum flow. For the first phase
see the algorithm presented in [1].

Let f be a feasible solution for the minimum flow problem in network G =
(N,A, `, u, s, t). Supposing that an arc (i, j) ∈ A carries f(i, j) units of flow,
the residual capacity of any arc (i, j) ∈ A, with respect to the given flow f , for
the minimum flow problem, represents the maximum amount of flow by which the
flow from node i to node j can be decreased over both arcs (i, j) and (j, i). The
residual capacity r̂(i, j) of any arc (i, j) ∈ A is given by:

r̂(i, j) = u(j, i)− f(j, i) + f(i, j)− `(i, j). (6)

For a network G = (N,A, `, u, s, t) and a feasible solution f , the network denoted
by Ĝ(f) = (N, Â), where Â is the set of residual arcs corresponding to the feasible
solution f and consisting only of arcs (i, j) with r̂(i, j) > 0, is referred to as the
residual network with respect to the given flow f for the minimum flow problem.
The capacity of an s− t cut ĉ[S, T ] is defined, for the minimum flow problem, as:

ĉ[S, T ] = `(S, T )− u(T, S). (7)

The s− t cut with the greatest capacity value among all s− t cuts is referred to
as a maximum cut and is denoted by [Ŝ, T̂ ].

Theorem 3. (Min-Flow Max-Cut Theorem): If there is a feasible flow in the
network, the value of the minimum flow from a source s to a sink t in a capacitated
network with nonnegative lower bounds equals the capacity of the maximum s− t
cut.

A path in G = (N,A, `, u, s, t) from the source node s to the sink node t is
referred to as a decreasing path if the corresponding directed path in the residual
network consists only of arcs with positive residual capacities. There is a one-
to-one correspondence between decreasing paths P in G and directed paths P̂
from s to t in the residual network Ĝ(f). For a directed path P̂ in Ĝ(f) we have
r̂(P̂ ) = min{r̂(i, j)|(i, j) ∈ P̂}.

Theorem 4. (Decreasing Path Theorem): A flow f̂ is a minimum flow if and
only if the residual network Ĝ(f̂) contains no directed path from the source node
to the sink node.

3 Parametric flows in static networks

The problem of parametric flows in static networks concerns the general prob-
lem of parametric flows. Given a capacitated directed network with non-negative
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capacities and/or lower bounds, the natural generalization of the ordinary prob-
lem of maximum/minimum flow in static networks is obtained by making the
upper/lower bounds for some of the network arcs linearly depend on a single,
non-negative, real parameter. The general parametric flow problem is to compute
the maximum/minimum flows for every possible value of the parameter within
a given interval. The above mentioned problem looks like the ordinary maxi-
mum/minimum flow problem in static networks with the decisive differences that
the flow variables of the parametric problem are piecewise linear functions instead
of real numbers and the upper/lower bounds are linear functions instead of con-
stants.

Definitions included in the following sections are taken from/adapted after, refer-
ences [18] and [17] while the proof for theorems can be found in reference [19].

3.1 Parametric maximum flows in static networks

The parametric maximum flow problem consists in transforming the classic
problem of maximum network flow by adapting it to a networkG = (N,A, `, u, s, t)
where the upper bounds of some arcs (i, j) ∈ A depend on a real parameter.

Definition 1. A directed network G = (N,A, `, u, s, t) for which the upper bounds
u of some arcs (i, j) ∈ A are functions of a real parameter λ is referred to as a
parametric network and is denoted by Ḡ = (N,A, `, ū, s, t).

For a parametric network Ḡ, the parametric upper bound (capacity) function
ū : A × [0,Λ] → <+ of an arc (i, j) ∈ A computes the real numbers ū(i, j;λ),
called upper bound of arc (i, j), for all the parameter λ values in a given interval
[0,Λ]:

ū(i, j;λ) = u0(i, j) + λ · U(i, j) ≥ `(i, j), for allλ ∈ [0,Λ]. (8)

Here, U : A→ < is a real valued function associating to each arc (i, j) ∈ A the real
number U(i, j), referred to as the parametric part of the upper bound of the arc
(i, j). Obviously, the nonnegative value u0(i, j) is the upper bound value of the
arc (i, j) computed for λ = 0, i.e. ū(i, j; 0) = u0(i, j). From the above mentioned
restriction, it derives that the parametric part of the upper bounds U(i, j) must
satisfy the constraint: U(i, j) ≥ (`(i, j)− u0(i, j))/Λ, ∀(i, j) ∈ A. The parametric
flow value function v̄ : N × [0,Λ]→ < associates to each of the nodes i ∈ N a real
number v̄(i;λ) called value of node i for each of the parameter λ values.

