# SOME CURVATURE PROPERTIES OF TRANS SASAKIAN MANIFOLDS ADMITTING A QUARTER-SYMMETRIC NON-METRIC CONNECTION 

C. LALMALSAWMA* ${ }^{1}$ and J. P. SINGH ${ }^{2}$


#### Abstract

In this paper we studied some properties of trans Sasakian manifold admitting a quarter-symmetric non-metric connection. We studied some symmetric properties with respect to quarter symmetric non-metric connection and we obtain results in locally symmetric, Ricci semi-symmetric and generalized recurrent trans Sasakian manifolds. We also obtained the necessary and sufficient condition for group manifolds.


2010 Mathematics Subject Classification: 53D15, 53C25.
Key words: Trans-Sasakian manifolds, quarter-symmetric non-metric connection, Locally symmetric manifolds, Ricci semi-symmetric manifolds, Generalized recurrent manifolds, group manifolds.

## 1 Introduction

Golab [12] introduced a quarter-symmetric linear connection on a differentiable manifold. A quarter-symmetric metric connection generalized a semi-symmetric connection which is introduced by Friedman and Schouten [11] in 1924. A quartersymmetric connection is further studied by many authors such as: Barman [2], Prakasha and Vikas [15], Singh [17, 18, 19], Prasad and Haseeb [16], Dey et al. $[8,9]$ etc.

Golab [12] defined a quarter-symmetric connection in a Riemannian manifold as "a linear connection $\tilde{\nabla}$, whose torsion tensor $\tilde{T}$ of $\tilde{\nabla}$ satisfies

$$
\tilde{T}(U, V)=\eta(V) \phi U-\eta(U) \phi V
$$

[^0]where $\eta$ is a 1 -form and $\phi$ is a $(1,1)$ tensor field". If $\phi X=X$ for all $X \in \chi(M)$, then it reduces to a semi-symmetric connection. Moreover $\tilde{\nabla}$ is a metric connection if
$$
\left(\tilde{\nabla}_{X} g\right)(Y, Z)=0
$$
otherwise it is non-metric.
The paper is organized as follows: after the introduction and preliminaries, we obtain the relations between a quarter-symmetric connection and a Riemannian connection. In section 4 we obtain the condition for $\tilde{\nabla}=\nabla$. In section 5 we prove the necessary and sufficient condition for $\alpha$-Sasakian manifold. The final two sections are dedicated to the study of generalized recurrent manifolds and group manifolds.

## 2 Preliminaries

Almost contact metric manifold is defined as [3] "an $n$-dimensional differentiable manifold $M^{n}(n=2 m+1)$ admitting a 1 -form $\eta$, a $(1,1)$ tensor field $\phi$, a vector field $\zeta$ and Riemannian metric $g$ which satisfy

$$
\begin{gather*}
\phi^{2} U=-U+\eta(U) \zeta, \quad \eta(\zeta)=1, \quad \phi \zeta=0, \quad \eta(\phi U)=0,  \tag{1}\\
g(U, \zeta)=\eta(U), \quad g(\phi U, V)=-g(U, \phi V),  \tag{2}\\
g(\phi U, \phi V)=g(U, V)-\eta(U) \eta(V), \tag{3}
\end{gather*}
$$

for all $U, V, X \in \chi(M)$ ".
The manifold $M^{n}$ is trans-Sasakian Manifold [13] "if $\left(M^{n} \times \mathbb{R}, J, G\right)$ belong to the class $\omega_{4}$ of the Hermitian manifolds, where $G$ is the product metric on $\left(M^{n} \times \mathbb{R}\right)$ and $J$ is the almost complex structure on $\left(M^{n} \times \mathbb{R}\right)$ defined by

$$
J\left(U, f \frac{d}{d t}\right)=\left(\phi Z-f \zeta, \eta(U) \frac{d}{d t}\right)
$$

for any $U \in \chi(M)$. This may be stated by the relation [13]

$$
\begin{equation*}
\left(\nabla_{X} \phi\right)(U)=\alpha\{g(X, U) \zeta-\eta(U) X\}+\beta\{g(\phi X, U) \zeta-\eta(U) \phi X\} \tag{4}
\end{equation*}
$$

where $\alpha, \beta$ are smooth functions on $M^{n \prime \prime}$.
From the above relations we have [4]

$$
\begin{gather*}
\nabla_{X} \zeta=-\alpha \phi X+\beta\{X-\eta(X) \zeta\}  \tag{5}\\
\left(\nabla_{X} \eta\right)(U)=-\alpha g(\phi X, U)+\beta g(\phi X, \phi U) \tag{6}
\end{gather*}
$$

