
Bulletin of the Transilvania University of Braşov • Vol 12(61), No. 1 - 2019

Series III: Mathematics, Informatics, Physics, 113-122

https://doi.org/10.31926/but.mif.2019.12.61.1.10

INVERSE MAXIMUM FLOW PROBLEM IN PLANAR
NETWORKS

Laura CIUPALĂ1 and Adrian DEACONU?2

Dedicated to the 75th birthday of Professor Eleonor Ciurea

Abstract

In this paper we consider the problem of inverse maximum flow in planar
network (IMFPN), where upper bounds for the flow must be changed as lit-
tle as possible so that a given feasible flow becomes a maximum flow in the
modified network. A strongly polynomial algorithm for solving this problem
is proposed.

2000 Mathematics Subject Classification: 90C27, 90C35, 68R10
Key words: inverse combinatorial optimization and maximum flow and

planar networks and strongly polynomial time

1 Introduction

The network flow model bridges several diverse and seemingly unrelated areas
of combinatorial optimization. More often in scientific writing, flow in a network
refers to the flow of electricity, phone calls, e-mail messages, commodities being
transported across truck routes, or other such kinds of flow. Many efficient al-
gorithms have been developed to solve the maximum flow problem in networks
[1].

The planar network also arises practical contexts such as V [S] design and
communication networks, and hence it is of interest to find fast flow algorithms
for this class of graphs. The computation of a maximum flow in planar net-
works has been investigated by many researchers starting from the work of Ford
and Fulkerson [10] who developed an O(n2) time algorithm. Hassin [11] gave an
algorithm that runs in O(nlog(n)0.5) time using Frederickson’s shortest path al-
gorithm. The asymptotically algorithm for maximum flow in planar network is

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
laura ciupala@yahoo.com

2? Corresponding author, Faculty of Mathematics and Informatics, Transilvania University of
Braşov, Romania, e-mail: a.deaconu@unitbv.ro

114 Laura Ciupală and Adrian Deaconu

due to Borradaile and Klein [4]. The maximum flow in planar networks problem
has drawn considerable attention from researchers.

In the past few decades, the inverse combinatorial optimization problems have
been studied intensively [2][3][12]. For this kind of problems the idea is to modify
a vector of parameters (capacities, costs), such that a given feasible solution of
the direct optimization problem becomes an optimal solution and the distance
between the initial vector and the modified vector of parameters is minimum.
Different norms such as l1 or l∞ are considered to measure this distance. Capacity
modifications are done for maximum flow and minimum cut. Strongly polynomial
time algorithms to solve the inverse maximum flow problem (IMF) under l1 norm
were presented by Yang et al. [14]. The inverse maximum flow problem under l∞
norm is studied by Deaconu [7]. Zhang and Liu [15] propose strongly polynomial
algorithms for IMF under Hamming distance. In this paper we study the inverse
maximum flow problem in planar networks.

2 Feasible flows and maximum flow

Let G = (N,A, u) be a network with the set nodes N = {1, 2, ..., n}, the set
of arcs A = {a1, a2, ..., an}, ak = (i, j), i, j ∈ N and the upper bound (capacity)
function u : A −→ R+, where R+ is the real positive number set. To define the
feasible flow problem we distinguish two special nodes in the static network G, a
source node 1 and a sink node n. For a given subset X ⊂ N and for X̄ = N −X
we use the notation:

(X, X̄) = {(i, j)|(i, j) ∈ A, i ∈ X, j ∈ X̄} (1)

and for the function g : A −→ R+ we use the notation:

g(X, X̄) =
∑

(X,X̄)

g(i, j) (2)

A flow is a function f : A −→ R+ satisfying the nest conditions:

f(i,N)− f(N, i) =

v, if i = 1
0, if i 6= 1, n
−v, if i = n

(3)

where v ≥ 0. We refer to v as the value of the flow f .

A feasible flow is a flow f which verifies the conditions:

0 ≤ f(i, j) ≤ u(i, j) (4)

The maximum flow problem is to determine a feasible flow for which v is
maximized.

