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Abstract

The aim of the present paper is to study the concircular curvature tensor,
projective curvature tensor, Weyl conformal curvature tensor of Kenmotsu
manifolds admitting Schouten-van Kampen connection and an example is
given to verify our results.
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1 Introduction

The Schouten-van Kampen connection has been introduced for studying non-
holomorphic manifolds. It preserves by parallelism, a pair of complementary dis-
tributions on a differentiable manifold endowed with an affine connection [2] [6]
[13]. Then Olszak has studied the Schouten-van Kampen connection to adapt
to an almost contact metric structure [11]. He has characterized some classes of
almost contact metric manifolds with the Schouten-van Kampen connection and
established certain curvature properties with respect to this connection. Recently
Gopal Ghosh [5], Nagaraja [8] and Yildiz [16] have studied the Schouten-van Kam-
pen connection in Sasakian manifolds and f-Kenmotsu manifolds respectively.
Kenmotsu manifolds introduced by Kenmotsu in 1971[7] have been extensively
studied by many authors [9] [10] [12].
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The present paper is organized as follows: After a brief review of Kenmotsu
manifolds in section 2, we prove that if the curvature tensor with respect to the
Schouten-van Kampen connection V* vanishes, then the Kenmotsu manifold is
locally isometric to the hyperbolic space H*"*1(—1). Thereafter, we study con-
circularly flat, &-concircularly flat, pseudo-concircularly flat and ¢-concircularly
semisymmetric Kenmotsu manifolds with respect to Schouten-van Kampen con-
nection and proved R*.C* = R*.R*. Further, we study the projective curvature
tensor, Weyl projective curvature tensor and recurrent conditions of Kenmotsu
manifold with respect to the Schouten-van Kampen connection. Finally, in the
last section we give an example of a 5-dimensional Kenmotsu manifold admitting
Schouten-van Kampen connection to verify our results.

2 Preliminaries

A (2n + 1)-dimensional smooth manifold M is said to be an almost contact
metric manifold if it admits an almost contact metric structure (¢, &, 7, g) consist-
ing of a tensor field ¢ of type (1, 1), a vector field £, a 1-form 1 and a Riemannian
metric g compatible with (¢, £, n) satisfying

$*X = =X +n(X)§, 66 =0, g(X, &) =n(X), n(¢) =Lned=0 (1)
and
9(0X, ¢Y) = g(X,Y) = n(X)n(Y). (2)
An almost contact metric manifold is said to be a Kenmotsu manifold [3] if

(Vx@)Y = —g(X,9Y)§ —n(Y)oX, 3)

where V denotes the Riemannian connection of g.
In a Kenmotsu manifold the following relations hold [4].

Vx&=X—-n(X), (4)

(Vxn)Y =g(Vx&,Y), (5)

R(X,Y)§ =n(X)Y —n(Y)X, (6)

R, X)Y =n(Y)X — g(X,Y)§, (7)
n(R(X,Y)Z) = g(X, Z)n(Y) — g(Y, Z)n(X), (8)
S(X,€) = —2nn(X), (9)

Q¢ = —2n¢, (10)

S(¢X,0Y) = S(X,Y) + 2nn(X)n(Y), (11)

for any vector fields X,Y, Z on M, where R denotes the curvature tensor of type
(1,3) on M.
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3 Some curvature properties of Kenmotsu manifolds
with Schouten-van Kampen connection

Throughout this paper we associate * with the quantities with respect to the
Schouten-van Kampen connection. The Schouten-van Kampen connection V*
associated to the Levi-Civita connection V is given by [11]

VXY = VxY —n(Y)Vx&+ (Van)(Y)E, (12)

for any vector fields X, Y on M.
Using (4) and (5), the above equation yields,

V%Y =VxY +g(X, V)¢ —n(Y)X. (13)
By taking Y = ¢ in (13) and using (4) we obtain
V€& =0. (14)
We now calculate the Riemann curvature tensor R* using (13) as follows:
R (X,)Y)Z=R(X,Y)Z+9(Y,Z)X — g(X, 2)Y. (15)
Using (6) and taking Z = £ in (15) we get
R*(X,Y)¢=0. (16)

On contracting (15), we obtain the Ricci tensor S* of a Kenmotsu manifold with
respect to the Schouten-van Kampen connection V* as

S*Y,Z)=S(Y,Z)+2ng(Y, Z). (17)

This gives
Q'Y = QY + 2nY. (18)

Contracting with respect to Y and Z in (17), we get
r =r+2n2n+1), (19)

where r* and r are the scalar curvatures with respect to the Schouten-van Kampen
connection V* and the Levi-Civita connection V respectively.

