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Abstract

The aim of this paper is to construct an interpolatory polynomial (0,1;0)
with special types of boundary conditions. Here the nodes {xi}ni=1 and

{x∗i }
n−1
i=1 are the roots of P

(k)
n (x) and P

(k+1)
n−1 (x) respectively, where P

(k)
n (x) is

the Ultraspherical polynomial of degree n. In this paper, we prove, existence,
explicit representation and order of convergence of the interpolatory polynomial.

2000 Mathematics Subject Classification: 41A10, 97N50.
Key words: Lagrange interpolation, Ultraspherical polynomial, Explicit

form, Order of convergence.

1 Introduction

The Ultraspherical polynomial P
(k)
n (x) of degree n and order k is defined by

P (k)
n (x) =

Γ (n+ 2k) Γ
(
k + 1

2

)
(−1)n

Γ (2k) Γ
(
n+ k + 1

2

)
2nn!

× (1− x2)−k+
1
2
dn

dxn
[(1− x2)n+k−

1
2 ]

for n=0, 1, 2, ... In 1979, J.S.Hwang [6] studied the Turan’s problem of (0,2)
interpolation on the zeros of Jacobi polynomials. Later, A.M.Chak and J.Szabados
[1] introduced the similar problem of (0,2) interpolation on the zeros of Laguerre

polynomials L
(α)
n (x) (α > 1). He considered, the (0,2) interpolating polynomial

Rm(f, x) of degree at most 2n− 1 associated with f(x),which are defined by the
relations.

Rm(f, xk) = f(xk),

R′′m(f, xk) = 0, k = 1, 2..., n.
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Further, in (1995) I.Joo and L.Sizli [5] studied the problem in the case when the
fundamental points are the roots of Jacobi polynomials and considered the weight

function w(x)=(1 − x)
α+1
2 (1 + x)

β+1
2 (xε[−1, 1];α, β > −1). K.K. Mathur and

R.B. Saxena [7] have extended the study of weighted (0,2) interpolation due to
J.Balazs [2] and L. Sizli [8] to the case of weighted (0,1,3) interpolation on the zeros
of Hermite polynomials. Later, M. Lenard initiated the study of interpolation
[9],[10]. In paper [10] M. Lenard considered the function values are interpolated at

the zeros of the polynomial P
(k+1)
n−1 (x) and the first derivative values are intepolated

at the zeros of the polynomial P
(k)
n (x) with hermite conditions on the interval

[−1, 1].
The convergence of this interpolation process was studied by Xie [11] for k=0,

if f ∈ Cr[−1, 1] for x ∈ [−1, 1], then

|f(x)−R2n+1(x; f)| = O(n−r+1)w(f (r);
1

n
). (1)

Xie and Zhou [12] proved for k=0, if f ∈ Cr[−1, 1], r ≥ 2, for x ∈ [−1, 1], then

|f ′(x)−R′2n+1(x; f)| = O(1)w(f (r);
1

n
)O(n

−r+
5

2 ), (2)

also stated the above property of convergence if f ∈ C2[−1, 1] , f2 ∈ Lipα , α >
1

2
,then R′2n+1(x; f) converges to f ′(x) uniformly on [-1,1] . For k ≥ 1 Lenard [9]
proved that if f ∈ Cr[−1, 1] for x ∈ [−1, 1] ,then

|f(x)−Rm(x; f)| = O(nk−r+
1
2 )w(f (r);

1

n
), (3)

where w(f (r), .) denotes the modulus of continuity of the rth derivative of the
function f(x).
The aim of this paper is to extend the study of (0;1) interpolation problem
of M.Lenard [10] to the case (0,1;0) interpolation with Hermite-type boundary
conditions on interval [−1, 1].
We have given the following problem.