Further in trans-Sasakian manifolds the curvature tensor and Ricci tensor satisfy [7]

$$
\begin{array}{r}
R(U, V) \zeta=\left(\alpha^{2}-\beta^{2}\right)\{\eta(V) U-\eta(U) V\}+2 \alpha \beta\{\eta(V) \phi U-\eta(U) \phi V\} \\
-(U \alpha) \phi V+(V \alpha) \phi U-(U \beta) \phi^{2} V+(V \beta) \phi^{2} U, \tag{7}
\end{array}
$$

$$
\begin{align*}
& R(\zeta, V) Z=\left(\alpha^{2}-\beta^{2}\right)\{g(V, Z) \zeta-\eta(Z) V\}+2 \alpha \beta\{g(\phi Z, V) \zeta+\eta(Z) \phi V\} \\
& +(Z \alpha) \phi V+(Z \beta)\{V-\eta(V) \zeta\}+g(\phi Z, V)(\operatorname{grad} \alpha)-g(\phi Z, \phi V)(\operatorname{grad} \beta) \tag{8}
\end{align*}
$$

$$
R(\zeta, V) \zeta=\left(\alpha^{2}-\beta^{2}-\zeta \beta\right)\{\eta(V) \zeta-V\},
$$

$$
\begin{equation*}
2 \alpha \beta+(\zeta \alpha)=0 \tag{9}
\end{equation*}
$$

$$
\begin{gather*}
S(U, \zeta)=\left\{(n-1)\left(\alpha^{2}-\beta^{2}\right)-(\zeta \beta)\right\} \eta(U)-(n-2)(U \beta)-((\phi U) \alpha),  \tag{10}\\
Q \zeta=\left\{(n-1)\left(\alpha^{2}-\beta^{2}\right)-(\zeta \beta)\right\} \zeta-(n-2)(\operatorname{grad} \beta)+\phi(\operatorname{grad} \alpha) . \tag{11}
\end{gather*}
$$

## 3 Quarter-symmetric non-metric connection in transSasakian manifolds

We consider a linear connection $\tilde{\nabla}$ on a trans-Sasakian manifold which is given by

$$
\begin{equation*}
\tilde{\nabla}_{X} U=\nabla_{X} U+\eta(U) \phi(X) . \tag{12}
\end{equation*}
$$

Thus $\tilde{\nabla}$ is a quarter-symmetric conection on the manifold. Also using (12) we obtain

$$
\left(\tilde{\nabla}_{X} g\right)(U, V)=-g(\phi X, V) \eta(U)-g(\phi X, U) \eta(V)
$$

which shows that $\tilde{\nabla}$ is a non-metric connection.
The relation between the Riemannian curvature tensor $R$ and the curvature tensor $\tilde{R}$ with respect to $\tilde{\nabla}$ is given by [14]

$$
\begin{align*}
& \tilde{R}(U, V) Z=R(U, V) Z+\alpha\{g(\phi V, Z) \phi U-g(\phi U, Z) \phi V+\eta(U) \eta(Z) V \\
& \quad-\eta(V) \eta(Z) U\}+\beta\{g(U, Z) \phi V-g(V, Z) \phi U+2 \eta(Z) g(\phi U, V) \zeta\} . \tag{13}
\end{align*}
$$

From (13), it follows that

$$
\begin{array}{r}
\tilde{R}(\zeta, V) Z=\left(\alpha^{2}-\beta^{2}\right)\{g(V, Z) \zeta-\eta(Z) V\}+2 \alpha \beta\{g(\phi Z, V) \zeta+\eta(Z) \phi V\} \\
+(Z \alpha) \phi V+g(\phi Z, V) \operatorname{grad} \alpha+(Z \beta)\{V-\eta(V) \zeta\} \\
-g(\phi Z, \phi V) \operatorname{grad} \beta+\alpha \eta(Z)\{V-\eta(V) \zeta\}+\beta \eta(Z) \phi V, \tag{14}
\end{array}
$$

$$
\begin{gather*}
\tilde{R}(U, V) \zeta=\left(\alpha^{2}-\beta^{2}-\alpha\right)\{\eta(V) U-\eta(U) V\}-(U \alpha) \phi V+(V \alpha) \phi U \\
+(2 \alpha \beta-\beta)\{\eta(V) \phi U-\eta(U) \phi V\}-(U \beta) \phi^{2} V+(V \beta) \phi^{2} U+2 \beta g(\phi U, V) \zeta,  \tag{15}\\
\tilde{R}(\zeta, V) \zeta=\left(\alpha^{2}-\beta^{2}-\alpha-\zeta \beta\right)\{\eta(V) \zeta-V\}+\beta \phi V . \tag{16}
\end{gather*}
$$