A cut is a partition of nodes set N into two subsets, X and X̄ = N −X. We
represent this cut using the notation [X, X̄]. We refer to a cut [X, X̄] as an 1− n
cut if 1 ∈ X and n ∈ X̄. An arc (i, j) with i ∈ X and j ∈ X̄ is a forward arc of

Inverse maximum flow problem in planar networks 115

the cut and an arc (i, j) with i ∈ X̄ and j ∈ X is a backward arc of the cut. Let
(X, X̄) denote the set of forward arcs and let (X̄,X) denote the set of backward
arcs of the cut [X, X̄]. For the maximum flow problem in network G the capacity
of a 1− n cut [X, X̄] is:

c[X, X̄] = c(X, X̄) (5)

We refer to a 1 − n cut [X∗, X̄∗] whose capacity c[X∗, X̄∗] is the minimum
among all 1− n cuts [X, X̄] as a minimum 1− n cut.

Let f be a feasible flow with value v and f∗ a maximum feasible flow with
value v∗. We recall the next two results [1]:

v = f [X, X̄] = f(X, X̄)− f(X̄,X) ≤ c[X, X̄] (6)

v∗ = f∗[X∗, X̄∗] = c[X∗, X̄∗] = c(X∗, X̄∗) (7)

From 5, 6 and 7 we have:

f∗(X̄∗, X∗) = 0, i.e., f∗(i, j) = 0,∀(i, j) ∈ (X̄∗, X∗) (8)

We consider now that the network G is a directed 1−n planar network. More
efficient algorithms can be developed on planar networks. We recall the definitions
and properties of planar digraphs [1], [4], [6], [10] and [11].

Definition 1. A digraph is a planar graph if we can draw it in a two
dimensional plane so that no two arcs intersect each other.

Efficient algorithms (in linear time) were developed to test planarity of a di-
graph.

Definition 2. Let G = (N,A) be a planar digraph. A face of G is
a region of the plane bounded by arcs that satisfies the condition that any two
points in the region can be connected by a continuous curve that meets no nodes
and arcs. The boundary of a face i′ is the set of all arcs that enclose it. The faces
i′ and j′ are called adjacent if the intersection of their boundaries contains at
least an arc.

Any planar graph has an unbounded face.

Theorem 1. If a connected graph has n nodes m arcs and q faces then q =
m− n+ 2.

Theorem 2. If a planar graph has n nodes and m arcs then m < 3n.

Theorem 3. A planar digraph remains planar if a multiple arc is added to it.

Now, we define the dual directed planar network G′ = (N ′, A′, u′) of the
network G = (N,A, u). We add the arc (n, 1) with u(n, 1) = 0, which divides the
unbounded face into two faces: a new bounded face and a new unbounded face.
We place a node i′ inside each face i′ of the network G. We have N ′ = {1′, 2′, ..., n′}
with n′ = q + 1 = m − n + 3. Let 1′ and n′ denote, respectively, the nodes in
the dual directed network G′ corresponding to the new bounded face and the

116 Laura Ciupală and Adrian Deaconu

new unbounded face. Each arc (i, j) ∈ A lies on the boundary of two faces i′

and j′. Corresponding to this arc, the network G′ contains two opposite arcs
(i, j) and (j′, i′). If the arc (i, j) is clockwise in the face i′ then we define the
value u′(i′, j′) = u(i, j) and the value u′(j′, i′) = 0. We define the arc values in
the opposite manner if the arc (i, j) is a counterclockwise arc in the face i′. The
network contains the arcs (1′, n′) and (n′, 1′) which we delete from the network. We
have A′ = {(i′, j′), (j′, i′)|i′, j′ ∈ N ′, (i′, j′) and (j′, i′) corresponding to (i, j) ∈
A}. There is one-to-one correspondence between 1−n cuts in the network G and
paths from node 1′ to n′ in the network G′. Moreover, the capacity of each cut
equals the value of the corresponding path. Consequently, we can obtain a 1− n
cut [X∗, X̄∗] in the network G by determining the shortest path P ′ from node 1′

to node n′ in G′. We can solve the shortest path problem in G′ by using Dijkstra’s
algorithm [1].

We shall present now an algorithm for finding a maximum flow in a directed
(1, n) static planar network G = (N,A, u). Let d′(i′) denote the shortest path
distance from node 1′ to i′ in the dual directed network G′. We present below
the algorithm for maximum flow in a directed (1, n) planar network (algorithm
MFDPN).

Algorithm 1 Algorithm MFDPN

BEGIN
Compute the network G′;
DIJKSTRA(G′, d′);
for (i, j) ∈ A do

f∗(i, j) = d′(j′)− d′(i′);
end for
END.

Theorem 4. The algorithm MFDPN determines a maximum flow in the network
G.

Theorem 5. The algorithm MFDPN determines a maximum flow in O(n2) time.