Problem:

Let the set of knots be given by

−1 = x∗n < xn < x∗n−1 < xn−1 < ....., < x∗1 < x1 < x∗0 = 1, n ≥ 1, (4)

where {xi}ni=1 and {x∗i }
n−1
i=1 are the roots of ultraspherical polynomials P

(k)
n (x) and

P
(k+1)
n−1 (x) respectively, on the knots (4) there exists a unique polynomial Rm(x)

of degree at most m = 3n+ 2k + 1 satisfying the interpolatory conditions.

Rm(xi) = yi, (i = 1, 2, ..., n), (5)
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Rm
′(xi) = yi

′, (i = 1, 2, ..., n), (6)

Rm(x∗i ) = y∗i , (i = 1, 2, ..., n− 1), (7)

with (Hermite) boundary conditions.

R(l)
m (1) = y

(l)
1 , (l = 0, 1, ..., k), (8)

R(l)
m (−1) = y

(l)
−1, (l = 0, 1, ..., k + 1), (9)

where yi ,yi
′, y∗i , y

(l)
1 and y

(l)
−1 are arbitrary real numbers and k is a fixed

non-negative integer.
In section 2, we gave some results of [3] and proved new results in section 3. The
order of convergence and main theorem of convergence have been proved in section
4.

2 Preliminaries:

We shall use well known properties and results [3] of the Ultraspherical polyno-

mials. Let P
(k)
n (x)=P

(k,k)
n (x) (k > −1, n ≥ 0) denote the ultraspherical polynomial

of degree n. we refer to [3] (4.2.1).

(1− x2)P (k)
n

′′
(x)− 2x(k + 1)P (k)

n

′
(x) + n(n+ 2k + 1)P (k)

n (x) = 0, (10)

refer to [3] (4.21.7)

P (k)
n

′
(x) =

n+ 2k + 1

2
P

(k+1)
n−1 (x), (11)

|P (k)
n (x)| = O(nk), x ∈ [−1, 1], (12)

(1− x2)
k
2
+ 1

4 |P (k)
n (x)| = O(

1√
n

). (13)

The fundamental polynomials of Lagrange interpolation are given by:

lj(x) =
P

(k)
n (x)

P
(k)
n

′
(xj)(x− xj)

(14)

l∗j (x) =
P

(k+1)
n−1 (x)

P
(k+1)
n−1

′
(x∗j )(x− x∗j )

, (15)

lj(x) =
P

(k)
n (x)

P
(k)
n

′
(xj)(x− xj)

=
h̃
(k)
n

(1− x2j )[P
(k)
n

′
(xj)]2

n−1∑
ν=0

1

h
(k)
ν

P (k)
ν (xj)P

(k)
ν (x), (16)

where
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h̃(k)n =
22kΓ (2(n+ k + 1))

Γ (n+ 1) Γ (n+ 2k + 1)
∼ C1, (17)

h(k)ν =
22k+1

2ν + 2k + 1

Γ (2(ν + k + 1))

Γ (ν + 1) Γ (ν + 2k + 1)

{
∼ 1

ν (ν > 0),
= C2 (ν = 0),

(18)

where the constants C1, C2 depend only on k.

If x1 > x2 > ....., > xn are the roots of P
(k)
n (x), then the following relations

hold [3].

(1− x2j ) ∼


j2

n2 (xj ≥ 0),

(n−j)2
n2 (xj < 0),

(19)

|P (k)
n

′
(xj)| ∼


nk+2

jk+
3
2

(xj ≥ 0),

nk+2

(n−j)k+
3
2

(xj < 0).