Contracting (13) we obtain [14]

$$
\begin{equation*}
\tilde{S}(U, V)=S(U, V)+\alpha\{g(\phi U, \phi V)-(n-1) \eta(U) \eta(V)\}+\beta g(\phi U, V) \tag{17}
\end{equation*}
$$

Again from (13), we have

$$
\begin{align*}
\tilde{S}(U, \zeta) & =\left\{(n-1)\left(\alpha^{2}-\beta^{2}-\alpha\right)-\zeta \beta\right\} \eta(U)-(n-2)(U \beta)-((\phi U) \alpha) \\
& =\tilde{S}(\zeta, U) \tag{18}
\end{align*}
$$

$$
\begin{equation*}
\tilde{S}(\zeta, \zeta)=(n-1)\left(\alpha^{2}-\beta^{2}-\alpha-\zeta \beta\right) \tag{19}
\end{equation*}
$$

Also from (5) we obtain

$$
\begin{equation*}
\tilde{\nabla}_{X} \zeta=-(\alpha-1) \phi X+\beta\{X-\eta(X) \zeta\} . \tag{20}
\end{equation*}
$$

Again from (5) we obtain

$$
\begin{equation*}
\tilde{r}=r \tag{21}
\end{equation*}
$$

where $\tilde{r}=\sum_{i=1}^{n} \tilde{S}\left(e_{i}, e_{i}\right)$ and $r=\sum_{i=1}^{n} S\left(e_{i}, e_{i}\right)$ are the scalar curvatures.

## 4 Locally symmetric trans-Sasakian manifolds

Definition 1. [5]"A Riemannian manifold is said to be (locally) symmetric if the Riemannian curvature tensor $R$ satisfies $\nabla R=0$ ".

Consider a trans-Sasakian manifold which is symmetric with respect to $\tilde{\nabla}$. Then we have

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(U, V) Z=0 \tag{22}
\end{equation*}
$$

for all $X, U, V, Z \in \chi(M)$.
By properties of $\tilde{\nabla}$ we have

$$
\begin{align*}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(U, V) Z & =\tilde{\nabla}_{X} \tilde{R}(U, V) Z-\tilde{R}\left(\tilde{\nabla}_{X} U, V\right) Z \\
& -\tilde{R}\left(U, \tilde{\nabla}_{X} V\right) Z-\tilde{R}(U, V) \tilde{\nabla}_{X} Z \tag{23}
\end{align*}
$$

Using (13) in (23) we obtain

$$
\begin{array}{r}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(U, V) Z=\left(\tilde{\nabla}_{X} R\right)(U, V) Z+(X \alpha)[g(\phi V, Z) \phi U-g(\phi U, Z) \phi V \\
+\eta(U) \eta(Z) V-\eta(V) \eta(Z) U]+(X \beta)[g(U, Z) \phi V-g(V, Z) \phi U \\
+2 \eta(Z) g(\phi U, V) \zeta]+\alpha\left[\left\{\left(\tilde{\nabla}_{X} g\right)(\phi V, Z)+g\left(\left(\tilde{\nabla}_{X} \phi\right) V, Z\right)\right\} \phi U\right. \\
+g(\phi V, Z)\left(\tilde{\nabla}_{X} \phi\right) U-\left\{\left(\tilde{\nabla}_{X} g\right)(\phi U, Z)-g\left(\left(\tilde{\nabla}_{X} \phi\right) U, Z\right)\right\} \phi V \\
-g(\phi U, Z)\left(\tilde{\nabla}_{X} \phi\right) V+\left(\tilde{\nabla}_{X} \eta\right)(Z)\{\eta(U) V-\eta(V) U\} \\
\left.+\eta(Z)\left\{\left(\tilde{\nabla}_{X} \eta\right)(U) V-\left(\tilde{\nabla}_{X} \eta\right)(V) U\right\}\right]+\beta\left[\left(\tilde{\nabla}_{X} g\right)(U, Z) \phi V-\left(\tilde{\nabla}_{X} g\right)(V, Z) \phi U\right. \\
+g(U, Z)\left(\tilde{\nabla}_{X} \phi\right) V-g(V, Z)\left(\tilde{\nabla}_{X} \phi\right) U+2\left(\tilde{\nabla}_{X} \eta\right)(Z) g(\phi U, V) \zeta \\
\left.+2 \eta(Z)\left\{\left(\tilde{\nabla}_{X} g\right)(\phi U, V)+g\left(\left(\tilde{\nabla}_{X} \phi\right) U, V\right)\right\} \zeta\right] .(
\end{array}
$$