Definition 2. A feasible flow in parametric network Ḡ = (N,A, `, ū, s, t) is called
parametric flow and is defined as a function f̄ : A × [0,Λ] → <+ satisfying the
following constraints:∑

j|(i,j)∈A

f̄(i, j;λ)−
∑

j|(j,i)∈A

f̄(j, i;λ) = v̄(i;λ), ∀i ∈ N, ∀λ ∈ [0,Λ]. (9)

`(i, j) ≤ f̄(i, j;λ) ≤ ū(i, j;λ), ∀(i, j) ∈ A,∀λ ∈ [0,Λ]. (10)

where
∑

i∈N v̄(i;λ) = 0, ∀λ ∈ [0,Λ].
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The parametric maximum flow (PMaxF) problem is to compute all maximum
flows for every possible value of the parameter, i.e. ∀λ ∈ [0,Λ]:

maximize v̄(λ) for all λ ∈ [0,Λ], (11)

∑
j|(i,j)∈A

f̄(i, j;λ)−
∑

j|(j,i)∈A

f̄(j, i;λ) =


v̄(λ), i = s

0, i 6= s, t
−v̄(λ), i = t,

(12)

`(i, j) ≤ f̄(i, j;λ) ≤ ū(i, j;λ), ∀(i, j) ∈ A, (13)

Let F denote the set of piecewise linear functions fi with fi : [0,Λ] → <+. An
ordering relation over the elements of F is defined as: fi ≤ fj 
 fi(λ) ≤ fj(λ)
for all λ ∈ [0,Λ]. If the two piecewise linear functions fi and fj have at least a
breakpoint, then neither fi ≤ fj nor fi ≥ fj hold for the entire interval [0,Λ] and
consequently, the two functions may not necessarily be comparable. For the case
when two piecewise linear functions have a number of K crossing points taking
place for the values λk, k = 1, · · · ,K of the parameter, the interval [0,Λ] can be
partitioned into K+1 subintervals of the type λk, λk+1, k = 0, · · · ,K, with λ0 = 0
and λK+1 = Λ, so that within every subinterval one of the following two cases
would hold: fi ≤ fj or fi ≥ fj , i.e. the two linear functions become comparable
within subintervals.

Definition 3. A parametric s − t cut partitioning, denoted by [Sk; Jk], k =
0, · · · ,K, is defined as a finite set of cuts [Sk, Tk] together with a partitioning
of the interval [0,Λ] of the parameter in disjoint subintervals Jk = [λk, λk+1], so
that J0 ∪ · · · ∪ JK = [0,Λ].

Definition 4. For the parametric maximum flow problem, the capacity ˜̄c[Sk; Jk]
of a parametric s− t cut partitioning is a linear function on every subinterval Jk,
k = 0, · · · ,K, defined as:

˜̄c[Sk; Jk] =
∑

(i,j)∈(Sk,Tk)

ū(i, j;λ)−
∑

(j,i)∈(Tk,Sk)

`(j, i), k = 0, · · · ,K. (14)

Definition 5. A parametric s−t cut partitioning [Sk; Jk] with the subintervals Jk
assuring that every cut is a minimum cut [S̃k, T̃k] within the subinterval [λk, λk+1]
is referred to as a parametric minimum s − t cut and is denoted by [S̃k; Jk], k =
0, · · · ,K.

Theorem 5. (Parametric max-flow min-cut theorem [19]): If there is a feasible
flow in the parametric network Ḡ, the value function ˜̄v of the parametric maximum

flow ˜̄f from a source s to a sink t equals the capacity ˜̄c of the parametric minimum
s− t cut [S̃k; Jk], k = 0, · · · ,K.