We remark the fact that using Frederickson’s algorithm for the shortest path
problem, the algorithm MFDPN determines a maximum flow in O(n1.5) time.

3 Inverse maximum flow problem in direct planar net-
works

In the past decades, the inverse maximum flow problem (IMF) has drawn
considerable attention from researchers. Strongly polynomial time algorithms to
solve this problem were presented [7], [12], [14], [15].

The IMF problem has the following formulation. Let f be a given feasible flow
in the network G = (N,A, u). The problem is to change the capacity vector u as
little as possible so that f becomes a maximum flow in the modified network.

Inverse maximum flow problem in planar networks 117

Throughout the paper we shall consider IMF problem under the l1 norm:

‖u− û‖1 =
n∑

i=1

|u(ai)− u(âi)| (9)

Assumption 1: The network G has a single source node and a single sink
node.

Assumption 2: The network G is antisymmetric, i.e., if (i, j) ∈ A then
(j, i) /∈ A.

The above assumptions are not restrictive. It is well known that a network with
more than a source node and more than a sink node is equivalent for maximum
flow problem to a modified network where a super source node and, respectively, a
super sink node are introduced [1]. If G is not antisymmetric then by introducing
new nodes in the set N and new arcs in the set A we can build an equivalent
antisymmetric network for the maximum flow problem.

The residual capacity for each arc (i, j) ∈ A is defined as follows:{
r(i, j) = u(i, j)− f(i, j)
r(j, i) = f(i, j)

(10)

It is obvious that in order to make a feasible flow f become a maximum
flow in the network G the upper bounds (capacities) of some arcs from A must be
decreased. So, IMF problem with restrictions on the modification of the capacities
can be formulated using the following mathematical model:

min ‖u− û‖1 (11a)

f∗ = f is a maximum flow in Ĝ = (N,A, û) (11b)

u(i, j)− α(i, j) ≤ û(i, j) ≤ u(i, j), ∀(i, j) ∈ A (11c)

where α(i, j) are given positive numbers satisfying the conditions:

α(i, j) ≤ u(i, j), ∀(i, j) ∈ A (12)

We shall present now an algorithm from [14] adapted for a planar network.
For all 1− n cuts [X, X̄] with f(X̄,X) = 0 we define the vector u′ as follows:

u′(i, j) =

{
f(i, j), (i, j) ∈ (X, X̄)
f(i, j), (i, j) ∈ A− (X, X̄)

(13)

We denote by C ′ the following set of 1− n cuts:

C ′ = {[X, X̄]|f(X̄,X) = 0, u(X, X̄)− u′(X, X̄) ≤ α(X, X̄)} (14)

Theorem 6. IMF problem has solution for a given feasible flow f if and only if
C ′ 6= φ.

118 Laura Ciupală and Adrian Deaconu

Proof. If IMF problem has a solution u∗ then u∗ satisfies the relations from 11.
Since f∗ = f is a maximum flow in G∗ = (N,A, u∗), we have f∗(X∗, X̄∗) =
u∗(X∗, X̄∗) and f∗(X̄∗, X∗) = 0. From the fact that u(X∗, X̄∗) − u∗(X∗, X̄∗) ≤
α(X∗, X̄∗) and f∗(X̄∗, X∗) = f(X̄∗, X∗) = 0 it results that [X∗, X̄∗] ∈ C ′ and,
so, C ′ 6= φ.

Conversely, if C ′ 6= φ then u′ defined in 13 is an optimal solution of IMF
problem 11, because u′(X, X̄) = f(X, X̄) and f(X, X̄) = 0, where [X, X̄] ∈ C ′.

It is obviously that:

u∗ ≤ u (15)

If [X∗, X̄∗] is a minimum 1− n cut in the network G∗ = (N,A, u∗), where u∗

is the optimal solution of IMF problem 11 then from 6, 7, 8, 11, 13 and 15 we
have:

[X∗, X̄∗] ∈ C ′, u′[X∗, X̄∗] = u∗[X∗, X̄∗] (16)

and

‖u− u∗‖1 = min{u[X∗, X̄∗]|[X∗, X̄∗] ∈ C ′} − v (17)

where v is the value of the feasible flow f .