Again using (12) in (24) we obtain

$$
\begin{array}{r}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(U, V) Z=\left(\nabla_{X} R\right)(U, V) Z+(X \alpha)[g(\phi V, Z) \phi U-g(\phi U, Z) \phi V \\
+\eta(U) \eta(Z) V-\eta(V) \eta(Z) U]+(X \beta)[g(U, Z) \phi V-g(V, Z) \phi U \\
+2 \eta(Z) g(\phi U, V) \zeta]+\alpha\left[\left\{\left(\tilde{\nabla}_{X} g\right)(\phi V, Z)+g\left(\left(\tilde{\nabla}_{X} \phi\right) V, Z\right)\right\} \phi U\right. \\
+g(\phi V, Z)\left(\tilde{\nabla}_{X} \phi\right) U-\left\{\left(\tilde{\nabla}_{X} g\right)(\phi U, Z)-g\left(\left(\tilde{\nabla}_{X} \phi\right) U, Z\right)\right\} \phi V \\
-g(\phi U, Z)\left(\tilde{\nabla}_{X} \phi\right) V+\left(\tilde{\nabla}_{X} \eta\right)(Z)\{\eta(U) V-\eta(V) U\} \\
\left.+\eta(Z)\left\{\left(\tilde{\nabla}_{X} \eta\right)(U) V-\left(\tilde{\nabla}_{X} \eta\right)(V) U\right\}\right]+\beta\left[\left(\tilde{\nabla}_{X} g\right)(U, Z) \phi V-\left(\tilde{\nabla}_{X} g\right)(V, Z) \phi U\right. \\
+g(U, Z)\left(\tilde{\nabla}_{X} \phi\right) V-g(V, Z)\left(\tilde{\nabla}_{X} \phi\right) U+2\left(\tilde{\nabla}_{X} \eta\right)(Z) g(\phi U, V) \zeta \\
\left.+2 \eta(Z)\left\{\left(\tilde{\nabla}_{X} g\right)(\phi U, V)+g\left(\left(\tilde{\nabla}_{X} \phi\right) U, V\right)\right\} \zeta\right]+\eta(R(U, V) Z) \phi X \\
-\eta(U) R(\phi X, V) Z-\eta(V) R(U, \phi X) Z-\eta(Z) R(U, V) \phi X .( \tag{25}
\end{array}
$$

Combining (22) and (25)

$$
\begin{array}{r}
\left(\nabla_{X} R\right)(U, V) Z+(X \alpha)[g(\phi V, Z) \phi U-g(\phi U, Z) \phi V \\
+\eta(U) \eta(Z) V-\eta(V) \eta(Z) U]+(X \beta)[g(U, Z) \phi V-g(V, Z) \phi U \\
+2 \eta(Z) g(\phi U, V) \zeta]+\alpha\left[\left\{\left(\tilde{\nabla}_{X} g\right)(\phi V, Z)+g\left(\left(\tilde{\nabla}_{X} \phi\right) V, Z\right)\right\} \phi U\right. \\
+g(\phi V, Z)\left(\tilde{\nabla}_{X} \phi\right) U-\left\{\left(\tilde{\nabla}_{X} g\right)(\phi U, Z)-g\left(\left(\tilde{\nabla}_{X} \phi\right) U, Z\right)\right\} \phi V \\
-g(\phi U, Z)\left(\tilde{\nabla}_{X} \phi\right) V+\left(\tilde{\nabla}_{X} \eta\right)(Z)\{\eta(U) V-\eta(V) U\} \\
\left.+\eta(Z)\left\{\left(\tilde{\nabla}_{X} \eta\right)(U) V-\left(\tilde{\nabla}_{X} \eta\right)(V) U\right\}\right]+\beta\left[\left(\tilde{\nabla}_{X} g\right)(U, Z) \phi V-\left(\tilde{\nabla}_{X} g\right)(V, Z) \phi U\right. \\
+g(U, Z)\left(\tilde{\nabla}_{X} \phi\right) V-g(V, Z)\left(\tilde{\nabla}_{X} \phi\right) U+2\left(\tilde{\nabla}_{X} \eta\right)(Z) g(\phi U, V) \zeta \\
\left.+2 \eta(Z)\left\{\left(\tilde{\nabla}_{X} g\right)(\phi U, V)+g\left(\left(\tilde{\nabla}_{X} \phi\right) U, V\right)\right\} \zeta\right]+\eta(R(U, V) Z) \phi X \\
-\eta(U) R(\phi X, V) Z-\eta(V) R(U, \phi X) Z-\eta(Z) R(U, V) \phi X=0 .( \tag{26}
\end{array}
$$

