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Abstract

In this paper we establish some approximations of the f -divergence mea-
sures by the use of two points Taylor’s type representations with integral
remainders. Some inequalities for particular instances of interest are pro-
vided as well.
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1 Introduction

One of the important issues in many applications of Probability Theory &
Statistics is finding an appropriate measure of distance (difference or discrimina-
tion) between two probability distributions.

A number of divergence measures have been proposed and extensively studied
by: Jeffreys 1946 [26], Kullback-Leibler 1951 [32], Rényi 1961 [39], Ali and Silvey
1966 [1], Csiszár 1967 [11], Havrda-Charvat 1967 [23], Sharma-Mittal 1977 [41],
Rao 1982 [38], Burbea-Rao 1982 [8], Kapur 1984 [29], Vajda 1989 [48], Lin 1991
[33], Shioya and Da-te [42] and others, see [36]

These measures have been applied in a variety of fields such as: anthropol-
ogy [38], genetics [36], finance, economics and political science [40], [45], [46],
biology [37], the analysis of contingency tables [22], approximation of probability
distributions [10], [30], signal processing [27], [28] and pattern recognition [7], [9].

Assume that a set Ω and the σ-finite measure µ are given. Consider the set of
all probability densities on µ to be

P :=

{
p|p : Ω→ R, p (x) ≥ 0,

∫
Ω
p (x) dµ (x) = 1

}
.
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The Kullback-Leibler divergence [32] is well known among the information
divergences. It is defined for p, q ∈ P as follows:

DKL (p, q) :=

∫
Ω
p (x) ln

[
p (x)

q (x)

]
dµ (x) , (1)

where ln is to base e.
In Information Theory and Statistics, various divergences are applied in addi-

tion to the Kullback-Leibler divergence. These are defined for p, q ∈ P as follows

Dv (p, q) :=

∫
Ω
|p (x)− q (x)| dµ (x) , variation distance,

DH (p, q) :=

∫
Ω

∣∣∣√p (x)−
√
q (x)

∣∣∣ dµ (x) , Hellinger distance [24],

Dχ2 (p, q) :=

∫
Ω
p (x)

[(
q (x)

p (x)

)2

− 1

]
dµ (x) , χ2-divergence,

Dα (p, q) :=
4

1− α2

[
1−

∫
Ω

[p (x)]
1−α
2 [q (x)]

1+α
2 dµ (x)

]
, α-divergence,

DB (p, q) :=

∫
Ω

√
p (x) q (x)dµ (x) , Bhattacharyya distance [6],

DHa (p, q) :=

∫
Ω

2p (x) q (x)

p (x) + q (x)
dµ (x) , Harmonic distance,

DJ (p, q) :=

∫
Ω

[p (x)− q (x)] ln

[
p (x)

q (x)

]
dµ (x) , Jeffrey’s distance [26],

and

D∆ (p, q) :=

∫
Ω

[p (x)− q (x)]2

p (x) + q (x)
dµ (x) , triangular discrimination [44].

For other divergence measures, see the paper [29] by Kapur or the book on
line [43] by Taneja.

In 1967, I. Csiszár [12] introduced the concept of f -divergence as follows

If (p, q) :=

∫
Ω
p (x) f

[
q (x)

p (x)

]
dµ (x) , (2)

for p, q ∈ P, where f is convex on (0,∞) and normalised, i.e. f (1) = 0.
Most of the above distances are particular instances of Csiszár f -divergence.

There are also many others which are not in this class (see for example Taneja’s
book online [43]). For the basic properties of Csiszár f -divergence such as

If (p, q) ≥ 0 for any p, q ∈ P,

and
P× P 3 (p, q) 7→ If (p, q) is convex,
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see [12], [13] and [48].
In the recent papers [14], [15] and [16] we obtained several reverses of Jensen’s

integral inequality. These applied to Csiszár f -divergence produce the following
results:

Theorem 1 (Dragomir 2013, [15]). Let f : (0,∞)→ R be a convex function with
the property that f (1) = 0. Assume that p, q ∈ P and there exists the constants
0 < r < 1 < R <∞ such that

r ≤ q (x)

p (x)
≤ R for µ-a.e. x ∈ Ω. (3)

Then we have the inequalities

0 ≤ If (p, q) ≤ (R− 1) (1− r)
R− r

sup
t∈(r,R)

Ψf (t; r,R) (4)

≤ (R− 1) (1− r)
f ′− (R)− f ′+ (r)

R− r

≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
,

and Ψf (·; r,R) : (r,R)→ R is defined by

Ψf (t; r,R) =
f (R)− f (t)

R− t
− f (t)− f (r)

t− r
.