Definition 6. For the parametric maximum flow problem, the parametric residual
capacity ˜̄r(i, j;λ) of any of the arcs (i, j) ∈ A with respect to a given parametric
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flow f̄ represents the maximum additional flow that can be sent from node i to
node j over the arcs (i, j) and (j, i) and it is given by:

˜̄r(i, j;λ) = ū(i, j;λ)− f̄(i, j;λ) + f̄(j, i;λ)− `(i, j). (15)

The subintervals Ĩ(i, j) ⊆ [0,Λ] for (i, j) ∈ A, where ˜̄r(i, j;λ) > 0, i.e. an
augmentation of the flow f̄(i, j;λ) is possible along the arc (i, j), are defined as
Ĩ(i, j) = {λ | ˜̄r(i, j;λ) > 0}.

Definition 7. Given a feasible flow f̄ in the parametric network Ḡ, the network

denoted by ˜̄G(f̄) = (N, Ã(f̄)) with Ã(f̄) =
{

(i, j) | (i, j) ∈ A, Ĩ(i, j) 6= ∅
}

being the

set consisting only of arcs with positive parametric residual capacities, is referred
to as the parametric residual network with respect to the given flow f̄ for the
parametric maximum flow problem.

If an arc (i, j) ∈ A does not belong to ˜̄G(f̄), then Ĩ(i, j) := ∅ is set.

Definition 8. A conditional augmentation directed path is denoted by ˜̄P and is a
directed path P̃ from the source s to the sink t in the parametric residual network
˜̄G(f̄) with the restriction that:

Ĩ( ˜̄P ) =
⋂

(i,j)∈ ˜̄P

Ĩ(i, j) 6= ∅. (16)

Definition 9. The parametric residual capacity of a conditional augmentation

directed path ˜̄P represents the minimum value of the parametric residual capacity
˜̄r(i, j;λ) among all arcs (i, j) composing the conditional augmentation directed

path for all the parameter λ values in the subinterval Ĩ( ˜̄P ):

˜̄r( ˜̄P ;λ) = min
(i,j)∈ ˜̄P

{
˜̄r(i, j;λ) | λ ∈ Ĩ( ˜̄P )

}
. (17)

Theorem 6. (Conditional augmentation path theorem [19]): A parametric flow
˜̄f is a maximum parametric flow if and only if the parametric residual network
˜̄G( ˜̄f) contains no conditional augmentation directed path.

3.2 Parametric minimum flows in static networks

The parametric minimum flow problem can be regarded as a generalisation of
the non-parametric, ordinary minimum flow problem for the case of the parametric
networks where the lower bounds of some or all arcs (i, j) ∈ A depend on a
nonnegative real parameter λ. For the parametric minimum flow problem, a
parametric network denoted by Ḡ = (N,A, ¯̀, u, s, t) represents a directed network
for which the lower bounds of some arcs depend on a real parameter.
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Definition 10. In a parametric network Ḡ = (N,A, ¯̀, u, s, t), the parametric
lower bound function ¯̀ : A × [0,Λ] → <+ of an arc (i, j) ∈ A computes the real
numbers ¯̀(i, j;λ), called lower bound of arc (i, j), for all the parameter λ values
in a given interval [0,Λ]:

¯̀(i, j;λ) = `0(i, j)− λ · L(i, j) ≤ u(i, j), for all λ ∈ [0,Λ]. (18)

In the above expression, L : A → < denotes a real valued function which is
called the parametric part of the lower bound of the arc (i, j) ∈ A and which
must meet the following condition: [`0(i, j) − u(i, j)]/Λ ≤ L(i, j) ≤ `0(i, j)/Λ,
∀(i, j) ∈ A. Evidently, `0(i, j) represents the value of the function ¯̀(i, j;λ) for
λ = 0 and consequently, it must hold that 0 ≤ `0(i, j) ≤ u(i, j), ∀(i, j) ∈ A.

The parametric minimum flow (PMinF) problem consists of solving the nonpara-
metric minimum flow problem for all the parameter values within a certain interval
[0,Λ]:

minimize v̄(λ) for all λ ∈ [0,Λ], (19)

¯̀(i, j;λ) ≤ f̄(i, j;λ) ≤ u(i, j), ∀(i, j) ∈ A, (20)

under restrictions (12).

