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STABILITY OF ESSENTIAL SPECTRA OF CLOSED
OPERATORS UNDER T -COMPACT EQUIVALENCE AND

APPLICATIONS
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Abstract

The main subject of this paper is to introduce and study the concept of
T -compact equivalence of closed linear operators in Hilbert spaces. Many
results are proved via this equivalence, especially the invariance of essential
spectra of T -compact equivalent closed operators. The results obtained are
used to describe some Fredholm essential spectra of transport operators.
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1 Introduction

The essential spectrums and their stability properties under additive pertur-
bations in an appropriate class of operators, have been a research interest of many
authors (see e.g. [8], [10]). In 1909, Weyl showed the stability of the essential
spectrum of a self-adjoint operator under a compact perturbation in Hilbert space
[12]. Schechter extends this result to bounded Fredholm operators in Banach
space. Von Neumann Theorem asserts that two bounded self-adjoint operators on
a Hilbert space are unitarily equivalent modulocompacts. Note that the question
of unitary equivalence modulo the compacts is precisely that of the unitary equiv-
alence in the algebra of Calkin.
In 1984, Brigitte Mercier introduced the notion of compact equivalence between
two closed, densely defined linear operators in a Hilbert space and consequently
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that of essentially normal unbounded operators [7]. She generalized Weyl’s theo-
rem and also the results of Brown, Douglas and Fillmore.
In this work, we generalize some results of Mercier [7] and Labrousse-Mercier [6],
where we introduce the notion of weak and strong T -compact equivalence of closed
densely defined linear operators in a Hilbert space via a bounded invertible positive
operator T and apply this generalization to perturbation of essential spectra of not
self-adjoint operators. In analogy with Weyl’s theorem, one would like that the
essential spectrums to be invariant under arbitrary compact perturbations. The
compact equivalence is not suitable in this direction and the situation is consider-
ably more complicated, because it is possible for the unperturbed operator to have
only a discrete spectrum while the point spectrum of the perturbed operator is the
whole complex plane, and some operators have point eigenvalues which are not
isolated and are carried into the resolvent under a compact perturbation. However,
there are applications in which one would like to know that certain types of singu-
larities do not appear after compact perturbations, even though such singularities
lie outside the essential spectrum. This motivates several other possible definitions
of the essential spectrum (for an arbitrary operator) as the largest subset of the
spectrum remaining invariant under arbitrary compact perturbations.

The paper is organized as follows. We give in the second section some pre-
liminary results required in the sequel about perturbation theory for Fredholm
operators and the associated essential spectrums. In the third section, we il-
lustrate the concept of T -compact equivalence in Hilbert spaces between closed
densely defined linear perators where we introduce in this equivalence a bounded
invertible operator T . The T -compact equivalence generalizes the weak and strong
compact equivalence concepts introduced by Labrousse and Mercier in [6]. In the
last section we apply the main results to study the stability of certain essential
spectra of transport operators .

2 Preliminaries

In this section we present briefly some notations, definitions and theorems
which are used throughout this work. Let H be a complex Hilbert space. Let
C(H) and B(H) denote the set of closed linear operators with dense domain in
H and bounded linear operators with domain H, respectively. K(H) is the set
of compact elements of B(H). The domain, null space, range and the graph of
A ∈ C(H) will be denoted by D(A), N(A), R(A) and G(A), respectively. The
identity operator on H is denoted by I.

Definition 2.1. A ∈ C(H) is said to be a Fredholm operator (we denote A ∈
F(H)) if:

1) R(A) is closed,
2) 0 < α(A) = dimN(A) <∞ and β(A) = codimR(A) <∞.
Then, the index of A (ind(A)) is defined by:

ind(A) = α(A)− β(A).
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It is well known that if A ∈ B(H)∩ F(H) and K ∈ K(H), then B = A+K ∈
F(H) and ind(B) = ind(A).