Setting $X=U=Z=\zeta$ in (26) and using (9), (12), (16) and (20), we obtain the following equation

$$
\begin{equation*}
(2 \alpha(\zeta \alpha)-2 \beta(\zeta \beta)-\zeta \alpha-\zeta(\zeta \beta))(\eta(V) \zeta-V)+(\zeta \beta) \phi V=0 \tag{27}
\end{equation*}
$$

If $\beta$ is a non-zero constant, then (27) become

$$
(2 \alpha-1)(\zeta \alpha)(\eta(V) \zeta-V)=0,
$$

or

$$
2 \alpha \beta(1-2 \alpha)(\eta(V) \zeta-V)=0
$$

From the above equation we have

$$
\begin{equation*}
\eta(V) \zeta-V=0 \tag{28}
\end{equation*}
$$

for all $V \in \chi(M)$, provided $\alpha \neq 0, \frac{1}{2}$.
Now from (28) we obtain

$$
\begin{equation*}
\phi V=0 \tag{29}
\end{equation*}
$$

for all $V \in \chi(M)$, provided $\alpha \neq 0, \frac{1}{2}$.
Using (28) and (29) in (25) we get

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(U, V) Z=\left(\nabla_{X} R\right)(U, V) Z \tag{30}
\end{equation*}
$$

Theorem 1. If $\beta$ is a non-zero constant in a locally symmetric trans Sasakian manifold with respect to $\tilde{\nabla}$, then is locally symmetric with respect to $\nabla$ provided $\alpha \neq 0, \frac{1}{2}$.

Again using (29) in (12) we get

$$
\begin{equation*}
\tilde{\nabla}_{X} U=\nabla_{X} U \tag{31}
\end{equation*}
$$

provided $\alpha \neq 0, \frac{1}{2}$.
Theorem 2. If a trans Sasakian manifold is locally symmetric with respect to $\tilde{\nabla}$, then $\tilde{\nabla}=\nabla$ if and only if $\beta$ is a non-zero constant, provided $\alpha \neq 0, \frac{1}{2}$.

## 5 Ricci semi-symmetric trans-Sasakian manifolds

Definition 2. [20, 21]"A trans-Sasakian manifold is said to be Ricci semisymmetric if the Riemannian curvature tensor $R$ and Ricci tensor $S$ satisfy $R . S=0$ ".

Let $M^{n}$ be a Ricci semi-symmetric trans-Sasakian manifold with respect to $\tilde{\nabla}$, we have

$$
\begin{equation*}
\tilde{R}(U, V) \cdot \tilde{S}(Z, W)=0 \tag{32}
\end{equation*}
$$

for all $U, V, Z, W \in \chi(M)$.
From (33) we have

$$
\begin{equation*}
\tilde{S}(\tilde{R}(U, V) Z, W)+\tilde{S}(Z, \tilde{R}(U, V) W)=0 \tag{33}
\end{equation*}
$$

Using (13) in (33 we get

$$
\begin{array}{r}
\tilde{S}(R(U, V) Z, W)+\tilde{S}(Z, R(U, V) W)+\alpha\{g(\phi V, Z) S(\phi U, W) \\
-g(\phi U, Z) S(\phi V, W)+\eta(U) \eta(Z) S(V, W)-\eta(V) \eta(Z) S(U, W)\} \\
+\beta\{g(U, Z) S(\phi V, W)-g(V, Z) S(\phi U, W)+2 \eta(Z) g(\phi U, V) S(\zeta, W)\} \\
+\alpha\{g(\phi V, W) S(Z, \phi U)-g(\phi U, W) S(Z, \phi V)+\eta(U) \eta(W) S(Z, V) \\
-\eta(V) \eta(W) S(Z, U)\}+\beta\{g(U, W) S(Z, \phi V)-g(V, W) S(Z, \phi U) \\
+2 \eta(W) g(\phi U, V) S(Z, \zeta)\}=0 . \tag{34}
\end{array}
$$

Setting $U=Z=W=\xi$ in (34) yields

$$
\begin{array}{r}
\left(\alpha^{2}-\beta^{2}-\alpha-\zeta \beta\right)[(n-2)\{(V \beta)-(\zeta \beta) \eta(V)\}+((\phi V) \alpha)] \\
-\beta[(n-2)((\phi V) \beta)-(V \alpha)+\eta(V)(\zeta \beta)\}=0 \tag{35}
\end{array}
$$

For $\beta=0$ we have

$$
\left(\alpha^{2}-\alpha\right)((\phi V) \alpha)=0,
$$

or

$$
\begin{equation*}
((\phi V) \alpha)=0 \tag{36}
\end{equation*}
$$

for all $V \in M$, provided $\alpha \neq 0,1$. That is if $\beta=0$ then $\alpha$ is constant.
Conversely, we suppose that $\alpha$ is a non zero constant. From (9) we have

$$
\begin{equation*}
\beta=0 \tag{37}
\end{equation*}
$$

Thus we can state
Theorem 3. In a Ricci semi-symmetric trans Sasakian manifold with respect to $\tilde{\nabla}, \beta=0$ if and only if $\alpha$ is constant, provided $\alpha \neq 0,1$.