We also have the inequality

0 ≤ If (p, q) ≤ 1

4
(R− r) f (R) (1− r) + f (r) (R− 1)

(R− 1) (1− r)
(5)

≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
.

and the inequality

0 ≤ If (p, q) ≤ 2 max

{
R− 1

R− r
,

1− r
R− r

}
(6)

×
[
f (r) + f (R)

2
− f

(
r +R

2

)]
≤ 1

2
max {R− 1, 1− r}

[
f ′− (R)− f ′+ (r)

]
.

Some bounds in terms of the variation distance are as follows:

Theorem 2 (Dragomir 2016, [16]). With the assumptions of Theorem 1 we have

0 ≤ If (p, q) ≤ 1

2

[
f ′− (R)− f ′+ (r)

]
Dv (p, q) (7)

≤ 1

2

[
f ′− (R)− f ′+ (r)

] [
Dχ2 (p, q)

]1/2
≤ 1

4
(R− r)

[
f ′− (R)− f ′+ (r)

]
.
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and

0 ≤ If (p, q) ≤ 1

2
([1, R; f ]− [r, 1; f ])Dv (p, q) (8)

≤ 1

2
([1, R; f ]− [r, 1; f ])

[
Dχ2 (p, q)

]1/2
≤ 1

4
([1, R; f ]− [r, 1; f ]) (R− r) ,

where [a, b; f ] is the divided difference

[a, b; f ] :=
f (b)− f (a)

b− a
.

Further bounds in terms of the Lebesgue norms of the derivative are embodied
in the next theorem:

Theorem 3 (Dragomir 2013, [14]). With the assumptions in Theorem 1 we have

0 ≤ If (p, q) ≤ Bf (r,R) (9)

where

Bf (r,R) :=
(R− 1)

∫ 1
r |f

′ (t)| dt+ (1− r)
∫ R

1 |f
′ (t)| dt

R− r
. (10)

Moreover, we have the following bounds for Bf (r,R)

Bf (r,R) (11)

≤


[

1
2 +
|1− r+R2 |
R−r

] ∫ R
r |f

′ (t)| dt

1
2

∫ R
r |f

′ (t)| dt+ 1
2

∣∣∣∫ R1 |f ′ (t)| dt− ∫ 1
r |f

′ (t)| dt
∣∣∣ ,

and

Bf (r,R) ≤ (1− r) (R− 1)

R− r

[∥∥f ′∥∥
[1,R],∞ +

∥∥f ′∥∥
[r,1],∞

]
(12)

≤ 1

2
(R− r)

‖f ′‖[1,R],∞ + ‖f ′‖[r,1],∞

2
≤ 1

2
(R− r)

∥∥f ′∥∥
[r,R],∞

and

Bf (r,R) ≤ 1

R− r

[
(1− r) (R− 1)1/q

∥∥f ′∥∥
[1,R],p

(13)

+ (R− 1) (1− r)1/q
∥∥f ′∥∥

[r,1],p

]
≤ 1

R− r
∥∥f ′∥∥

[r,R],p
[(1− r)q (R− 1) + (R− 1)q (1− r)]1/q ,

Motivated by the above results, in this paper we establish some new inequali-
ties for f -divergence measures by employing two points Taylor’s type expansions
that are presented below. Applications for particular instances of interest are
provided as well.
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2 Some Preliminary Identities

The following result is well known in the literature as Taylor’s formula or Tay-
lor’s theorem with the integral remainder.

Lemma 1. Let I ⊂ R be a closed interval, c ∈ I and let n be a positive integer.
If f : I −→ C is such that the n-derivative f (n) is absolutely continuous on I,
then for each y ∈ I

f (y) = Tn (f ; c, y) +Rn (f ; c, y) , (14)

where Tn (f ; c, y) is Taylor’s polynomial, i.e.,

Tn (f ; c, y) :=

n∑
k=0

(y − c)k

k!
f (k) (c) . (15)

Note that f (0) := f and 0! := 1 and the remainder is given by

Rn (f ; c, y) :=
1

n!

∫ y

c
(y − t)n f (n+1) (t) dt. (16)

A simple proof of this lemma can be achieved by mathematical induction using
the integration by parts formula in the Lebesgue integral.