Definition 2.2. Let A,B ∈ C(H) and PG(A) (resp. PG(B)) the orthogonal pro-
jection of H ⊕H onto G(A) (resp. G(B)). Then we define:

δ(A,B) = ‖(I − PG(B))PG(A)‖,

and
g(A,B) = ‖PG(A) − PG(B)‖.

Proposition 2.3. ([3, 5]) Let A,B ∈ C(H).

δ(A,B) = δ(A∗, B∗)

g(A,B) = max{δ(A,B), δ(B,A)} = g(A∗, B∗).

Furthermore,

g(A,B) < 1 =⇒
{
G(A) ∩G(B)⊥ = G(A)⊥ ∩G(B) = {(0, 0)}
G(A) +G(B)⊥ = G(A)⊥ +G(B) = H ⊕H .

Definition 2.4. The set of upper semi-Fredholm operators in H is defined by

F+(H) = {A ∈ C(H) : α(A) <∞ and R(A) is closed in H},

the set of lower semi-Fredholm operators in H is defined by

F−(H) = {A ∈ C(H) : β(A) <∞ and R(A) is closed in H},

the set of semi-Fredholm operators in H is defined by

F±(H) = F+(H) ∪ F−(H),

the set of Fredholm operators in H is defined by

F(H) = F+(H) ∩ F−(H),

The classes of semi-Fredholm operators lead to the definition of the upper
semi-Fredholm spectrum of A ∈ C(H) by:

σuf (A) := {λ ∈ C : λI −A /∈ F+(H)},

and the lower semi-Fredholm spectrum of A by:

σlf (A) := {λ ∈ C : λI −A 6∈ F−(H)}.

The semi-Fredholm spectrum is defined by

σsf (A) = {λ ∈ C : λI −A 6∈ F±(H)},
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while the Fredholm spectrum is defined by

σef (A) := {λ ∈ C : λI −A 6∈ F(H)}.

Clearly, σsf (A) = σuf (A) ∩ σlf (A) and σef (A) = σuf (A) ∪ σlf (A).
We shall distinguish the following classes of operators:

the set of upper semi-Weyl operators is defined by

W+(H) := {A ∈ F+(H) : ind(A) ≤ 0},

the set of lower semi-Weyl operators is defined by

W−(H) := {A ∈ F−(H) : ind(A) ≥ 0},

and the set of Weyl operators is defined by

W(H) := W+(H) ∩W−(H) = {A ∈ F(H) : ind(A) = 0}.

The various classes of operators defined above are associated with the following
essential spectra:
The upper semi-Weyl spectrum is defined by:

σuw(A) := {λ ∈ C : λI −A 6∈W+(H)}.

The lower semi-Weyl spectrum is defined by:

σlw(A) := {λ ∈ C : λI −A 6∈W−(H)}.

The Weyl spectrum is defined by:

σew(A) := {λ ∈ C : λI −A 6∈W(H)} = σuw(A) ∪ σlw(A).

In this paper, we must recall some properties of the operator RA = (I+A∗A)−1

for A ∈ C(H), introduced by [2, 5] and widely used in the paper [6] and recently
with a general version in [4].

Lemma 2.5. Let A ∈ C(H). Then we have the following statements:

i) A∗A is self-adjoint and D(A∗A) is a core for A (the closure of A|D(A∗A) is
A).

ii) I+A∗A is bijective from D(A∗A) onto H, so that (I+A∗A)−1 ∈ B(H) with
0 ≤ (I +A∗A)−1 ≤ I.

iii) The closure of (I +AA∗)−1A is A(I +A∗A)−1, A(I +A∗A)−1 ∈ B(H) and∥∥A(I +A∗A)−1
∥∥ ≤ 1.