We know that a tran Sasakian manifold of type $(\alpha, 0)$ is $\alpha$-Sasakian manifold. Thus we have

Corollary 1. A Ricci semi-symmetric trans Sasakian manifold with respect to $\tilde{\nabla}$ is $\alpha$-Sasakian manifold if and only if $\alpha$ is constant.

## 6 Generalized recurrent trans-Sasakian manifolds

Definition 3. [6]"A Riemannian manifold is said to be a generalized recurrent manifold if it satisfies

$$
\left(\tilde{\nabla}_{X} R\right)(U, V) Z=A(X) R(U, V) Z+B(X)[g(V, Z) U-g(U, Z) V] " .
$$

We consider a generalized recurrent trans Sasakian manifold with respect to $\tilde{\nabla}$ and we denote the manifold by $G\left\{\left(K_{n}\right) T S\right\}$

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{R}\right)(U, V) Z=A(X) \tilde{R}(U, V) Z+B(X)[g(V, Z) U-g(U, Z) V] . \tag{38}
\end{equation*}
$$

Contracting (38) we get

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(V, Z)=A(X) \tilde{S}(V, Z)+B(X)(n-1) g(V, Z) \tag{39}
\end{equation*}
$$

It is well known that

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{S}\right)(V, Z)=\tilde{\nabla}_{X} \tilde{S}(V, Z)-\tilde{S}\left(\tilde{\nabla}_{X} V, Z\right)-\tilde{S}\left(V, \tilde{\nabla}_{X} Z\right) \tag{40}
\end{equation*}
$$

Setting $V=Z=\zeta$ in the above equation and using (18), (19), (20) we get

$$
\begin{align*}
&\left(\tilde{\nabla}_{X} \tilde{S}\right)(\zeta, \zeta)=(n-1)\{2 \alpha(X \alpha)-2 \beta(X \beta)-X \alpha-X(\zeta \beta)\} \\
&+2(n-2) \beta\{(X \beta)-\eta(X)(\zeta \beta)\}-2(n-2)(\alpha-1)(\phi X) \beta \\
&+2 \beta((\phi X) \alpha)+2(\alpha-1)\{(X \alpha)-\eta(X)(\zeta \alpha)\} . \tag{41}
\end{align*}
$$

Again setting $V=Z=\zeta$ in the above equation and using (41) and (19) we get

$$
\begin{array}{r}
A(X)(n-1)\left(\alpha^{2}-\beta^{2}-\alpha-\zeta \beta\right)+B(X)(n-1) \\
=(n-1)\{2 \alpha(X \alpha)-2 \beta(X \beta)-X \alpha-X(\zeta \beta)\} \\
+2(n-2) \beta\{(X \beta)-\eta(X)(\zeta \beta)\}-2(n-2)(\alpha-1)(\phi X) \beta \\
+2 \beta((\phi X) \alpha)+2(\alpha-1)\{(X \alpha)-\eta(X)(\zeta \alpha)\} . \tag{42}
\end{array}
$$

Theorem 4. In a $G\left\{\left(K_{n}\right) T S\right\}$ the relation between the 1-forms $A$ and $B$ is given by equation (42).

Now contracting (39) over $V$ and $Z$ we get

$$
\begin{equation*}
d r(X)=r A(X)+n(n-1) B(X) \tag{43}
\end{equation*}
$$

Using (42) from (43) to eliminate $B$ we have

$$
\begin{array}{r}
A(X)\left[(n-1)\left(\alpha^{2}-\beta^{2}-\alpha-\zeta \beta\right)-\frac{r}{n}\right]+\frac{d r(X)}{n} \\
=(n-1)\{2 \alpha(X \alpha)-2 \beta(X \beta)-X \alpha-X(\zeta \beta)\} \\
+2(n-2) \beta\{(X \beta)-\eta(X)(\zeta \beta)\}-2(n-2)(\alpha-1)(\phi X) \beta \\
+2 \beta((\phi X) \alpha)+2(\alpha-1)\{(X \alpha)-\eta(X)(\zeta \alpha)\} . \tag{44}
\end{array}
$$