For related results, see [2]-[5], [20]-[21], [28], [33]-[35] and [47].
The following identity can be stated:

Lemma 2. Let f : I → C be n-time differentiable function on the interior I̊ of
the interval I and f (n), with n ≥ 1, be locally absolutely continuous on I̊. Then
for each distinct t, a, b ∈ I̊ and for any λ ∈ R\ {0, 1} we have the representation

f (t) = (1− λ) f (a) + λf (b) (17)

+
n∑
k=1

1

k!

[
(1− λ) f (k) (a) (t− a)k + (−1)k λf (k) (b) (b− t)k

]
+ Sn,λ (t, a, b) ,

where the remainder Sn,λ (t, a, b) is given by

Sn,λ (t, a, b) (18)

:=
1

n!

[
(1− λ) (t− a)n+1

∫ 1

0
f (n+1) ((1− s) a+ st) (1− s)n ds

+ (−1)n+1 λ (b− t)n+1
∫ 1

0
f (n+1) ((1− s) t+ sb) snds

]
.

Proof. Using Taylor’s representation with the integral remainder (14) we can write
the following two identities

f (t) =
n∑
k=0

1

k!
f (k) (a) (t− a)k +

1

n!

∫ t

a
f (n+1) (τ) (t− τ)n dτ (19)
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and

f (t) =
n∑
k=0

(−1)k

k!
f (k) (b) (b− t)k +

(−1)n+1

n!

∫ b

t
f (n+1) (τ) (τ − t)n dτ (20)

for any t, a, b ∈ I̊ .
For any integrable function h on an interval and any distinct numbers c, d in

that interval, we have, by the change of variable τ = (1− s) c+ sd, s ∈ [0, 1] that∫ d

c
h (τ) dτ = (d− c)

∫ 1

0
h ((1− s) c+ sd) ds.

Therefore, ∫ t

a
f (n+1) (τ) (t− τ)n dτ

= (t− a)

∫ 1

0
f (n+1) ((1− s) a+ st) (t− (1− s) a− st)n ds

= (t− a)n+1
∫ 1

0
f (n+1) ((1− s) a+ st) (1− s)n ds

and ∫ b

t
f (n+1) (τ) (τ − t)n dτ

= (b− t)
∫ 1

0
f (n+1) ((1− s) t+ sb) ((1− s) t+ sb− t)n ds

= (b− t)n+1
∫ 1

0
f (n+1) ((1− s) t+ sb) snds.

The identities (19) and (20) can then be written as

f (t) =

n∑
k=0

1

k!
f (k) (a) (t− a)k (21)

+
1

n!
(t− a)n+1

∫ 1

0
f (n+1) ((1− s) a+ st) (1− s)n ds

and

f (t) =
n∑
k=0

(−1)k

k!
f (k) (b) (b− t)k (22)

+ (−1)n+1 (b− t)n+1

n!

∫ 1

0
f (n+1) ((1− s) t+ sb) snds.

Now, if we multiply (21) with 1 − λ and (22) with λ and add the resulting
equalities, a simple calculation yields the desired identity (17).
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Remark 1. If we take in (17) t = a+b
2 , with a, b ∈ I̊ , then we have for any

λ ∈ R\ {0, 1} that

f

(
a+ b

2

)
= (1− λ) f (a) + λf (b) (23)

+

n∑
k=1

1

2kk!

[
(1− λ) f (k) (a) + (−1)k λf (k) (b)

]
(b− a)k

+ S̃n,λ (a, b) ,

where the remainder S̃n,λ (a, b) is given by

S̃n,λ (a, b) (24)

:=
1

2n+1n!
(b− a)n+1

[
(1− λ)

∫ 1

0
f (n+1)

(
(1− s) a+ s

a+ b

2

)
(1− s)n ds

+ (−1)n+1 λ

∫ 1

0
f (n+1)

(
(1− s) a+ b

2
+ sb

)
snds

]
.

In particular, for λ = 1
2 we have

f

(
a+ b

2

)
=
f (a) + f (b)

2
(25)

+
n∑
k=1

1

2k+1k!

[
f (k) (a) + (−1)k f (k) (b)

]
(b− a)k

+ S̃n (a, b) ,

where the remainder S̃n (a, b) is given by

S̃n (a, b) (26)

:=
1

2n+2n!
(b− a)n+1

[∫ 1

0
f (n+1)

(
(1− s) a+ s

a+ b

2

)
(1− s)n ds

+ (−1)n+1
∫ 1

0
f (n+1)

(
(1− s) a+ b

2
+ sb

)
snds

]
.