We denote B+(H) the set of all bounded, positive definite and invertible op-
erators on H.
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Lemma 2.6. Let A ∈ C(H) and T ∈ B+(H). Then RTA = (T +A∗A)−1 and ARTA
are everywhere defined transformations on H and bounded,

∥∥RTA∥∥ ≤ ‖T‖−1 and∥∥ARTA∥∥ ≤ ‖T‖−1/2 .
Proof. Note that:

T +A∗A = T 1/2
[
I + T−1/2A∗AT−1/2

]
T 1/2

= T 1/2
[
I + (AT−1/2)∗(AT−1/2)

]
T 1/2

Since AT−1/2 ∈ C(H), the Lemma 2.5 applied with AT−1/2 instead of A, shows
that

[
I + (AT−1/2)∗(AT−1/2)

]
is bijective from T 1/2(D(A∗A)) onto H,[

I + (AT−1/2)∗(AT−1/2)
]−1

∈ B(H),

AT−1/2
[
I + (AT−1/2)∗(AT−1/2)

]−1
∈ B(H).

with
0 ≤

[
I + (AT−1/2)∗(AT−1/2)

]−1 ≤ I;
∥∥AT−1/2(I + (AT−1/2)∗(AT−1/2))−1

∥∥ ≤ 1.
Hence,

RTA = (T +A∗A)−1 = T−1/2
[
I + (AT−1/2)∗(AT−1/2)

]−1
T−1/2 ∈ B(H),

AT−1/2
[
I + (AT−1/2)∗(AT−1/2)

]−1
= ARTAT

1/2 ∈ B(H),

∥∥RTA∥∥ ≤ ∥∥T−1∥∥∥∥∥∥[I + (AT−1/2)∗(AT−1/2)
]−1∥∥∥∥ ≤ ∥∥T−1∥∥ ,

∥∥ARTA∥∥ =
∥∥∥ARTAT 1/2T−1/2

∥∥∥ ≤ ∥∥∥ARTAT 1/2
∥∥∥∥∥∥T−1/2∥∥∥ ≤ 1√

‖T‖
.

In the following, T is a fixed element in B+(H) and AT = AT−1/2 where
A ∈ C(H). So, D(AT ) = T 1/2 (D(A)) and AT ∈ C(H).

It is important to note that when working with the AT block, the commutation
condition between operators A and T is steadily avoided. Indeed, case A commut-
ing with T constitutes an elegant generalization of the results of Labrousse and
Mercier [6] and remains also a very particular case of our work.

Remark 2.7. By virtue of Lemma 2.6, we deduce that SAT
=
√
RAT

is a positive
and symmetric square root of RAT

.

Proposition 2.8. ([2, 9]) Let A ∈ C(H), then
1)

A∗TATRAT
= I −RAT

. (2.1)
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2) If x ∈ D(AT ),
RA∗

T
ATx = ATRAT

x, (2.2)

thus,
(ATRAT

)∗ = A∗TRA∗
T
, (2.3)

and for all x ∈ H

‖(1
2
I −RAT

)x‖2 + ‖ATRAT
x‖2 = 1

4
‖x‖2, (2.4)

so
‖RAT

‖ ≤ 1 and ‖ATRAT
‖ ≤ 1

2
.

3) R(SAT
) = D(AT ) and if x ∈ D(AT ) we have SA∗

T
ATx = ATSAT

x.

(ATSAT
)∗ = A∗TSA∗

T
, (2.5)

and for all x ∈ H,
‖SAT

x‖2 + ‖ATSAT
x‖2 = ‖x‖2

so
‖SAT

‖ ≤ 1, ‖ATSAT
‖ ≤ 1.

Proposition 2.9. Let A ∈ C(H), then the orthogonal projection of H ⊕H onto
the graph of AT is given by:

PG(AT ) =

(
T 1/2RTAT

1/2 A∗TT
1/2RT

−1

(A∗
TT

−1/2)
T 1/2

ARTAT
1/2 I − T 1/2RT

−1

(A∗
TT

−1/2)
T 1/2

)
.