Definition 11. For the parametric minimum flow problem, the capacity ˆ̄c[Sk; Jk]
of a parametric s− t cut partitioning is a linear function on every subinterval Jk,
k = 0, · · · ,K, defined as:

ˆ̄c[Sk; Jk] =
∑

(i,j)∈(Sk,Tk)

¯̀(i, j;λ)−
∑

(j,i)∈(Tk,Sk)

u(j, i), k = 0, · · · ,K. (21)

Definition 12. A parametric s−t cut partitioning [Sk; Jk] with the subintervals Jk
assuring that every cut is a maximum cut [Ŝk, T̂k] within the subinterval [λk, λk+1]
is referred to as a parametric maximum s − t cut and is denoted by [Ŝk; Jk],
k = 0, · · · ,K.

Theorem 7. (Parametric min-flow max-cut theorem [19]): If there is a feasible
flow in the parametric network Ḡ, the value function ˆ̄v of the parametric minimum

flow ˆ̄f from a source s to a sink t equals the capacity ˆ̄c of the parametric maximum
s− t cut [Ŝk; Jk], k = 0, · · · ,K.

Definition 13. For the parametric minimum flow problem, the parametric resid-
ual capacity ˆ̄r(i, j;λ) of any of the arcs (i, j) ∈ A with respect to a given parametric
flow f̄ represents the maximum amount by which the flow sent from node i to node
j can be decreased over the arcs (i, j) and (j, i) and it is given by:

ˆ̄r(i, j;λ) = u(j, i)− f̄(j, i;λ) + f̄(i, j;λ)− ¯̀(i, j;λ). (22)

The subintervals Î(i, j) ⊆ [0,Λ] for (i, j) ∈ A, where ˆ̄r(i, j;λ) > 0, i.e. a
decrease of the flow f̄(i, j;λ) is possible along the arc (i, j), are defined as Î(i, j) ={
λ | ˆ̄r(i, j;λ) > 0

}
.
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Definition 14. Given a feasible flow f̄ in the parametric network Ḡ, the network

denoted by ˆ̄G(f̄) = (N, Â(f̄)) with Â(f̄) =
{

(i, j) | (i, j) ∈ A, Î(i, j) 6= ∅
}

being the

set consisting only of arcs with positive parametric residual capacities, is referred
to as the parametric residual network with respect to the given flow f̄ for the
parametric minimum flow problem.

Definition 15. A conditional decreasing directed path is denoted by ˆ̄P and is a
directed path P̂ from the source s to the sink t in the parametric residual network
ˆ̄G(f̄) with the restriction that:

Î( ˆ̄P ) =
⋂

(i,j)∈ ˆ̄P

Î(i, j) 6= ∅. (23)

Definition 16. The parametric residual capacity of a conditional decreasing di-

rected path ˆ̄P represents the minimum value of the parametric residual capacity
ˆ̄r(i, j;λ) among all arcs (i, j) composing the conditional decreasing directed path

for all the parameter λ values in the subinterval Î( ˆ̄P ):

ˆ̄r( ˆ̄P ;λ) = min
(i,j)∈ ˆ̄P

{
ˆ̄r(i, j;λ) | λ ∈ Î( ˆ̄P )

}
. (24)

Theorem 8. (Conditional decreasing path theorem [19]): A parametric flow ˆ̄f is

a minimum parametric flow if and only if the parametric residual network ˆ̄G( ˆ̄f)
contains no conditional decreasing directed path.

3.3 Algorithmic approaches for the parametric flows in static net-
works

The current section presents several different approaches that have been pro-
posed for solving the parametric flow problem in static networks.

The ”Shortest conditional decreasing path algorithm” for the para-
metric minimum flow problem [7] determines in each stage an improvement of the
flow over the subinterval of the parameter values which derives directly from the
shortest conditional decreasing directed path in the parametric residual network.
In its first phase, the algorithm establishes a feasible flow, if such a flow exists
in the given parametric network. In the second phase, the algorithm repeatedly
searches a shortest conditional decreasing directed path and, when one is found,
the flow is decreased along the corresponding paths in the original parametric
network and the parametric residual network is updated. As soon as the sink
node cannot be reached from the source, the algorithm stops and the obtained
flow represents a parametric minimum flow.
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1 Shortest conditional decreasing path algorithm
2 begin
3 find a feasible flow f0 in network Ḡ =

{
N,A, ¯̀, u, s, t

}
;

4 compute the parametric residual network ˆ̄G(f0);
5 repeat
6 compute the minimum length (h) of a conditional decreasing directed path;

7 if (exists (În−1,h 6= ∅) within the flow can be improved) then
8 begin

9 build the conditional decreasing directed path ˆ̄P ;

10 compute the parametric residual capacity ˆ̄r( ˆ̄P ;λ);
11 update the parametric residual network ;
12 end;

13 until (h = n− 1) and (În−1,h = ∅);
14 end.