Remark 2. The case n = 0, namely when the function f is locally absolutely
continuous on I̊ with the derivative f ′ existing almost everywhere in I̊ is important
and produces the following simple identities for each distinct t, a, b ∈ I̊ and
λ ∈ R\ {0, 1}

f (t) = (1− λ) f (a) + λf (b) + Sλ (t, a, b) , (27)

where the remainder Sλ (t, a, b) is given by

Sλ (t, a, b) := (1− λ) (t− a)

∫ 1

0
f ′ ((1− s) a+ st) ds

− λ (b− t)
∫ 1

0
f ′ ((1− s) t+ sb) ds. (28)
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3 Two Points Estimates

Assume that p, q ∈ P and there exists the constants 0 < r < 1 < R <∞ such
that

r ≤ q (x)

p (x)
≤ R for µ-a.e. x ∈ Ω. (29)

We consider the following divergence measures

Dχk,r (p, q) :=

∫
Ω.

(q (x)− rp (x))k

pk−1 (x)
dµ (x) ≥ 0 for k ∈ N, (30)

and

DR,χk (p, q) :=

∫
Ω.

(Rp (x)− q (x))k

pk−1 (x)
dµ (x) ≥ 0 for k ∈ N. (31)

Theorem 4. Let I be an open interval with [r,R] ⊂ I as above, f : I → C
be n-time differentiable function on I and f (n), with n ≥ 1, be locally absolutely
continuous on I. Then for any p, q ∈ P satisfying the condition (29) we have the
representation

If (p, q) = (1− λ) f (r) + λf (R) (32)

+
n∑
k=1

1

k!

[
(1− λ) f (k) (r)Dχk,r (p, q) + (−1)k λf (k) (R)DR,χk (p, q)

]
+Rf,n (p, q;λ)

and the reminder Rf,n (p, q;λ) is given by

Rf,n (p, q;λ) =
1

n!

[
(1− λ)

∫
Ω

(q (x)− rp (x))n+1

pn (x)
(33)

×
(∫ 1

0
f (n+1)

(
(1− s) r + s

q (x)

p (x)

)
(1− s)n ds

)
dµ (x)

+ (−1)n+1 λ

∫
Ω

(Rp (x)− q (x))n+1

pn (x)

×
(∫ 1

0
f (n+1)

(
(1− s) q (x)

p (x)
+ sR

)
snds

)
dµ (x)

]
,

where λ ∈ [0, 1] .
In particular, for λ = 1

2 we get

If (p, q) =
f (r) + f (R)

2
(34)

+
n∑
k=1

1

k!

[
f (k) (r)Dχk,r (p, q) + (−1)k f (k) (R)DR,χk (p, q)

2

]
+Rf,n (p, q) ,
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where

Rf,n (p, q) =
1

2n!

[∫
Ω

(q (x)− rp (x))n+1

pn (x)
(35)

×
(∫ 1

0
f (n+1)

(
(1− s) r + s

q (x)

p (x)

)
(1− s)n ds

)
dµ (x)

+ (−1)n+1
∫

Ω

(Rp (x)− q (x))n+1

pn (x)

×
(∫ 1

0
f (n+1)

(
(1− s) q (x)

p (x)
+ sR

)
snds

)
dµ (x)

]
.

Proof. From Lemma 2 we have, by taking t = q(x)
p(x) , a = r and b = R, that

f

(
q (x)

p (x)

)
(36)

= (1− λ) f (r) + λf (R)

+
n∑
k=1

1

k!

[
(1− λ) f (k) (r)

(
q (x)

p (x)
− r
)k

+ (−1)k λf (k) (R)

(
R− q (x)

p (x)

)k]

+ Sn,λ

(
q (x)

p (x)
, r, R

)
,

where the remainder Sn,λ

(
q(x)
p(x) , r, R

)
is given by

Sn,λ

(
q (x)

p (x)
, r, R

)
(37)

=
1

n!

[
(1− λ)

(
q (x)

p (x)
− r
)n+1 ∫ 1

0
f (n+1)

(
(1− s) r + s

q (x)

p (x)

)
(1− s)n ds

+ (−1)n+1 λ

(
R− q (x)

p (x)

)n+1 ∫ 1

0
f (n+1)

(
(1− s) q (x)

p (x)
+ sR

)
snds

]
,

where x ∈ Ω.
If we multiply (36) by p (x) and integrate on Ω we get∫

Ω
p (x) f

(
q (x)

p (x)

)
dµ (x) (38)

= [(1− λ) f (r) + λf (R)]

∫
Ω
p (x) dµ (x)

+
n∑
k=1

1

k!