Therefore, if A,B ∈ C(H), then

(I − PG(BT ))PG(AT ) =MBT

(
0 0

BTSBT
SAT
− SB∗

T
ATSAT

0

)
MAT

(2.6)

where MCT
=

(
SCT

C∗TSCT

CTSCT
−SC∗

T

)
, for C = A or B.

Proof. We know from [2, 11] that:

PG(AT ) =

(
RAT

A∗TRA∗
T

ATRAT
I −RA∗

T

)
.

So, we deduce the result since:

RA∗
T
= T 1/2RT

−1

(A∗
TT

−1/2)
T 1/2,

and
A∗TT

1/2RT
−1

(A∗
TT

−1/2)
T 1/2 = RAT

A∗T .
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3 T -compact equivalence

In this section, we further extend the notion of compact equivalence introduced
in [7] to that of T -compact equivalence by replacing in the definition of RA the
identity operator by a bounded positive definite and invertible operator on H.

3.1 Weak T -compact equivalence

Definition 3.1. Let A,B ∈ C(H). We say that A and B are weakly T -compact
equivalent (and we write A ∼

T
B) if

(
PG(AT ) − PG(BT )

)
∈ K(H ⊕H).

Remark 3.2. 1) Lemmas III.1.2 and III.1.3 of [7] show that T -compact equiva-
lence of operators coincides on B(H) with the usual relation A ∼ B if A − B ∈
K(H).

2) ∼
T

is an equivalence relation on C(H).

3) We deduce from Proposition 2.9 that if A ∼
T
B then RTA − RTB ∈ K(H).

Indeed, RTA − RTB = T−1/2(RAT
− RBT

)T−1/2, so RTA − RTB ∈ K(H) as soon as
RAT

−RBT
∈ K(H).

By virtue of Lemma 2.6, Proposition 2.8, formula (2.6) and Propositions 1.5
and 2.7 of [6], it is easy to show the following results:

Theorem 3.3. Let A,B ∈ C(H) and C ∈ B(H). Then:
1)

A ∼
T
B ⇔ A∗ ∼

T
B∗.

2)
A ∼

T
B ⇒ λA ∼

T
λB, for all λ ∈ C. (3.1)

3)

A ∼
T
B ⇔

{
ATSAT

SBT
− SA∗

T
BTSBT

∈ K(H)

BTSBT
SAT
− SB∗

T
ATSAT

∈ K(H)
(3.2)

4)
A ∼

T
B ⇒ A+ CT 1/2 ∼

T
B + CT 1/2.

5) If A ∼
T
B,

I +A∗TBT , I +BTA
∗
T , I +B∗TAT , I +ATB

∗
T ∈ F(H). (3.3)

(I +A∗TBT )
∗ = I +B∗TAT , (3.4)

(I +BTA
∗
T )
∗ = I +ATB

∗
T . (3.5)

ind(I +A∗TBT ) = ind(I +BTA
∗
T ) = −ind(I +B∗TAT ) (3.6)

= −ind(I +ATB
∗
T ).
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Remark 3.4. If A,B ∈ C(H) and g(AT , BT ) = ‖PG(AT )−PG(BT )‖ < 1, then (3.3),
(3.4) and (3.6) are satisfied and ind(I +A∗TBT ) = 0.

Indeed, by using Proposition 2 .3 , g(AT , BT ) = ‖PG(AT )−PG(BT )‖ < 1 implies
that:

G(AT )⊕G(BT )⊥ = G(AT )
⊥ ⊕G(BT ) = H ⊕H.

Hence, dimN(I +A∗TBT ) = dimN(I +BTAT ∗) = dimN(I +ATB
∗
T ) =

= dimN(I +B∗TAT ) = 0.

In general, the condition ind(I + ATB
∗
T ) = 0 is not satisfied even if A ∼

T
B,

for A,B ∈ C(H). Therefore, in the following definition we introduce the strong
T -compact equivalence principle.