(20)

3 Explicit Representation of Interpolatory polynomials:

We shall write Rm(x) satisfying (5) - (9) as

Rm(x) =

n∑
j=1

Aj(x)yj +

n∑
j=1

Bj(x)yj
′+

n−1∑
j=1

Cj(x)y∗j +

k∑
j=0

Dj(x)y
(l)
1 +

k+1∑
j=0

Ej(x)y
(l)
−1,

(21)
where Aj(x) and Cj(x) are the fundamental polynomials of first kind and

Bj(x) is the fundamental polynomial of second kind. Dj(x) and Ej(x) are the
fundamental polynomials which correspond to the boundary conditions each of
degree ≤ 3n+ 2k + 1, uniquely determined by the following conditions,

For j = 1, 2, ...., n
Aj(xi) = δji, (i = 1, 2, ...., n)
Aj
′(xi) = 0, (i = 1, 2, ...., n)

Aj(x
∗
i ) = 0, (i = 1, 2...., n− 1)

Aj
l(1) = 0, (l = 0, 1, ...., k)

Aj
l(−1) = 0, (l = 0, 1, ...., k + 1)

(22)

For j = 1, 2, ...., n
Bj(xi) = 0, (i = 1, 2, ...., n)

Bj
′(xi) = δji, (i = 1, 2, ...., n)
Bj(x

∗
i ) = 0, (i = 1, 2...., n− 1)

Bj
l(1) = 0, (l = 0, 1, ...., k)

Bj
l(−1) = 0, (l = 0, 1, ...., k + 1)

(23)
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For j = 1, 2, ...., n− 1
Cj(xi) = 0, (i = 1, 2, ..., n)
Cj
′(xi) = 0, (i = 1, 2, ...., n)

Cj(x
∗
i ) = δji, (i = 1, 2...., n− 1)

Cj
l(1) = 0, (l = 0, 1, ...., k)

Cj
l(−1) = 0, (l = 0, 1, ...., k + 1)

(24)

For j = 0, 1, ...., k
Dj(xi) = 0, (i = 1, 2, ...., n)
Dj
′(xi) = 0, (i = 1, 2, ...., n)

Dj(x
∗
i ) = 0, (i = 1, 2...., n− 1)

Dj
l(1) = δjl, (l = 0, 1, ...., k)

Dj
l(−1) = 0, (l = 0, 1, ...., k + 1)

(25)

For j = 0, 1, ...., k + 1
Ej(xi) = 0, (i = 1, 2, ...., n)
Ej
′(xi) = 0, (i = 1, 2, ...., n)

Ej(x
∗
i ) = 0, (i = 1, 2...., n− 1)

Ej
l(1) = 0, (l = 0, 1, ...., k)

Ej
l(−1) = δjl, (l = 0, 1, ...., k + 1)

(26)

We proved the Explicit forms which are given in the following Lemmas.

Lemma 1. The fundamental polynomial Cj(x), for j = 1, 2, ..., n − 1 satisfying
the interpolatory conditions (24) is given by:

Cj(x) =
(1 + x)(1− x2)k+1{P (k)

n (x)}2l∗j (x)

(1 + x∗j )(1− x∗j
2)k+1{P (k)

n (x∗j )}2
. (27)

Lemma 2. The fundamental polynomial Bj(x), for j = 1, 2, ..., n satisfying the
interpolatory conditions (23) is given by:

Bj(x) =
(1 + x)(1− x2)k+1P

(k)
n (x)P

(k)
n

′
(x)lj(x)

(1 + xj)(1− xj2)k+1{P (k)
n

′
(xj)}2

. (28)

Lemma 3. The fundamental polynomial Aj(x), for j = 1, 2, ..., n satisfying the
interpolatory conditions (22) is given by:

Aj(x) =
(1 + x)(1− x2)k+1P

(k)
n

′
(x){lj(x)}2

(1 + xj)(1− x2j )k+1P
(k)
n

′
(xj)

− {1 + 2(1 + xj)lj
′(xj)}Bj(x)

(1 + xj)
. (29)
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Lemma 4. The fundamental polynomial Dj(x), for j = 0, 1, ..., k which corresponds
to the boundary condition, satisfying the interpolatory conditions (25) is given by:

Dj(x) =(1− x)j(1 + x)k+2P (k)
n (x){P (k)

n

′
(x)}2pj(x)

+ (1 + x)(1− x2)k+1P (k)
n

′
(x)P (k)

n (x)× {P
(k)
n (x)qj(x)− P (k)

n

′
(x)pj(x)

(1− x)k+1−j },

(30)
where degree pj(x) ≤ k − j + 1 and degree qj(x) ≤ k − j.