Let [X∗, X̄∗] ∈ C ′ be a 1− n cut with the property:

u[X ′, X̄ ′] = min{u[X, X̄]|[X, X̄] ∈ C ′} (18)

We have: u′(X ′, X̄ ′) = f(X ′, X̄ ′) and f(X̄ ′, X ′) = 0. Consequently, u′ is a
feasible solution of the IMF problem and a maximum flow in the network G′ =
(N,A, u′). It results that [X ′, X̄ ′] is a minimum 1 − n cut in G′. We also have
that ‖u− u′‖1 = u(X ′, X̄ ′)− v and, comparing this result with 17 we obtain that
u′ = u∗, i.e., u′ is an optimal solution of IMF problem 11. Consequently, IMF
problem can be transformed into the following problem:

min{u[X, X̄]|[X, X̄] ∈ C ′} (19)

In order to eliminate the constraint [X, X̄] ∈ C ′ we construct an extended
network G1 = (N1, A1, u1), where N1 = N , A1 = A ∪ A2, u1 : A1 −→ R+ with
A2 = {(j, i)|(i, j) ∈ A, f(i, j) > 0} and for each arc (i, j) ∈ A we define:

u1(i, j) =

{
u(i, j), r(i, j) ≤ α(i, j)
ū, otherwise

(20)

while for each arc (j, i) we have:

u1(j, i) = ū, (21)

where ū = u(a1) + u(a2) ++ u(an) + 1

Inverse maximum flow problem in planar networks 119

Let [X∗1 , X̄
∗
1] be a minimum 1 − n cut in the network G1 with the capacity

c1[X∗1 , X̄
∗
1].

Theorem 7. (1) If c1[X∗1 , X̄
∗
1] < ū then [X∗, X̄∗] = [X∗1 , X̄

∗
1]
⋂
A is a solution of

the problem 19.

(2) If c1[X∗1 , X̄
∗
1] ≥ ū then C ′ = φ and the IMF problem has no feasible

solution.

Proof. (1) Since N1 = N we have X∗1 = X∗ and X̄∗1 = X̄∗. If c[X∗1 , X̄
∗
1] <

ū then f(X∗, X̄∗) = 0, otherwise there is an arc (j, i) ∈ (X̄∗, X∗) ⊂ A with
f(j, i) > 0 and therefore there is an arc (i, j) ∈ (X∗1 , X̄

∗
1) with u1(i, j) = ū

and thus c[X∗1 , X̄
∗
1] ≥ ū which is a contradiction. We also have that u(X∗, X̄∗)−

u′(X∗, X̄∗) ≤ α(X∗, X̄∗), otherwise there is an arc (i, j) ∈ (X∗, X̄∗) with u1(i, j) =
ū which is again a contradiction. These results imply that [X∗, X̄∗] ∈ C ′. We will
show now that for each [X, X̄] ∈ C ′ we have c1(X, X̄) = u1(X, X̄) = u(X, X̄) =
c(X, X̄). Consequently, the 1− n cut [X∗, X̄∗] is a solution of the problem 19.

(2) If C ′ 6= φ there would exist [X, X̄] ∈ C ′ and we showed in 1 that each arc
(i, j) ∈ (X, X̄) ∩ A1 has the capacity c1(i, j) = u(i, j) and hence c1(X, X̄) < ū,
which is a contradiction. Therefore, C ′ = φ and from theorem 6 it results that
IMF problem has no feasible solution.

We consider next that the network G = (N,A, u) is a directed 1 − n planar
network.

Theorem 8. The network G1 = (N1 = N,A1, u1) is a planar network.

Proof. This theorem is a direct consequence of theorem 3.

Now we are ready to state the algorithm for solving IMF problem in a directed
1− n planar network G.

Algorithm 2 Algorithm IMFPPN

BEGIN
Compute the network G1 = (N1, A1, u1);
Compute the dual network G′1 = (N ′1, A

′
1, u
′
1);

DIJKSTRA(G′1, d′1);
if d′1(n′1) < ū then

if (i, j) ∈ (X∗, X̄∗) then u∗(i, j) = f(i, j)
else u∗(i, j) = u(i, j)
end if

else IMF does not have feasible solution
end if
END.

Theorem 9. Algorithm IMFPPN solves the IMF problem in a directed 1 − n
planar network G = (N,A, u) in O(n2) time.

120 Laura Ciupală and Adrian Deaconu

Figure 1: The 1− n planar network G = (N,A, u)

Proof. We have |N1| = |N | = n, |A| = m, O(m) = O(n), |A1| = m1, m1 < 2m,
|N ′1| = n′1 = q + 1 = m1 − n1 + 3 ⇒ O(m′1) = O(m1) = O(m) = O(n). Dijkstra
algorithm has a time complexity of O((n′1)2) = O(n2). Hence, the algorithm
IMFPPN has a time complexity of O(n2).