[
(1− λ) f (k) (r)

∫
Ω

(q (x)− rp (x))k

pk−1 (x)
dµ (x)

+ (−1)k λf (k) (R)

∫
Ω

(Rp (x)− q (x))k

pk−1 (x)
dµ (x)

]
+Rf,n (p, q;λ) ,
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where

Rf,n (p, q;λ) =

∫
Ω
p (x)Sn,λ

(
q (x)

p (x)
, r, R

)
dµ (x) (39)

=
1

n!

[
(1− λ)

∫
Ω
p (x)

(
q (x)

p (x)
− r
)n+1

×
(∫ 1

0
f (n+1)

(
(1− s) r + s

q (x)

p (x)

)
(1− s)n ds

)
dµ (x)

+ (−1)n+1 λ

∫
Ω
p (x)

(
R− q (x)

p (x)

)n+1

×
(∫ 1

0
f (n+1)

(
(1− s) q (x)

p (x)
+ sR

)
snds

)
dµ (x)

]
,

for λ ∈ [0, 1] .

This proves the representations (32) and (33).

Corollary 1. With the assumptions of Theorem 4 and if f (n+1) ∈ L∞ [r,R] , then
we have the following bounds for the reminder

|Rf,n (p, q;λ)| (40)

≤ 1

(n+ 1)!

[
(1− λ)

∫
Ω

(q (x)− rp (x))n+1

pn (x)

∥∥∥f (n+1)
∥∥∥[
r,
q(x)
p(x)

]
,∞
dµ (x)

+λ

∫
Ω

(Rp (x)− q (x))n+1

pn (x)

∥∥∥f (n+1)
∥∥∥[

q(x)
p(x)

,R
]
,∞
dµ (x)

]
≤ 1

(n+ 1)!

∥∥∥f (n+1)
∥∥∥

[r,R],∞

[
(1− λ)Dχn+1,r (p, q) + λDR,χn+1 (p, q)

]
≤ 1

(n+ 1)!

∥∥∥f (n+1)
∥∥∥

[r,R],∞
(R− r)n+1

for any λ ∈ [0, 1] , and, in particular, for λ = 1
2

|Rf,n (p, q)| ≤ 1

2 (n+ 1)!

[∫
Ω

(q (x)− rp (x))n+1

pn (x)

∥∥∥f (n+1)
∥∥∥[
r,
q(x)
p(x)

]
,∞
dµ (x) (41)

+

∫
Ω

(Rp (x)− q (x))n+1

pn (x)

∥∥∥f (n+1)
∥∥∥[

q(x)
p(x)

,R
]
,∞
dµ (x)

]
≤ 1

2 (n+ 1)!

∥∥∥f (n+1)
∥∥∥

[r,R],∞

[
Dχn+1,r (p, q) +DR,χn+1 (p, q)

]
≤ 1

(n+ 1)!

∥∥∥f (n+1)
∥∥∥

[r,R],∞
(R− r)n+1 .
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Proof. From (33) we have

|Rf,n (p, q;λ)| ≤ 1

n!

[
(1− λ)

∫
Ω

(q (x)− rp (x))n+1

pn (x)
(42)

×
∣∣∣∣∫ 1

0
f (n+1)

(
(1− s) r + s

q (x)

p (x)

)
(1− s)n ds

∣∣∣∣ dµ (x)

+ λ

∫
Ω

(Rp (x)− q (x))n+1

pn (x)

×
∣∣∣∣∫ 1

0
f (n+1)

(
(1− s) q (x)

p (x)
+ sR

)
snds

∣∣∣∣ dµ (x)

]
≤ 1

n!

[
(1− λ)

∫
Ω

(q (x)− rp (x))n+1

pn (x)

×
(∫ 1

0

∣∣∣∣f (n+1)

(
(1− s) r + s

q (x)

p (x)

)∣∣∣∣ (1− s)n ds) dµ (x)

+ λ

∫
Ω

(Rp (x)− q (x))n+1

pn (x)

×
∫ 1

0

∣∣∣∣f (n+1)

(
(1− s) q (x)

p (x)
+ sR

)∣∣∣∣ sndsdµ (x)

]
= Kn (p, q;λ)

for any λ ∈ [0, 1] .