The ”Sequential algorithm” for the parametric minimum flow problem [6]
is based on a ”piece-by-piece” approach which seeks, in each of its steps, a max-
imum improvement of the flow and the next maximum interval of the parameter
ensuring that the computed flow is a parametric minimum flow. Assuming that
the minimum flow is known for a given value of the parameter, the following two
subproblems have to be solved: computing the maximum amount of flow that has
to be subtracted from the current flow in order for this to preserve its optimality
for greater parameter values; computing the maximum value of the parameter
for which the newly computed flow remains optimal. The algorithm consists of
applying a non-parametric, ordinary maximum flow algorithm for a sequence of
parameter values in increasing order. An initial minimum flow is computed for a
given value of the parameter and then the algorithm repeatedly finds a maximum
amount by which the flow can be decreased over the next interval of the parameter
values so that the maximum cut does not change. This maximum amount of flow
is computed as a maximum flow in a derived network G∗k with properly set lower
and upper bounds:

`∗k(i, j) = 0 for f̂(i, j;λk) = u(i, j);

`∗k(i, j) = −∞ for f̂(i, j;λk) < u(i, j).

u∗k(i, j) = L(i, j) for f̂(i, j;λk) = `(i, j;λk);

u∗k(i, j) =∞ for f̂(i, j;λk) > `(i, j;λk).

On each of its iterations, the algorithm computes a new breakpoint of the piecewise
linear minimum flow value function and the corresponding parametric minimum
flow.
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1 Sequential algorithm for parametric minimum flow
2 begin
3 find a feasible flow f0 in network Ḡ0 =

{
N,A, ¯̀(λ = 0), u, s, t

}
;

4 k := 0; λk := 0;

5 compute the MINIMUM flow f̂k in network Ḡ0;
6 while λk < Λ do
7 begin
8 compute the derived network G∗k ;

9 compute the MAXIMUM flow f̃∗k in network G∗k;

10 compute the parameter subinterval δk that maintains the optimality of f̂k;

11 f̂k+1 := f̂k − δk · f̃∗k ;
12 λk+1 := λk + δk;
13 k := k + 1;
14 end
15 end.

A parametric bipartite network is called monotone if the lower bounds of the
out of the source arcs are non-increasing functions of a parameter, the lower
bounds of the arcs into the sink are non-decreasing functions of the parameter,
while the lower bounds of the remaining arcs are constants. The ”Balancing
algorithm” for the minimum flow problem in monotone parametric bipartite
networks decreases the flow over simple decreasing directed paths. The proposed
algorithm [8] does not work directly in the original network but in the parametric
residual network and finds a particular state of the residual network from which
the minimum flow and the maximum cut for any of the parameter values are ob-
tained. The approach implements a round-robin algorithm looping over a list of
nodes until an entire pass ends without changes of the flow.

The ”Partitioning algorithm” for the parametric maximum flow [18] /
minimum flow [17] problem represents an original approach of the directed paths
type algorithms. From a feasible flow, established in the first stage of the al-
gorithm, the partitioning algorithm finds, on every iteration of its second stage,
an augmentation/decreasing directed path from the source node to the sink node
in a parametric residual network defined only for a subinterval of the parameter
values, it improves the flow along the corresponding paths in the original para-
metric network and splits the interval of the parameter values into subintervals
which are generated by the breakpoints of the piecewise linear parametric residual
capacity function of the augmentation/decreasing directed path. Further on, the
algorithm reiterates within each of the generated subintervals, in increasing order
of the parameter values.
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1 Partitioning algorithm
2 begin
3 find a feasible flow f0 in network Ḡ;
4 k := 0; λk := 0;
5 repeat
6 compute the parametric residual network Ḡk(f0);
7 λk+1 := Λ;
8 while (exists a directed path P̄ in network Ḡk(f0)) do
9 begin
10 build a directed path P̄ in network Ḡk(f0);
11 compute the parametric residual capacity r̄(P̄ );

12 compute the upper limit λk+1 that maintain the linearity of f̂k;
13 update the the parametric residual network Ḡk(f̄k);
14 end;
15 compute the optimal flow for Jk = [λk, λk+1];
16 k := k + 1;
17 until (λk = Λ);
18 end.