Lemma 5. The fundamental polynomial Ej(x), for j = 0, 1, ..., k + 1 which
corresponds to the boundary condition, satisfying the interpolatory conditions (26)
is given by:
For j = 0, 1..., k

Ej(x) =(1− x)k+2(1 + x)jP (k)
n (x){P (k)

n

′
(x)}2p̃j(x)

+ (1− x2)k+1P (k)
n (x)P (k)

n

′
(x)× {P

(k)
n (x)q̃j(x)− (1− x)P

(k)
n

′
(x)p̃j(x)

(1 + x)k+1−j },

(31)
where degree p̃j(x) ≤ k − j + 1 and degree q̃j(x) ≤ k − j + 1,
For j = k + 1

Ek+1(x) =
(1− x2)k+1{P (k)

n (x)}2P (k)
n

′
(x)

(k + 1)!2k+1{P (k)
n (−1)}2P (k)

n

′
(−1)

. (32)

Existence:

By Lemma 1 to Lemma 5, the polynomial Rm(x) satisfies conditions (22)-
(26), so there exists an interpolatory polynomial Rm(x) of degree 3n+2k+1.

4 Order of Convergence of the fundamental polynomials.

Theorem 1. If k > 0 , n ≥ 2 , for the first derivative of the first kind fundamental
polynomials on [-1,1] holds

n−1∑
j=1

(1− x∗j
2)|C ′j(x)| = O(nk+

11
2 ). (33)

Proof. Differentiating (27) , we get

n−1∑
j=1

(1− x∗j
2)|C ′j(x)| = η1 + η2 + η3,
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where we use the decomposition (15) in η1 for l∗j (x), we have

η1 ≤
n−1∑
j=1

{(1− x2)k+1 + 2x(k + 1)(1 + x)(1− x2)k}|P (k)
n (x)|2

(1 + x∗j )(1− x∗j
2)k+1|P (k)

n (x∗j )|2|P
(k+1)
n−1

′
(x∗j )|

2 × h̃(k+1)
n−1

× {γ1 +

n−2∑
ν=1

1

h
(k+1)
ν

|P (k+1)
ν (x∗j )||P (k+1)

ν (x)|},

where γ1 is a constant which is independent of n.

By using (19) and (20) , we get

1

(1− x∗j
2)k+1|P (k+1)

n−1
′
(x∗j )|

2 = O(
1

n− 1
), (34)

using (12), (13) , (18), (19) , (20) and (34) , we obtain

η1 = O(nk+
7
2 ).

Again using decomposition (15) in η2 for l∗j (x), we have

η2 ≤
n−1∑
j=1

2(1 + x)(1− x2)k+1|P (k)
n (x)||P (k)

n

′
(x)|

(1 + x∗j )(1− x∗j
2)k+1|P (k)

n (x∗j )|2|P
(k+1)
n−1

′
(x∗j )|2

× h̃(k+1)
n−1

× {γ2 +

n−2∑
ν=1

1

h
(k+1)
ν

|P (k+1)
ν (x∗j )||P (k+1)

ν (x)|},

where γ2 is a constant which is independent of n.

Using (12), (13), (18), (19), (20) and (34) , we get

η2 = O(nk+
11
2 ).

Similarly using the above process, we can also find the order of η3, so

η3 = O(nk+
11
2 ).

Hence the theorem is proved.