We have

∫ 1

0

∣∣∣∣f (n+1)

(
(1− s) r + s

q (x)

p (x)

)∣∣∣∣ (1− s)n ds
≤ essups∈[0,1]

∣∣∣∣f (n+1)

(
(1− s) r + s

q (x)

p (x)

)∣∣∣∣ ∫ 1

0
(1− s)n ds

=
1

n+ 1

∥∥∥f (n+1)
∥∥∥[
r,
q(x)
p(x)

]
,∞
≤ 1

n+ 1

∥∥∥f (n+1)
∥∥∥

[r,R],∞

and

∫ 1

0

∣∣∣∣f (n+1)

(
(1− s) q (x)

p (x)
+ sR

)∣∣∣∣ snds
≤ essups∈[0,1]

∣∣∣∣f (n+1)

(
(1− s) q (x)

p (x)
+ sR

)∣∣∣∣ ∫ 1

0
snds

=
1

n+ 1

∥∥∥f (n+1)
∥∥∥[

q(x)
p(x)

,R
]
,∞
≤ 1

n+ 1

∥∥∥f (n+1)
∥∥∥

[r,R],∞

for x ∈ Ω.
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Therefore

Kn (p, q;λ) ≤ 1

(n+ 1)!

[
(1− λ)

∫
Ω

(q (x)− rp (x))n+1

pn (x)

∥∥∥f (n+1)
∥∥∥[
r,
q(x)
p(x)

]
,∞
dµ (x)

+λ

∫
Ω

(Rp (x)− q (x))n+1

pn (x)

∥∥∥f (n+1)
∥∥∥[

q(x)
p(x)

,R
]
,∞
dµ (x)

]

≤ 1

(n+ 1)!

∥∥∥f (n+1)
∥∥∥

[r,R],∞

[
(1− λ)

∫
Ω

(q (x)− rp (x))n+1

pn (x)
dµ (x)

+λ

∫
Ω

(Rp (x)− q (x))n+1

pn (x)
dµ (x)

]

=
1

(n+ 1)!

∥∥∥f (n+1)
∥∥∥

[r,R],∞

[
(1− λ)

∫
Ω
p (x)

(
q (x)

p (x)
− r
)n+1

dµ (x)

+λ

∫
Ω
p (x)

(
R− q (x)

p (x)

)n+1

dµ (x)

]
≤ 1

(n+ 1)!

∥∥∥f (n+1)
∥∥∥

[r,R],∞
(R− r)n+1

×
[
(1− λ)

∫
Ω
p (x) dµ (x) + λ

∫
Ω
p (x) dµ (x)

]
=

1

(n+ 1)!

∥∥∥f (n+1)
∥∥∥

[r,R],∞
(R− r)n+1 ,

and from (42) we get (40).

We consider the divergence measures

Dχn+1+1/s,r (p, q) :=

∫
Ω.

(q (x)− rp (x))n+1+1/s

pn+1/s (x)
dµ (x) ≥ 0 for n ∈ N, s > 1 (43)

and

DR,χn+1+1/s (p, q) (44)

:=

∫
Ω.

(Rp (x)− q (x))n+1+1/s

pn+1/s (x)
dµ (x) ≥ 0 for n ∈ N, s > 1.

Corollary 2. With the assumptions of Theorem 4 and if f (n+1) ∈ Ls [r,R] , with
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s, q > 1, and 1
s + 1

q = 1, then we have the following bounds for the reminder

|Rf,n (p, q;λ)| (45)

≤ 1

(n+ 1)!

[
(1− λ)

∫
Ω

(q (x)− rp (x))n+1+1/s

pn+1/s (x)

∥∥∥f (n+1)
∥∥∥[
r,
q(x)
p(x)

]
,s
dµ (x)

+λ

∫
Ω

(Rp (x)− q (x))n+1+1/s

pn+1/s (x)

∥∥∥f (n+1)
∥∥∥[

q(x)
p(x)

,R
]
,s
dµ (x)

]
≤ 1

(qn+ 1)1/q (n+ 1)!

∥∥∥f (n+1)
∥∥∥

[r,R],s

×
[
(1− λ)Dχn+1+1/s,r (p, q) + λDR,χn+1+1/s (p, q)

]
≤ 1

(qn+ 1)1/q (n+ 1)!

∥∥∥f (n+1)
∥∥∥

[r,R],s
(R− r)n+1+1/s

for any λ ∈ [0, 1] , and, in particular, for λ = 1
2

|Rf,n (p, q)| (46)

≤ 1

2 (n+ 1)!