The ”Parametric min-max algorithm” [19] solves the minimum flow problem
in a parametric network with linear lower bound functions by computing a para-
metric maximum flow from the sink node to the source node. Given a feasible
flow, a minimum flow from the source node to the sink node can be determined by
establishing a maximum flow from the sink node to the source node in the resid-
ual network defined as for the parametric maximum flow problem. The algorithm
does not work directly in the original parametric network but in the parametric
residual network defined as for the parametric maximum flow problem.

1 Parametric min-max algorithm
2 begin
3 find a feasible flow f0 in network Ḡ;

4 compute the parametric residual network ˜̄G(f0);

5 compute the parametric MAXIMUM flow f̄∗ := ˜̄f from t to s in ˜̄G(f0);

6 ˆ̄f := f̄∗ is a parametric MINIMUM flow from s to t in network Ḡ;
7 end.

4 Example

Further on, we will illustrate the partitioning algorithm for the parametric
maximum flow in the static network presented in Figure 1 with the source node
s = 0 and the sink node t = 3. The parameter λ takes values in the interval [0, 1],
i.e. Λ = 1.
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Figure 1: The parametric network Ḡ = (N,A, ¯̀, ū, s, t). Above each arc (i, j), the parametric
lower bound function ¯̀(i, j;λ), the feasible flow f0 and the parametric upper bound function
ū(i, j;λ) are indicated.

Considering the feasible flow f0 which is indicated in Figure 1, the residual net-

work ˜̄G(f0) for the parametric maximum flow problem and the residual network
ˆ̄G(f0) for the parametric minimum flow problem, with λ0 = 0 and λ1 = Λ,
are presented in Figure 2. The residual capacity of every arc is written as
˜̄r(i, j;λ) = α̃(i, j) + λ · β̃(i, j). Here, α̃(i, j) = ˜̄r(i, j; 0) and β̃(i, j) = U(i, j).

Figure 2: A. The residual network ˜̄G(f0) for the parametric maximum flow problem; B. The

residual network ˆ̄G(f0) for the parametric minimum flow problem.

In the parametric residual network ˜̄G(f0), (see. Figure 2.A) the directed path
˜̄P = (0, 1, 3) is built with the parametric residual capacity ˜̄r0( ˜̄P ) = 1 + 4λ, i.e.

α̃0( ˜̄P ) = 1 and β̃0( ˜̄P ) = 4. Since for the value λ∗ = 1/2, the parametric residual

capacity ˜̄r0( ˜̄P ) = 1 + 4λ of the directed path crosses the parametric residual ca-
pacity ˜̄r0(1, 3;λ) of the arc (1, 3) and this parameter value respects the restriction
λ∗ ≤ Λ, the upper limit of the subinterval of the parameter values is updated to
λ1 := λ∗ = 1/2.
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Figure 3: The parametric maximum flow for each of the subintervals Jk, k = 0, 1, 2, 3 of the
parameter values: (a) J0 = [0, 1/4]; (b) J1 = [1/4, 1/2]; (c) J2 = [1/2, 3/4]; (d) J3 = [3/4, 1].

In the next step, the parametric residual network ˜̄G0(f0) is updated, i.e. the val-
ues α̃0(i, j) and β̃0(i, j) are updated for both arcs (1, 3) and (0, 1). Afterwards, in

a similar way, the new directed path ˜̄P = (0, 2, 3) is built and the value of λ1 is
updated to λ1 := λ∗ = 1/4 ≤ 1/2. Since at this stage no other directed path can

be found, the maximum parametric flow ˜̄f0 is computed for the parameter values
in the subinterval J0 = [λ0, λ1] = [0, 1/4] (see Figure 3.a) and the value of the
counter is incremented to k := 1.
Because λ1 6= Λ, the algorithm reiterates within the new interval [1/4, 1]. Af-
ter performing three more iterations, the algorithm ends with the parametric

maximum flow ˜̄fk, separately computed for the subintervals J1 = [1/4, 1/2],
J2 = [1/2, 3/4], J3 = [3/4, 1], as shown in Figures 3.b, c and d.
Now, considering the lower bounds of the parametric network in Figure 1 and
the corresponding residual network for the parametric minimum flow, a similar
algorithm is executed for computing a parametric minimum flow.