Definition 1. A Kenmotsu manifold with respect to the Levi-Civita connection
s of constant curvature if its curvature tensor R is of the form

9(R(X,Y)Z,U) = k{g(Y, 2)9(X,U) — g(X, Z)g(Y,U)},

where k is a constant.
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If R* =0, then the equation (15) becomes

From which it follows that the Kenmotsu manifold with respect to the Levi-Civita
connection is of constant curvature —1.
This leads to the following :

Theorem 1. If the curvature tensor of a Kenmotsu manifold with respect to
Schouten-van Kampen connection V* wvanishes, then the Kenmotsu manifold is
locally isometric to the hyperbolic space H*"T1(—1).

Definition 2. [1] For each plane p in the tangent space T,(M), the sectional
ture K(p) is defined by K (p) RX.Y, X, V) here {X, Y}

curvature K (p) is defined by K(p) = , where {X,

is the orthonormal basis for p. Clearly K(p) is independent of the choice of the

orthonormal basis {X,Y}.

Taking Z = X, U =Y in (20), we get
R(X,Y,X7Y):{g(X,X)g(Y,Y)—g(X7Y)g(X7Y)}. (21)

Then, from the above equation we conclude that

B R(X,Y, X,)Y)
B g(X,X)g(KY) _g(X7Y)2

K(p) = -1 (22)

Thus, we can state the following theorem :

Theorem 2. If in a Kenmotsu manifold, the curvature tensor of a Schouten-
van Kampen connection V* wvanishes, then the sectional curvature of the plane
determined by two vectors X,Y € &+ is —1.

Now, an interesting invariant of a concircular transformation is the concircular
curvature tensor. The concircular curvature tensor [14] C* with respect to the
Schouten-van Kampen connection V* is defined by

,,4*

{9, 2)X —g(X,2)Y},  (23)
for all vector fields X, Y, Z on M.
By interchanging X and Y in (23), we have

T*

By adding (23) and (24) and using the fact that R(X,Y)Z + R(Y, X)Z = 0, we
get
C*(X,Y)Z + C*(Y, X)Z = 0. (25)



Kenmotsu manifolds with the Schouten-van Kampen connection 355

From (15), (23) and first Bianchi identity R(X,Y)Z+ R(Y,Z)X + R(Z,X)Y =0
with respect to V, we obtain

C*(X,Y)Z + C*(Y, Z)X + C*(Z,X)Y = 0. (26)

Hence, (25) and (26), show that concircular curvature tensor with respect to the
Schouten-van Kampen connection in a Kenmotsu manifold is skew-symmetric and
cyclic.

Next, we assume that the manifold M with respect to the Schouten-van Kampen
connection is concircularly flat, that is, C*(X,Y)Z = 0. Then from (23), it follows
that

,r*

T 2n(2n+1)

Taking the inner product of the above equation with £, we have

R*(X,Y)Z {9(Y,2)X — g(X,2)Y}. (27)

,,,,*

9(R*(X,Y)Z,§) = m{g(ﬁ Zm(X) = g(X, Z)n(Y)}. (28)

Using (1), (8), (15) and (19) in (28), we get

r+2n(2n+1)

Y. Z)n(X)—-9(X,Z2)nY)} =0. 2
(Y Z0n(X) = g(X. Z)n(Y )} =0 (29)
This implies that either the scalar curvature of M is r = —2n(2n + 1) or
9, Z)n(X) — g(X, Z)n(Y) = 0. (30)

Taking Y = £ in (30) and using (1), yields

n(X)n(2) —g(X,Z) =0. (31)
Replacing X by QX in (31) and using (10), we get

S(X, 2) = =2nn(X)n(2). (32)
Hence we can state the following theorem:

Theorem 3. For a concircularly flat Kenmotsu manifold with respect to the
Schouten-van Kampen connection, either the scalar curvature is —2n(2n + 1) or
the manifold is a special type of n-Einstein manifold.

