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SOME GRUSS TYPE INEQUALITIES INVOLVING
GENERALIZED FRACTIONAL INTEGRAL OPERATOR
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Abstract

The analogous version of Griss inequalities has been established using
the generalized hypergeometric function fractional integral operators. The
results are generalizations of Griiss type inequalities in fractional integral
operators. Our main deduction will break into results noted for appropriate
changes of fractional integral parameter and degree of fractional operator.

2000 Mathematics Subject Classification: 26A33, 33C05, 33C15, 33C20.
Key words: Griiss inequality, Gauss hypergeometric function, Saigo-Maeda
fractional integral operators.

1 Introduction

Following [8], the well known Griiss inequality, is defined as follows (see also, [7],
[13], p. 296):

"Let f and g be two continuous functions defined on [a,b], such that m < f(x) <
M andp < g(z) < P for each t € [a,b], where m,p, M, P are given real constants,
then

b b b
= | t@a@ae— 2 [ @i [y

' 1

a
1
4
where 1/ is a finest likely constant.”

< (M —m)(P = p), (1)
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Using fractional integral operators, several developments of the classical inequal-
ities, including (1), are studied by many authors, see [1, 2, 3, 4, 5, 9, 10, 14, 18]
and references therein. In this direction, Dahmani et al. [6] established a gen-
eralization of Griiss inequality by means of Riemann Liouville fractional integral
operators. Moreover, Kalla and Rao [10] also investigated certain new versions
of Griiss type inequality associated with the Saigo’s fractional integral operators.
We try to generalize inequality (1), by making use of fractional integral operator
of Saigo-Maeda type. So, our prime intention in this paper is to provide analogous
versions of Griiss inequality by means of generalized hypergeometric function frac-
tional order integral operators. The results are generalizations of Griiss inequality
in fractional integral operators.

2 Basic definitions

Now, we use the following definitions and related details.

Definition 1. Considering t > 0, a real valued function f (t) is said to be in the
space Cy (1 € R), if there exists a real number p > p such that f(x) = P fi(x),
where f1 € C[0,00) and C[0,00) is the set of continuous functions in the interval
[0,00).

Definition 2. Two functions f and g are said to be synchronous on the interval

[0,00), if
H(r,p) = (f(r) = f(p)) (9(7) —9(p)) 2 0, (7,p € (0,00)). (2)
Consequently, we can write

f(M)g(m) + f(p)glp) = f(1)g(p) + f(p)g(T). (3)

Definition 3 ([17]). Let a, &/, 8,5 ,v € R and v > 0, then the Saigo and Maeda
fractional integral operator, is defined in the following form:

aal 8,8 x~ [* o ) . " "
(It f) (x):T(V)/o (z—t) "1 By (a’a’ﬁ’ﬁ’%lx’lt> F(t)dt.
(4)

The Appell function F3(.) appearing as a kernel for the above operator, is defined
as
W(B)m(B)n 2y

o) y"
(Vmtn m! n!

F3(O[,Ck,,6,5/,"y,$,y) = Z Z (a)m(

m=0n=0

()

[maz. (||, y|) <1],

where the pochhammer symbol («),, for (m € N), is denoted as under:

(@)m =ala+1)(a+2)..(a+m—1).
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Definition 4. Suppose a,d/, 3,3 ,v € R, such that
v>maz. {0,(a+a' +B-1),(a+a'=1), (/+5-1)}

and

B > max. {—1, (o/ — 1)}

then we define a fractional integral operator, associated with the Appell function,
as follows:

ool B T4+ y—a—-ad)TA+y—ad =BT1+5") 4ra—
(S 8) @) = = R e A=)

x<§“*@“7)(@. (6)

where If"o‘/’ﬁ’ﬁ/’7 is the Saigo-Maeda fractional integral of order ~y.

3 Main results

The following Lemmas are required to establish our main results.