3.2 Strong T -compact equivalence

Definition 3.5. Let A,B ∈ C(H). We say A and B are strongly T -compact
equivalent (and we write A ≈

T
B) if A ∼

T
B and ind(I +ATB

∗
T ) = 0.

Theorem 3.6. Let A,B ∈ F(H), then:

A ≈
T
B ⇒ ind(AT ) = ind(BT ).

Proof. From (3.1) we have λA ∼
T
λB, we deduce from (3.3) that I + |λ2|ATB∗T ∈

F(H). It follows that I +ATB
∗
T and ATB∗T are homotopic, in the sense that there

exists a continuous application F from [0, 1] to F(H) equipped with the gap metric
g, such that F (0) = ATB

∗
T and F (1) = I +ATB

∗
T .

By virtue of [Theorem 4.1, [2]], ind(ATB∗T ) = ind(I+ATB
∗
T ) = 0. Thus, ind(AT ) =

ind(BT ).

It is clear that ≈
T
is an equivalence relation. On the other hand due to Theorem

3.3, we have the following result.

Corollary 3.7. Let A,B ∈ C(H) and λ ∈ C, then:

A ≈
T
B ⇒

 A∗ ≈
T
B∗

λA ≈
T
λB

(3.7)

Now, we show the stability of some versions of the essential spectrum under
weak and strong T -compact additive perturbations. Precisely, we have the follow-
ing main result:

Theorem 3.8. Let A,B ∈ C(H). Then

A ∼
T
B ⇒ σi(AT ) = σi(BT ), i = lf, uf, sf, ef.

and
A ≈

T
B ⇒ σi(AT ) = σi(BT ), i = ew, uw, lw. (3.8)
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Proof. Taking C = −λI, for λ ∈ C, in the implication (4) of Theorem 3.3, we
obtain:

A− λT 1/2 ∼
T
B − λT 1/2 ⇔ PG(AT−λI) − PG(BT−λI) ∈ K(H).

Then, due to [Proposition 2.6, [6]], we have σef (AT ) = σef (BT ). Consequently,
we have σi(AT ) = σi(BT ) for i = lf, uf, sf.
On the other hand, if A ≈

T
B then A ∼

T
B and ind(I + ATB

∗
T ) = 0. According to

[Proposition 3.6, [6]] and Theorem 3.6, we have:

A ∼
T
B =⇒


ind(I + (BT − λI)(A∗T − λI)) = ind(I +BTA

∗
T ), for all λ ∈ C,

ind(BT − λI) = ind(AT − λI) + ind(I +BTA
∗
T ), for all λ /∈ σef (A)

= σef (B)

Hence, ind(AT − λI) = ind(BT − λI) for all λ /∈ σef (A) = σef (B). Then:

σi(AT ) = σi(BT ), i = ew, uw, lw.

4 Application

In this section, we will apply the stability results obtained to essential spectra
of transport operators on L2-spaces.
Let

X2 = L2((−a, a)× (−1, 1), dx dξ), a > 0.

We consider the transport operator:

AH = TH +K1 +K2

where

THψ(x, ξ) = −ξ
∂ψ

∂x
(x, ξ)− σ(ξ)ψ(x, ξ) +

∫ 1

−1
κ(x, ξ, ξ′)ψ(x, ξ′) dξ′

with the boundary conditions
ψi = H(ψo)

where H is bounded linear operator defined on suitable boundary spaces and
σ(.) ∈ L∞(−1, 1). Here x ∈ (−a, a) and ξ ∈ (−1, 1) and ψ(x, ξ) represents the
angular density of particles (for instance gas molecules, photons, or neutrons) in
a homogeneous slab of thickness 2a. The functions σ(.) and κ(., ., .) are called,
respectively, the collision frequency and the scattering kernel. K1 is the collision
operator given by:

K1 : X2 −→ X2

ψ −→
∫ 1

−1
κ(x, ξ, ξ′)ψ(x, ξ′) dξ′

.
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where κ(., ., .) is a measurable function form [−a, a]×[−1, 1]×[−1, 1] to R. Observe
that the operator K1 acts only on the variable ξ, so x may be viewed merely as a
parameter in [−a, a]. Hence we may consider

K1 : [−a, a] −→ K(x) ∈ Z = B(L2([−1, 1], dξ)).

and K2 ∈ K(X2).