Using (43) in (44) we get

$$
\begin{array}{r}
B(X)\left[(n-1)-\frac{n(n-1)^{2}\left(\alpha^{2}-\beta^{2}-\alpha-\zeta \beta\right)}{r}\right] \\
=(n-1)\{2 \alpha(X \alpha)-2 \beta(X \beta)-X \alpha-X(\zeta \beta)\} \\
+2(n-2) \beta\{(X \beta)-\eta(X)(\zeta \beta)\}-2(n-2)(\alpha-1)(\phi X) \beta \\
+2 \beta((\phi X) \alpha)+2(\alpha-1)\{(X \alpha)-\eta(X)(\zeta \alpha)\} \beta \\
-\frac{d r(X)}{r}(n-1)\left(\alpha^{2}-\beta^{2}-\alpha-\zeta \beta\right) . \tag{45}
\end{array}
$$

Theorem 5. In a $G\left\{\left(K_{n}\right) T S\right\}$ the expression for $A$ and $B$ is given by equations (44). and (45) respectively

Again contracting (39) over $X$ and $Z$ we get

$$
\begin{equation*}
\frac{1}{2} d r(V)=A(\tilde{Q} V)+(n-1) B(V) \tag{46}
\end{equation*}
$$

where $\tilde{Q}$ is the Ricci operator with respect $\tilde{\nabla}$.
Replacing $V$ by $X$ in (46)

$$
\begin{equation*}
d r(X)=2 A(\tilde{Q} X)+2(n-1) B(X) \tag{47}
\end{equation*}
$$

Again from (47) from (43) we obtain

$$
\begin{equation*}
A(\tilde{Q} X)=\frac{r}{n} A(X)+\frac{n-2}{2 n} d r(X) . \tag{48}
\end{equation*}
$$

If the scalar curvature is constant i.e $d r(X)=0$, (48) become

$$
\begin{equation*}
A(\tilde{Q} X)=\frac{r}{n} A(X) . \tag{49}
\end{equation*}
$$

Theorem 6. If in a $G\left\{\left(K_{n}\right) T S\right\}$ the scalar curvature is constant, then the 1-forms A satisfies (49).

## 7 Group manifolds

Definition 4. [10, 1]"A Riemannian manifold is a group manifold with respect to the quarter-symmetric connection if

$$
\begin{gather*}
\tilde{R}(U, V) Z=0, \\
\left(\tilde{\nabla}_{X} \tilde{T}\right)(U, V)=0 \tag{50}
\end{gather*}
$$

for all $U, V, Z \in \chi(M)$ ".
Now we suppose that the curvature satisfies

$$
\begin{equation*}
\tilde{R}(U, V) Z=0 \tag{51}
\end{equation*}
$$

for all $U, V, Z \in \chi(M)$. From the above equation it is clear that

$$
\begin{equation*}
\tilde{S}(V, Z)=0 \tag{52}
\end{equation*}
$$

for all $V, Z \in \chi(M)$.
Setting $U=Z=\zeta$ in (51) we get

$$
\begin{equation*}
\left(\alpha^{2}-\beta^{2}-\alpha-\zeta \beta\right)\{\eta(V) \zeta-V\}+\beta \phi V=0 \tag{53}
\end{equation*}
$$

Again setting $V=Z=\zeta$ in (52) we get

$$
\begin{equation*}
(n-1)\left(\alpha^{2}-\beta^{2}-\alpha-\zeta \beta\right)=0 \tag{54}
\end{equation*}
$$

Since $n \geq 3$, the above equation becomes

$$
\begin{equation*}
\left(\alpha^{2}-\beta^{2}-\alpha-\zeta \beta\right)=0 . \tag{55}
\end{equation*}
$$

Using (55) in (53) we get

$$
\begin{equation*}
\beta \phi V=0 \tag{56}
\end{equation*}
$$

for all $V \in \chi(M)$.
From (55) we have

$$
\begin{equation*}
\phi V=0 \tag{57}
\end{equation*}
$$

for all $V \in \chi(M)$, provided $\beta \neq 0$.
Using (12) we obtain the torsion tensor with respect to the quarter symmetric connection as

$$
\begin{equation*}
\tilde{T}(U, V)=\eta(V) \phi U-\eta(U) \phi V, \tag{58}
\end{equation*}
$$

for all $V \in \chi(M)$.
Using (57) in (58) we obtain

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \tilde{T}\right)(U, V)=0 \tag{59}
\end{equation*}
$$

for all $U, V \in \chi(M)$, provided $\beta \neq 0$. Thus we have
Theorem 7. A trans Sasakian manifold is group manifold with respect to the quarter symmetric connection if and only if $\tilde{R}(U, V) Z=0$, provided $\beta \neq 0$.