Lemma 1 ([16], p.394, eq.(4.18)). Suppose o, o/, 3,8,y € R(y > 0) and p >
maz. {0, (a+ o' + 5 —1),(a’ — ')}, then the subsequent image formula holds:

(I;;v,o/ﬁﬁ'ﬁtp—l) (z) = pP—o—o/+y-1
L L@ty —a—a =Bl (p+p o)
Tlp+y—a—a)T(p+y—o = B)T(p+ )

Lemma 2. For a,d/, 3,8 ,v,p € R; p > max{0,—(v+a+o' + ), —(¢/ = ')} —
L,y >mazx{0,a+ o/,a' + Ba+ o' + B}, 5 < 1,8 — o' > —1, we have

(7)

Fl+y—a—-a)Fl+y—a =B +p)
Fp+1+8)Tp+1+y—a—a)

(S?’al,ﬂ,ﬁ/”ytp) (.’E) —

Plp+Dl(p+y—a—a =BT (p+ 1+ —a)
Fp+1+y—o =1 +y—a—ao =B (145 —)

xP. (8)

Proof. Using relation (6), the left hand side of (8) can be written as

Fl+y—a—-a)I1+y—o -1 +p)
Fl+y—a—-o =T 1+ — )

<S£¥7a/767ﬁ,)’7tp) (w) —

an—&-o/—'y (Ita,a’ﬂ,ﬁ',”/tp) (m) ) (9)

On using (7), the above relation easily arrives at (8). O
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Particularly, for p = 0, we have

(Sta’a/76’ﬁl77t0> (x) — 1'

or
(St“’a/’ﬁ’ﬁ/’”[() (z) = K, (10)

where K is any constant.

The important result contained in the above lemmas will be required to establish
our main results:

Theorem 1. If o, o/, 3,8,y € R such that v > maz.{a, &/, 3,8} > 0, then the
following inequality holds

t
F3 <a>a/>ﬁvﬁ/;7;l_x;1_f) >07 (11)
provided —1 < (1 — %) <0 and0< (1 — %) < % Also, if f(x) > 0, then

(I;“‘ P f) (z) > 0.

Proof. We consider the left hand side of the above inequality, say L and use
definition (5) to write

e e (@m(@)a(B)m(B)n =5 (1= 5)"
L= mZ::OnZ:% (V) man m! n! )
o n-y n-o
= (@B (=5 S (@)n(B)n (1—%)"
L= mZ:o (Y)m ml = (y+m),  nl
X (@B (1= )™ (@)(8) (1-9)
B mzo (V)m m! (1 * (v+m) 1 M
(@)1 (Bt (1=29)""  (@)a(8)n (1—2)"
T M oD Ghm), ol *)

In the above expression, all terms except first term are positive due to the condi-
tion imposed with (11), then we can write

(@)(®) (1-3%)
(” G R R ) MR ]

—I-(O/)n(ﬁl)n (1 — %)n +...]>0.
(V) n!
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Hence,
(. @)E) -9 (@)1 (B (1= 5"
L‘(” G I L C PR ]
(@)n(B)n (1—2)" (@)(8) (1-1) (@/)(8) (1 %)
DO, ), @O0 (, 6000059
(@)ao1(B)aor (19" (@)a(8) (1= 9)"
R T e s Ry YRR LR +...>+...

t\ym—1 ’ / T
(@B (1-3) (H((a)(ﬁ) (1-%)

(Vm—1 (m —1)! y+m-—1) 1

/ _7n1 ’ ’ _z\n
L (@)ua (B (1 D' @) (1-3) +>

(V—i-m— n-1 (n—1)! (y+m-—1), nl

)
@@ 1= (| @)F) (1=3)
Wl (” CESDI

(@)1 (B)ar (1= )" (@B (1= 5)"
i (y+mp-1  (n—1)! + (v+m), nl +> + ...

=T+ To+ ...+ Tm-1+Tp +...(Say)

Comparing between first and second term, we get

(@)(8) (1-2) (@)n1(B)nr (1= 2)""
(” G Y O RS R}

L@@, =9\ @@ (-1) (|, @) (1-3)

(@) (1=5)" | (@) (1= 5)"
i Y+ 1)p—1 (n—1)! T (v + 1 ol +...].

Here, we observe that 77 > 15 > 0, as (1 — %) and «,d’, 3,3,y are positive
but (1 — é) is negative, in the given range mentioned in the theorem. Similarly
Ty—1 > 1T, > 0. Thus, if m is an odd number then 7;, 1 > T},. Similarly if m is
an even number, then T},_2 > T,,—1 and T, > T,11.

Hence,

t
F3 (01,0/7»376/§’Y§1—x,1—j> > 0.