[∫
Ω

(q (x)− rp (x))n+1+1/s

pn+1/s (x)

∥∥∥f (n+1)
∥∥∥[
r,
q(x)
p(x)

]
,s
dµ (x)

+

∫
Ω

(Rp (x)− q (x))n+1+1/s

pn+1/s (x)

∥∥∥f (n+1)
∥∥∥[

q(x)
p(x)

,R
]
,s
dµ (x)

]
≤ 1

2 (qn+ 1)1/q (n+ 1)!

∥∥∥f (n+1)
∥∥∥

[r,R],s

×
[
Dχn+1+1/s,r (p, q) +DR,χn+1+1/s (p, q)

]
≤ 1

(qn+ 1)1/q (n+ 1)!

∥∥∥f (n+1)
∥∥∥

[r,R],s
(R− r)n+1+1/s .

Proof. Using Hölder’s integral inequality for s, q > 1 and 1
s + 1

q = 1, we have∫ 1

0

∣∣∣∣f (n+1)

(
(1− τ) r + τ

q (x)

p (x)

)∣∣∣∣ (1− τ)n dτ

≤
(∫ 1

0

∣∣∣∣f (n+1)

(
(1− τ) r + τ

q (x)

p (x)

)∣∣∣∣s ds)1/s(∫ 1

0
(1− τ)qn dτ

)1/q

=

((
q (x)

p (x)
− r
)∫ q(x)

p(x)

r

∣∣∣f (n+1) (u)
∣∣∣s du)1/s(

1

qn+ 1

)1/q

=
1

(qn+ 1)1/q

(
q (x)

p (x)
− r
)1/s ∥∥∥f (n+1)

∥∥∥[
r,
q(x)
p(x)

]
,s

≤ 1

(qn+ 1)1/q

(
q (x)

p (x)
− r
)1/s ∥∥∥f (n+1)

∥∥∥
[r,R],s
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and, similarly∫ 1

0

∣∣∣∣f (n+1)

(
(1− τ)

q (x)

p (x)
+ τR

)∣∣∣∣ τndτ
≤ 1

(qn+ 1)1/q

(
R− q (x)

p (x)

)1/s ∥∥∥f (n+1)
∥∥∥[

q(x)
p(x)

,R
]
,s

≤ 1

(qn+ 1)1/q

(
R− q (x)

p (x)

)1/s ∥∥∥f (n+1)
∥∥∥

[r,R],s

for x ∈ Ω.
Therefore,

Kn (p, q;λ)

≤ 1

(qn+ 1)1/q (n+ 1)!

×

[
(1− λ)

∫
Ω

(q (x)− rp (x))n+1+1/s

pn+1/s (x)

∥∥∥f (n+1)
∥∥∥[
r,
q(x)
p(x)

]
,s
dµ (x)

+λ

∫
Ω

(Rp (x)− q (x))n+1+1/s

pn+1/s (x)

∥∥∥f (n+1)
∥∥∥[

q(x)
p(x)

,R
]
,s
dµ (x)

]
≤ 1

(qn+ 1)1/q (n+ 1)!

∥∥∥f (n+1)
∥∥∥

[r,R],s

×

[
(1− λ)

∫
Ω

(q (x)− rp (x))n+1+1/s

pn+1/s (x)
dµ (x) + λ

∫
Ω

(Rp (x)− q (x))n+1+1/s

pn+1/s (x)
dµ (x)

]
≤ 1

(qn+ 1)1/q (n+ 1)!

∥∥∥f (n+1)
∥∥∥

[r,R],s

[
(1− λ) (R− r)n+1+1/s + λ (R− r)n+1+1/s

]
=

1

(qn+ 1)1/q (n+ 1)!

∥∥∥f (n+1)
∥∥∥

[r,R],s
(R− r)n+1+1/s ,

which, by (42), produces the desired result (45).

4 Application for Kullback-Leibler Divergence

Consider the logarithmic function f (t) = − ln t, t > 0. Then

If (p, q) = −
∫

Ω
p (x) ln

[
q (x)

p (x)

]
dµ (x) = DKL (p, q)

for p, q ∈ P.