By virtue of (12) and (57) we have
Corollary 2. If a trans Sasakian manifold is a group manifold with respect to $\tilde{\nabla}$, then $\tilde{\nabla}=\nabla$, provided $\beta \neq 0$.

Moreover we obtain

$$
\begin{equation*}
\tilde{R}(U, V) Z=R(U, V) Z \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{T}(U, V)=T(U, V) \tag{61}
\end{equation*}
$$

for all $U, V, Z \in \chi(M)$. Thus we have
Corollary 3. If a trans Sasakian manifold is a group manifold with respect to $\tilde{\nabla}$, then it is a group manifold with respect to $\nabla$, provided $\beta \neq 0$.

## References

[1] Agashe N. S. and Chafle M. R., A semi-symmetric non-metric connection on a Riemannian manifold, Indian Journal of Pure and Applied Mathematics 23(6) (1992), 399-403.
[2] Barman A., Weakly symmetric and weakly-Ricci symmetric LP-Sasakian Manifolds admitting a quarter-symmetric metric connection, Novi Sad J. Math 45(2) (2015), 143-153.
[3] Blair D. E., Contact Manifolds in Riemannian geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.
[4] Blair D. E. and Oubina J. A., Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat. 34(1) (1990), 199-207.
[5] Cartan E., Sur une classe remarquable d'espaces de Riemannian, Bull. Soc. Math. France 54(55) (1926), 214-264.
[6] De U. C. and Guha N., On generalized recurrent manifolds, J. National Academy of Math., India 9 (1991), 85-92.
[7] De U. C. and Mukut M. T., Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook mathematical journal 43(2) (2003), 247-247.
[8] Dey S. and Bhattacharyya A., Some Properties of Lorentzian $\alpha$-Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 54(2) (2015), 21-40.
[9] Dey S., Pal B. and Bhattacharyya A., Some classes of Lorentzian a-Sasakian manifolds with respect to quarter-symmetric metric connection, Tbilisi Mathematical Journal 10(4) (2017), 1-16.
[10] Eisenhart L. P., Continuous groups of transformations, Princeton University press, 1933.
[11] Friedmann A. and Schouten J.C., Uber die Geometric der halbsymmetrischen Ubertragung, Math. Zeitschr. 21 (1924), 211-223.
[12] Golab S., On semi-symmetric and quarter-symmetric linear connections, Tensor (N. S.) 29 (1975), 249-254.
[13] Oubina J. A., New class of almost contact metric structures, Publ. Math. Debrecen. 32 (1985), 187-193.
[14] Patra C. and Bhattacharyya A., Trans-Sasakian manifold admitting quartersymmetric non-metric connection, Acta Universitatis Apulensis 36 (2013), 39-49.
[15] Prakasha D. G. and Vikas K., On weak symmetries of Kenmotsu Manifolds with respect to quarter-symmetric metric connection, Annales Mathematicae et Informaticae 45 (2015), 79-90.
[16] Prasad R. and Haseeb A., On a Lorentzian Para-Sasakian manifolds with respect to the quarter-symmetric metric connection, Novi Sad J. Math. 46(2) (2016), 103-116.
[17] Singh J. P., On a type of LP-Sasakian manifolds admitting a quarter symmetric non-metric connection, The Mathematics Student 84 (2015), 57-67.
[18] Singh J. P. and Devi M. S., On a type of quarter symmetric non -metric connection in an LP-Sasakian manifold, Science and Technology Jour. 4(1) (2015), 65-68.
[19] Singh J. P., Some properties of LP-Sasakian manifolds admitting a quarter symmetric nonmetric connections, Tomsui Oxford J. Inf. Math. Sc. 29(4) (2014), 505-517.
[20] Prasad Z. I., Structure theorems on Riemannian spaces satisfying $R(X, Y) . R=0 . I$. The local version, J. Differential Geom. 17 (1982), 531-582.
[21] Prasad Z. I., Structure theorems on Riemannian spaces satisfying $R(X, Y) . R=0 . I I$. Global versions, Geometriae Dedicata 19(1) (1985), 65108.


[^0]:    1* Corresponding author, Mathematics and Computer Science, Mizoram University, Aizawl, Mizoram, India, e-mail: sweezychawngthu@gmail.com
    ${ }^{2}$ Faculty of Mathematics and Computer Science, Mizoram University, Aizawl, Mizoram, India, e-mail: jpsmaths@gmail.com