Thereupon, we can easily say
t T

<I£x o 8.8, ’Yf> (IE) _ z /0 (x_t)'y_lt_a/Fg (a,a,7ﬁ35/7’}/5 1- ;’ L- > f(t)dt’

—Q

I'(v) t
is positive, if f(x) > 0. O
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Theorem 2. Let h be an integrable function on [0,00) and satisfying the condition
m < h(z) <M (m,M € R), then for all x € [0,00) and a,a/,B,5',v € R we

have
(Sgaﬁﬁﬁﬁvh2>($)_>((S?@hﬂﬁﬁvh>(x)>2

= (M= (S 2P m) (@) (S22 7R (@) = m) (M = R) (b= m) (@),
(12)
provided (a, o/, B, ',7v) > 0.

Proof. Let h be an integrable function on [0, 00) such that m, M € R with m <
h(x) < M, then for any u,v € [0,00) we can write the following

(M = h(u)) (h(v) —m) + (M — h(v)) (h(u) —m)
— (M = h(u)) (h(u) —m) — (M — h(v)) (h(v) —m)
= h2(u) + h%(v) — 2h(u)h(v). (13)
Now, on multiplying the above relation (13) by the factor

Fl+y—a—-a)T'(1+vy—a - B)I1+p)
FMl+vy—a—-o —pBI(1+ 4 —d)

(.ﬁU - u)v_lxa,_,yl:é (Oé, O/v 61 5,% 1- Ea 1- §>
xT u

(u€ (0,z),z > 0),

and integrating with respect to u from 0 to z, and by applying Definition 4, we
obtain

(8 = (5527 ) (@) (h(w) = m) + (M = (o) (S5 P77R) (2) ~m)
— (S P(M = h) (h=m) ) (@) = (M = h(v)) (h(v) = m)
= (SP P2 (@) + 12(0) = 2 (ST (@) h(w), (14)

Again, on multiplying equation (14) by

FM+y—a—-d) T(1+y—ao =BT+ 73)
FMl+y—a—-o =1+ 4 —d)

(l‘ - U)’y_lxa,_’yF?) (CY, O/v 575,'77 1- Ba 1- E)
T v

(v e (0,z);z>0),

and integrating with respect to v from 0 to x, and then employing Definition 4,

we obtain
(o= (978) ) (72770) )
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+ (M= (S22 n) @) ((s722h) (@) = m)

— (S B ET (M = B (= m) ) (@) = (S0 (M= B) (B = m)) ()

! / / / ! / 2
— <Sta7a 8,8 7’Yh2) (:L') + (Sta»a 8,8 7’Yh2) ($) -9 ((Stava 8,8 fyh) (:.U)) , (15)
which on further simplification arrive at the desired result (12). O

Theorem 3. Let f and g be two functions defined and integrable on [0,00] with
fr9€C, and M, m, P,p are real constant, such that

m < f(z) <M and p<g(r) <P,

then

(52027 g) (@) = (5757 F) (@) (527 7) (a)

1
<P —m) (Ve > [0,5) (16)

where a, o/, 3,8,y € R and a, o', B, 5',v > 0.
Proof. We define a function as

H(r,p) = (f(r) = f(p) (9(7) —g(p)); T.p€ (0,2), z>0. (17)
Now, on multiplying the above equation (17) by

(p(}y))Q(Tﬂ)_a’(:v — T)V—l(g; — p)7—1F3 (04,0/,6,5’,% 1_ %v 1_ f)

T

XF3 <a7a/7ﬁ7/8/7'771_ pal_x>7
" p

and integrating with respect to 7 and p respectively from 0 to z, and further
multiplying by

[m +y—a—a)I(1+y—d - Bl +/3'>$af_wr
rl+y—a—ao -1 +p —) ’

and then using result (6), (4) and (10), we obtain

[F(l +y—a—ao)T(1+y—o - B+ B’)xaw] o
Fl+y-a—-ao -BT1+p —) (T(7))?