We have f (k) (t) = (−1)k(k−1)!
tk

, k ∈ N, k ≥ 1 and for [a, b] ⊂ (0,∞) ,∥∥∥f (n+1)
∥∥∥

[a,b],∞
:= sup

t∈[a,b]

∣∣∣f (n+1) (t)
∣∣∣ = n! sup

t∈[a,b]

{
1

tn+1

}
=

n!

an+1
;
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and for α ≥ 1

∥∥∥f (n+1)
∥∥∥

[a,b],α
:=

(∫ b

a

∣∣∣f (n+1) (t)
∣∣∣α dt) 1

α

= n!

[∫ b

a

dt

t(n+1)α

] 1
α

= n!

[
b(n+1)α−1 − a(n+1)α−1

[(n+ 1)α− 1] b(n+1)α−1a(n+1)α−1

] 1
α

.

Assume that p, q ∈ P and there exists the constants 0 < r < 1 < R <∞ such
that

r ≤ q (x)

p (x)
≤ R for µ-a.e. x ∈ Ω.

By using Theorem 4 we have

DKL (p, q) (47)

= ln
[
r−(1−λ)R−λ

]
+

n∑
k=1

1

k

[
(−1)k (1− λ)

rk
Dχk,r (p, q) +

λ

Rk
DR,χk (p, q)

]
+Df,n (p, q;λ)

and the reminder Dn (p, q;λ) is given by

Dn (p, q;λ) = (1− λ) (−1)n+1
∫

Ω

(q (x)− rp (x))n+1

pn (x)
(48)

×

∫ 1

0

(1− s)n ds(
(1− s) r + s q(x)

p(x)

)n+1

 dµ (x)

+ λ

∫
Ω

(Rp (x)− q (x))n+1

pn (x)

×

∫ 1

0

snds(
(1− s) q(x)

p(x) + sR
)n+1

 dµ (x) ,

where λ ∈ [0, 1] .

In particular, for λ = 1
2 we get

DKL (p, q) = ln
[
r−1/2R−1/2

]
(49)

+
1

2

n∑
k=1

1

k

[
(−1)k

rk
Dχk,r (p, q) +

1

Rk
DR,χk (p, q)

]
+Df,n (p, q)
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and the reminder Dn (p, q) is given by

Dn (p, q) (50)

=
1

2
(−1)n+1

∫
Ω

(q (x)− rp (x))n+1

pn (x)

∫ 1

0

(1− s)n ds(
(1− s) r + s q(x)

p(x)

)n+1

 dµ (x)

+
1

2

∫
Ω

(Rp (x)− q (x))n+1

pn (x)

∫ 1

0

snds(
(1− s) q(x)

p(x) + sR
)n+1

 dµ (x) .

By Corollary 1 we have

|Dn (p, q;λ)| ≤ 1

(n+ 1) rn+1

[
(1− λ)Dχn+1,r (p, q) + λDR,χn+1 (p, q)

]
(51)

≤ 1

(n+ 1)

(
R

r
− 1

)n+1

for any λ ∈ [0, 1] , and, in particular, for λ = 1
2

|Dn (p, q)| ≤ 1

2 (n+ 1) rn+1

[
Dχn+1,r (p, q) +DR,χn+1 (p, q)

]
(52)

≤ 1

(n+ 1)

(
R

r
− 1

)n+1

.

From Corollary 2 we have for s, q > 1 with 1
s + 1

q = 1, that

|Dn (p, q;λ)| (53)

≤ 1

(qn+ 1)1/q (n+ 1)

[
R(n+1)s−1 − r(n+1)s−1

[(n+ 1) s− 1]R(n+1)s−1r(n+1)s−1

] 1
s

×
[
(1− λ)Dχn+1+1/s,r (p, q) + λDR,χn+1+1/s (p, q)

]
≤ 1

(qn+ 1)1/q (n+ 1)

[
R(n+1)s−1 − r(n+1)s−1

[(n+ 1) s− 1]R(n+1)s−1r(n+1)s−1

] 1
s

× (R− r)n+1+1/s
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for any λ ∈ [0, 1] , and, in particular, for λ = 1
2

|Dn (p, q)| (54)

≤ 1

2 (qn+ 1)1/q (n+ 1)

[
R(n+1)s−1 − r(n+1)s−1

[(n+ 1) s− 1]R(n+1)s−1r(n+1)s−1

] 1
s

×
[
Dχn+1+1/s,r (p, q) +DR,χn+1+1/s (p, q)

]
≤ 1

(qn+ 1)1/q (n+ 1)

[
R(n+1)s−1 − r(n+1)s−1

[(n+ 1) s− 1]R(n+1)s−1r(n+1)s−1

] 1
s

× (R− r)n+1+1/s .
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