Theorem 2. If k > 0 , n ≥ 2 , for the first derivative of the second kind
fundamental polynomials on [-1,1] holds

n∑
j=1

|B′j(x)| = O(nk+
7
2 ). (35)
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Proof. Differentiating (28) , we get

n∑
j=1

|B′j(x)| = ζ1 + ζ2 + ζ3,

where we use the decomposition (16) in ζ1 for lj(x), we get

ζ1 ≤
n∑
j=1

{(1− x2)k+1 + 2x(k + 1)(1 + x)(1− x2)k}|P (k)
n (x)||P (k)

n

′
(x)|

(1 + xj){(1− xj2)
k
2
+ 1

2 |P (k)
n

′
(xj)|}4

× h̃(k)n

× {γ3 +

n−1∑
ν=1

1

h
(k)
ν

(1− xj2)k|P (k)
ν (xj)|(1− x2)k|P (k)

ν (x)|,

where γ3 is a constant which is independent of n.

By using (19) and (20), then it holds

1

{(1− xj2)
k
2
+ 1

2 |P (k)
n

′
(xj)|}4

= O(n)−2, (36)

using (11), (12) , (13) , (18), (19) and (36) , we have

ζ1 = O(nk+
3
2 ).

Using the decomposition (16) in ζ2 for lj(x), we get

ζ2 ≤
n∑
j=1

(1 + x)(1− x2)k+1{|P (k)
n

′
(x)|2 + |P (k)

n (x)||P (k)
n

′′
(x)| } × h̃(k)n

(1 + xj){(1− xj2)
k
2
+ 1

2 |P (k)
n

′
(xj)|}4

× {γ4 +

n−1∑
ν=1

1

h
(k)
ν

(1− xj2)k|P (k)
ν (xj)|(1− x2)k|P (k)

ν (x)|,

where γ4 is a constant which is independent of n,

by using (11) and (12), it holds

|P (k)
n

′′
(x)| = O(nk+4), (37)

using (11), (12), (13), (18), (19), (36) and (37) , we obtain

ζ2 = O(nk+
7
2 ).

Similarly using the above method, we can also determine the order of ζ3. So, we
have

ζ3 = O(nk+
5
2 ).

Hence the theorem is proved.
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Theorem 3. If k > 0 , n ≥ 2 , for the first derivative of the first kind fundamental
polynomials on [-1,1] holds

n∑
j=1

(1− xj2)|A′j(x)| = O(nk+
11
2 ). (38)

Proof. Differentiating (29) , we get

n∑
j=1

(1− xj2)|A′j(x)| = ξ1 + ξ2 + ξ3,

where, we use the decomposition (16) for lj(x), we have

ξ1 ≤
n∑
j=1

{(1− x2)k+1 + 2x(k + 1)(1 + x)(1− x2)k}|P (k)
n

′
(x)|

(1 + xj){(1− xj2)
k
3
+ 1

2 |P (k)
n

′
(xj)|}5

× {h̃(k)n }2

× {γ5 +

n−1∑
ν=1

n−1∑
ν=1

1

{h(k)ν }2
(1− x2j )

2k
3
+ 1

2 |P (k)
ν (xj)|2(1− x2)k|P (k)

ν (x)|2},

where γ5 is a constant which is independent of n.

Using (19) and (20), it holds

1

{(1− x2j )
k
3
+ 1

2 |P (k)
n

′
(xj)|}5

= O(n
−5
2 ), (39)

by using (11), (12), (13), (18), (19) and (39) , we obtain

ξ1 = O(nk+
3
2 ).

Using the decomposition (16) in ζ1 for lj(x) and using (11) and (12), we get

ξ2 ≤
n∑
j=1

(n+ 2k + 1)2(1 + x)(1− x2)k+1|P (k+2)
n−2 (x)|

4(1 + xj){(1− xj2)
k
3
+ 1

2 |P (k)
n

′
(xj)|}5

× {h̃(k)n }2

× {γ6 +
n−1∑
ν=1

n−1∑
ν=1

1

{h(k)ν }2
(1− x2j )

2k
3
+ 1

2 |P (k)
ν (xj)|2(1− x2)k|P (k)

ν (x)|2},

where γ6 is a constant which is independent of n.