<[ [ @i e (e s - T )

XF3 <OJ,CK/,6,B,,’)/, 1- %7 1- i) H(Ta p)dep

—2(Sp P pg) () = 2 (SIS (@) (ST g) (). (1)
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Applying Cauchy Schwarz inequality, we can write

(507 1g) (@) — (52577 f) (@) (57772 (@)

< ((Sf“""“ﬁ’ﬂ’”ﬂ) (2) = (S5 277p) <x>)2>
x ((Sf’a”““”f) (2) = ((s57779) <x>)2> . (19)

Since (M — f(z)) (f(z) —m) > 0 and (P — f(x)) (f(z) —p) > 0, therefore we
have

(S PP (M = ) (f = m)) (@) 2 0, (S50 (P £)(f ~p)) () 2 0
(20)
Thus, using Theorem 2, we get

(Saa BB 'yf> (Staa 8.8, Vf) )

(
(- () @) (1) )
(Saaﬁﬁ72> ((S?aﬂﬁw) )

= (P (507 7g) (@) (5777 79) (2) = p) (22

By using relations (21) and (22), inequality (19) reduces to the subsequent form

(552771 g) (@) = (7227 p) @) (8757 7g) ()

< (- (52 ) (5775 8) )
x (P = (8727 7g) (@) ((5577g) (2) = p) (25)

Further, on using the elementary inequality (a+b)% > 4ab, a,b € R, we can easily
get

2

a (b= (577 m) (@) (S5 P7 7R (@) = m) < (M = m)?,

and similarly,

(P = (527 m) (@) (S22 7h) (@)~ p) < (P = p)2

Applying these inequalities in (23), we obtain the desired result. O
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Theorem 4. Let f and g be two synchronous functions on [0,00) and let v, w :
[0,00) — [0,00). Then for all t >0,

(S50 pg) (@) (S w) ()
+ (55 ) (@) (7P ()
> (S0 g (@) (S0 ) ()
+ (55w ) (@) (PP g (), (24)

Proof. Using Definition 2, we have

f(T)g(r) + f(p)g(p) = f(T)g(p) + f(p)g(T).

On multiplying both sides of above relation by

T (7) (T)_O/(x - T)V_1F3 (O‘?alvﬁalglaﬁya 1- %7 1- %) U(T)7

and integrating with respect to 7 from 0 to x, and then further multiply by

IA+ty—a-a)IA+y—a = BIA+F) oy
Fl+y-a—o =TI+ —a) ’

we get

(S22 1g) (@) + £ () ()

> glp) (ST ) @) + 1(p) (ST Mg (@) (25)

Again, multiply both sides of the above inequality by term below

pl—i>w@%

)
T

m(p)_al (IE - p)’y_lF3 (Oé, O/v ﬁv Blv Vs 1-

and integrating with respect to p from 0 to x, and then multiplying by

PA+y-—a-a)l(1+y—a' = HII+F) oy
Fl+y—a—o -BT1+p ) ’

we arrive at the desired result. O
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4 Concluding remarks

We now briefly consider some consequences of the derived results in the previous
section. Operator (4) would reduce immediately to the extensively investigated
Saigo, Erdélyi-Kober, and Riemann-Liouville type fractional integral operators,
respectively, given by the following relationships (see [11, 15]).

—Q

(052 p) @) = () @) = 1

(v>0,0,B €R).

(19027 ) = (72 5) () =

(v>0,BeN).

/ 1 z
0,0,8,8, -
(127 05) @) = RN @ = 5 [ @00 G0, @)
We acquire the special cases of the operator S} BB 177() as follows by setting
o =0;d =0and o« =v; a =a’ =0 in (6), then instantly Definition 4 would
reduce to operators involving Saigo, Erdélyi-Kober, and Riemann-Liouville type
fractional integral operators, respectively, as follows:

,O—"Y,— _ F(l — (Q_W))F(l"i"y_ﬁ) a— o=, —
R s s A ) LONI )

/Om(x—t)glFl(a, B5v; 1—£)f(t)dt,
(26)

/ “wo B rmd, (27)
0

v TP+ —=8) (-
(St 6f> (z) = W <It Bf) (z), (30)
(8] f) (@) =T +7) (L f) (), (31)

where the operators (I]’a_%_ﬁ) : (I]’_B> ,(I)') are given by (26), (27), (28) re-
spectively.

For instance, if we use o/ = 0 and make use of functional relation (26), Lemma 2
and Theorem 2 provide the already known results due to Kalla and Rao [10].

We conclude the present investigations with the remark that, the results obtained

are very suitable in stemming various fractional integral inequalities involving
such relatively much familiar fractional integral operators.
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