In the parametric residual network ˆ̄G(f0), (see. Figure 2.B) the directed path
ˆ̄P = (0, 1, 3) is built with the parametric residual capacity ˆ̄r0( ˆ̄P ) = 1 + λ. For

the value λ∗ = 1/3, the parametric residual capacity ˆ̄r0( ˆ̄P ) = 1 + λ of the di-
rected path crosses the parametric residual capacity ˆ̄r0(1, 3;λ) of the arc (1, 3).
The computed value of the parameter respects the restriction λ∗ ≤ Λ and conse-
quently, the upper limit of the subinterval of the parameter values is updated to

λ1 := λ∗ = 1/3. According to the parametric residual capacity ˆ̄r0( ˆ̄P ), the residual

network ˆ̄G0(f0) is updated for both arcs (1, 3) and (0, 1). Then, in a similar way,
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the new directed path ˆ̄P = (0, 2, 3) is built and the value λ∗ = 4/7 is found but
because the restriction λ∗ ≤ λ1 i.e. 4/7 ≤ 1/3 does not hold, the value λ1 = 1/3
is maintained. Since at this stage no other directed path can be found, the mini-

mum parametric flow ˆ̄f0 is computed for the parameter values in the subinterval
J0 = [λ0, λ1] = [0, 1/3] (see Figure 4.a) and the value of the counter is incremented
to k := 1.

Figure 4: The parametric minimum flow for each of the subintervals Jk, k = 0, 1, 2, 3 of the
parameter values: (a) J0 = [0, 1/3]; (b) J1 = [1/3, 1/2]; (c) J2 = [1/2, 4/5]; (d) J3 = [4/5, 1].

For the new subinterval λ1 6= Λ, the algorithm reiterates within the new inter-

val [1/3, 1]. The directed paths ˆ̄P = (0, 1, 3), ˆ̄P = (0, 1, 2, 3) and ˆ̄P = (0, 2, 3)
are consecutively built and parameter value λ2 is updated to the value λ = 1/2.

For the subinterval J1 = [λ1, λ2] = [1/3, 1/2] the minimum parametric flow ˆ̄f1 is
computed (see Figure 4.b) and the value of the counter is incremented to k := 2.
After performing two more iterations, the algorithm ends with the parametric

minimum flow ˆ̄fk, separately computed for the subintervals J2 = [1/2, 4/5] and
J3 = [4/5, 1], as shown in Figures 4.c and d.
The piecewise linear flow value function v̄(λ), computed according to equation

(12), is presented Figure 5, both for the parametric maximum flow ˜̄f , denoted by

˜̄v(λ), and for the parametric minimum flow ˆ̄f , denoted by ˆ̄v(λ). These flow value
functions have been computed for the parametric network Ḡ = (N,A, ¯̀, ū, s, t)
shown in Figure 1 for the whole range of values of the parameter λ ∈ [0,Λ]. As it
can be easily seen, even if for some of the parameter values the functions v̄(λ) do
not change their slopes, the parametric maximum or minimum flows distribute
differently over the network arcs.
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Figure 5: The piecewise linear maximum (˜̄v(λ)) and minimum (ˆ̄v(λ)) flow value functions for
the parametric network Ḡ = (N,A, ¯̀, ū, s, t).

5 Concluding remarks

The main advantage of the partitioning approach consists in operating with
linear functions instead of the difficult to handle piecewise linear functions, i.e.
the residual capacity of every arc in the residual network is explicitly written as
a linear function. Even though considering both the upper bounds and the lower
ones as parametric linear functions instead of constants, the parametric residual
capacity of every arc in the residual network still remains written as a linear func-
tion, allowing the running of the algorithm in a similar manner.

Based on the fact that the partitioning approach for the parametric flow problem is
based on algorithms which work in the parametric residual network, the changes
that follow from taking into account both upper and lower parametric bounds
are equally treated and thus, easy to be dealt with. Consequently, algorithms
presented can be extended to networks with both lower and upper parametric
bounds. From the above considerations it result that the partitioning algorithms
remain valid (with appropriate modifications) for the cases of parametric both
upper bounds and lower bounds.
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