By using (12), (13), (18), (19) and (39), we get

ξ2 = O(nk+
5
2 ).

By using the above procedure, we can also evaluate the order of ξ3, then we obtain

ξ3 = O(nk+
7
2 )
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and

ξ4 =
n∑
j=1

(1− xj){1 + 2(1 + xj)|lj ′(x)|}|Bj ′(x)|,

using (11) and (12), it holds

lj
′(xj) =

P
(k)
n

′′
(xj)

2P
(k)
n

′
(xj)

Futhermore,
|lj ′(xj)| = O(n2), (40)

using (19), (35) and (40) , we have

ξ4 = O(nk+
11
2 ). (41)

Hence the theorem is proved.

Main Theorem:

Let k ≥ 0 be a fixed integer m=3n+2k+1 and let {xi}ni=1 and {x∗i }
n−1
i=1 be

the roots of the Ultraspherical polynomials P
(k)
n (x) and P

(k+1)
n−1 (x) respectively, if

f ∈ Cr[−1, 1] (r ≥ k + 1, n ≥ 2r − k + 2), then the interpolational polynomial

Rm(x; f) =
n∑
i=1

f(xi)Ai(x) +
n∑
i=1

f ′(xi)Bi(x) +
n−1∑
i=1

f(x∗i )Ci(x) +
k∑
j=0

f (j)(1)Dj(x)+

+
k+1∑
j=0

f (j)(−1)Ej(x)

(42)
satisfies (43) for x ∈ [−1, 1],

|f ′(x)−R′m(x; f)| = w(f (r);
1

n
)O(nk−r+

11
2 ), (43)

where the fundamental polynomials Ai(x), Bi(x), Ci(x), Dj(x) and Ej(x) are
given in (27) - (32).

Proof. For k=0 we refer to (1), proved by Xie and Zhou [12] and we prove the
case k ≥ 1. Let f ∈ Cr[−1, 1], then by the theorem of Gopengauz [4] for every
m ≥ 4r + 5 there exists a polynomial pm(x) of degree at most m such that for
j = 0, ...., r

|f (j)(x)− p(j)m (x)| ≤Mr,j(

√
1− x2
m

)r−j w(f (r);

√
1− x2
m

), (44)

where w(f (r); .) denotes the modulus of continuity of the function f (r)(x) and the
constants Mr,j depend only on r and j. Furthermore,

f (j)(±1) = p(j)m (±1) (j = 0, ....r).
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By the uniqueness of the interpolational polynomials Rm(x; f) it is clear that
Rm(x; pm)=pm(x).Hence for x ∈ [−1, 1]

|f ′(x)−R′m(x; f)| ≤ |f ′(x)− p′m(x)|+ |R′m(x; pm)−R′m(x; f)|

≤ |f ′(x)− p′m(x)|+
n∑
j=1

|f(xj)− pm(xj)||A′j(x)|+
n∑
j=1

|f ′(xj)− p′m(xj)||B′j(x)|+

+

n−1∑
j=1

|f(x∗j )− pm(x∗j )||C ′j(x)|,

using (42) and (44) , applying the estimates (33), (35) and (38), we obtain

|f ′(x)−R′m(x; f)| = w(f (r);
1

n
)O(nk−r+

11
2 ). (45)

which is the proof of main theorem.

By using, main theorem and (3) we can state the conclusion of the convergence
theorem.

Conclusion:

Let k ≥ 0 be a fixed integer, m=3n+2k+1 , n ≥ k+4, let {xi}ni=1 and {x∗i }
n−1
i=1

be the roots of the ultraspherical polynomials P
(k)
n (x) and P

(k+1)
n−1 (x) respectively.

If f ∈ Ck+2[−1, 1] , fk+2 ∈ Lipα ,α > 1
2 , then Rm(x; f) and R′m(x; f) uniformly

converge to f(x) and f ′(x) , respectively on [-1,1] as n→∞ .
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