Definition 4.1. A collision operator K is said to be regular if it satisfies the
following assumptions:

i) {x ∈ [−a, a] : K(x) ∈ O} is measurable if O ⊂ Z is open.

ii) There exists a compact subset E ⊂ Z such that K(x) ∈ E a .e. on [−a, a].

iii) K(x) ∈ K(L2([−1, 1], dξ)) a .e. on [−a, a] .

4.1 Compact perturbations of transport operator

The following theorem traits the Fredholm perturbations for transport operator
AH .

Theorem 4.2. Suppose that the collision operator K1 is regular, then:

σi(AH) = σi(TH), i = lf, uf, sf, ef, ew, uw, lw.

Proof. Since K1 is a regular operator and K2 ∈ K(X2) then K1+K2 ∼ K1. Hence
TH +K1 +K2 ∼

T
TH +K1, then due to Theorem 3.8 and [1], we have:

σi(AH) = σi(TH), i = lf, uf, sf, ef.

On the other hand,

I = (I + (TH +K1 +K2)(TH +K1 +K2)
∗)R(TH+K1+K2)∗

= R(TH+K1+K2)∗

+(TH +K1 +K2)S(TH+K1+K2)(TH +K1 +K2)
∗S(TH+K1+K2)∗

= R(TH+K1+K2)∗ +K2S(TH+K1+K2)(TH +K1 +K2)
∗S(TH+K1+K2)∗

+ (TH +K1)S(TH+K1+K2)(TH +K1 +K2)
∗S(TH+K1+K2)∗

= K2S(TH+K1+K2)(TH +K1 +K2)
∗S(TH+K1+K2)∗

+ (I + (TH +K1)(TH +K1 +K2)
∗)R(TH+K1+K2)∗ .

Since, K2S(TH+K1+K2)(TH +K1 +K2)
∗S(TH+K1+K2)∗ ∈ K(H), then:

ind
(
(I + (TH +K1)(TH +K1 +K2)

∗)R(TH+K1+K2)∗
)
= 0.

Furthermore, R−1(TH+K1+K2)∗
∈ F(H), then:

ind(I + (TH +K1)(TH +K1 +K2)
∗) = 0.

So, by virtue of (3.6) and (3.8), we have:

σi(AH) = σi(TH), i = ew, uw, lw.
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4.2 Quasi-nilpotent perturbations of transport operator

Now, we consider the transport operator

AH = TH +K

where K is the bounded operator given by
K : Xp −→ Xp

ψ −→
∫ ξ

−1
κ(x, ξ, ξ′)ψ(x, ξ′) dξ′

and κ satisfies the following assumptions:

(H)

{
κ(., ., .) is a measurable function form [−a, a]× [−1, 1]× [−1, 1] to R and
|κ(x, ξ, ξ′)| ≤ c <∞, a.e.

Lemma 4.3. ([1]) If κ satisfies (H) then, for any integer n ≥ 1

‖Kn‖ ≤ 2n+3/2

n!
cn.

Theorem 4.4. Suppose that collision operator K1 satisfies (H) on X2 and K1TH−
THK1 ∈ PF(X2), then:

σi(AH) = σi(TH), i = lf, uf, sf, ef, ew, uw, lw.

where PF(X2) = {J ∈ L(X2), A+ J ∈ F(X2) for A ∈ F(X2)}.

Proof. Due to [Theorem 25, [1]] and identically to proof of Theorem 4.2, we have
the result.
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