We remark the fact that using Frederickson’s algorithm for the shortest path
problem, the algorithm IMFPPN solves IMF problem in O(n1.5) time.

We shall take now a numerical example to illustrate how the algorithm IMF-
PPN works.

We consider the 1 − n planar network G = (N,A, u) from figure 1, where
α(i, j) = 2 for all arcs (i, j) from A.

The planar network G1 = (N1, A1, u1) and the dual network G′1 = (N ′1, A
′
1, u
′
1)

are shown in figure 2. The values of the arcs (i′, j′) ∈ A′ are presented in matrix
V :

v(i, j) =

{
u1(i, j), (i′, j′) ∈ A′1
w, otherwise

(22)

where w is a number with the property that w > ū.

V =

w ū w w 4 w w w ū w w w
0 w 0 w w w w w w w w w
0 ū w 0 w 2 w w w w w w
w w ū w w w w w w w w 6
0 w w w w 0 w 0 w 0 w w
w w 0 w ū w ū w w w w w
w w w w w 0 w w w w w w
w w w w w w ū w w 0 w 4
0 w w w w w w w w w w w
w w w w w w ū w ū w 0 w
w w w w w w w w w ū w 6
w w w 0 w w w 0 w w 0 w

Inverse maximum flow problem in planar networks 121

Figure 2: The planar network G1 and the dual network G′1

We obtain: d′1 = (0, ū+4, 4, 4, 4, 4, ū+4, ū+4, ū, ū, ū, 10), X∗ = {1, 2, 3}, u∗ =
(u∗(1, 2), u∗(1, 3), u∗(2, 3), u∗(2, 4), u∗(2, 5), u∗(3, 5), u∗(4, 6), u∗(5, 4), u∗(5, 6)) =

= (4, 8, 0, 4, 4, 2, 6, 4, 6).

References

[1] Ahuja, R. K., Magnanti, T. L., Orlin, J. B., Network flows: theory, algorithms,
and applications, Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[2] Ahuja, R. K., Orlin, J. B., Combinatorial algorithms for inverse network flow
problems, Networks, (2002).

[3] Ahuja, R. K., Orlin, J. B., Inverse optimization, Working Paper, Sloan School
of Management, MIT, Cambridge, MA, 1998

[4] Borradaile, G., Klein, P., An O(n log(n)) algorithm for maximum flow st-flow
in a directed planar graph, ACM Journal 56 (2009), no 2, 1-30.

[5] Ciurea, E. and Deaconu, A., Inverse minimum flow problem, Journal of Ap-
plied Mathematics and Computing 23 (2007), 193-203.

[6] Ciurea, E. and Georgescu, O., Minimum flows in directed s-t planar networks,
Bul. Math. de la Soc. des Scien. Math. de Roumanie 101 (2007), no. 2, 305-313.

[7] Deaconu, A., The inverse maximum flow problem considering L∞ norm,
RAIRO-Oper. Res. 42 (2008), no. 3, 401-414.

122 Laura Ciupală and Adrian Deaconu

[8] Deaconu, A., Solving inverse maximum flow problem using weakly polynomial
methods, Bull. Transilvania University Braşov 14(49) (2007), 83-90.

[9] Demange, M. and Monnot, J. An introduction to inverse combinatorial prob-
lems, In: Vangelis Th. Paschos, Paradigms of Combinatorial Optimization
(Problems and New approaches), Wiley, London-Hoboken 2010.

[10] Ford, L. and Fulkerson, D., Flows in networks, Princeton University Press,
1962.

[11] Hassin, R., Maximum flow in (s,t) planar networks, Information Processing
Latters 13(3) (1981) 107.

[12] Heuberger,C., Inverse combinatorial optimization, a survey on problems,
methods, and results, Journal of Combinatorial Optimization, 8 (2004), 329-
361.

[13] Tayyebi, J., Mohammadi, A. and Kazemi, S. M. R., Reverse maximum
flow problem under the weighted Chebyshev distance, accepted for publication,
RAIRO-Oper. Res. (2018).

[14] Yang, C., Zhang, J. and Ma, Z., Inverse maximum flow and minimum cut
problems, Optimization 40 (1997), 147-170.

[15] Zhang, J. and Liu, L., Inverse maximum flow problems under the Hamming
distance, Journal of Combinatorial Optimization 12 (2006), 395-408. (2006)