Definition 3. A Kenmotsu manifold with respect to the Schouten-van Kampen
connection V* is said to be {- concircularly flat if C*(X,Y )& = 0.

Now, we assume that the manifold M with respect to the Schouten-van Kam-
pen connection is &-concircularly flat, that is, C*(X,Y )¢ = 0. Then from (23), it
follows that

R(X.Y)6 = g s ()X = n(X)Y ). (33)



356 D. L. Kiran Kumar, H. G. Nagaraja and S. H. Naveenkumar

In view of (16) and (19), we have

r+2n(2n + 1)

B )X ~n(X)Y} =0, (34)
Taking Y = ¢ in (34) and using (1), we get

r+2n(2n + 1)

o 1) X n0Er =0 (35)

Taking the inner product of the above equation with U, we have

r+2n(2n+1)

X, U) —n(X =0.
This implies that either the scalar curvature of M is r = —2n(2n+ 1) or
9(X,U) =n(X)n(U) = 0. (37)

Now, replacing X by QX in (37) and using (10), we get
S(X,U) = —2nn(X)n(U). (38)
Hence we can state the following theorem:

Theorem 4. For a £-concircularly flat Kenmotsu manifold with respect to the
Schouten-van Kampen connection, either the scalar curvature is —2n(2n + 1) or
the manifold is a special type of n-Einstein manifold.

Definition 4. A Kenmotsu manifold is said to be pseudo-concircularly flat with
respect to the Schouten-van Kampen connection V* if it satisfies

9(C* (X, Y)Z, W) = 0, (39)
for any vector fields X,Y,Z on M.

In view of (23) and (39), we have

*

Q(R*(¢X7 Y)Z— m

{9(Y, 2)pX — g(¢X, Z)Y'}, W) = 0. (40)

Making use of (15) and (19) in (40), we get

”
R(o X, Y)VZ, W) ——{9g(Y,Z X, oW)— X, Z2)Y, g(Y,oW)} = 0.
S(ROX.Y)Z,6W) = gtV Z)g (0. 0W) = g(0X. Z)Y. (Y. 0W)}
(41)
Let {e1, €2, €3, ....... ean+1} be alocal orthonormal basis of vector fields in M. Then

by putting Y = Z = ¢; in (41) and summing up with respect to i,1 < i < 2n+1,
we obtain

S(oX, W) =

,
g T 9(OX. W), (42)
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On using (1) and (11) in (42), we get
r

S(X W) = om+1

g(X, W) —{2n+

n(X)n(W)}. (43)

Again taking X = W = ¢; in (43) and summing up with respect to i,1 < i <
2n + 1, we obtain

2n+1

r=-—2n(2n+1). (44)
By virtue of (43) and (44), we get
S(X, W) =—2ng(X,W). (45)

Thus, M is an Einstein manifold.
Hence, we state the following:

Theorem 5. Let the Kenmotsu manifold M with Schouten-van Kampen connec-
tion be pseudo-concircularly flat if and only if S(Y,Z) = —2ng(Y, Z).

Definition 5. [17] A Kenmotsu manifold is said to be ¢-concircularly semisym-
metric with respect to Schouten-van Kampen connection V* if C*(X,Y).¢ = 0
holds on M.

Now, we consider ¢-concircularly semisymmetric Kenmotsu manifold with re-
spect to Schouten-van Kampen connection. Then

(C*(X,Y).0)Z = C*(X,Y)dZ — ¢C*(X,Y)Z = 0, (46)

for all XY, Z.
Taking Z = £ in (46), we get

P(C7(X,Y)E) = 0. (47)
Using (23) and (6) in (47), we get

r+2n(2n+1)
2n(2n + 1)

Replace Y by £ and X by ¢X in (48) and using (1), we get

r+2n(2n+1)
m(2n+ 1)

{n(X)oY —n(Y)pX} = 0. (48)

{X —n(X)¢} = 0. (49)

Taking the inner product of the above equation with U, we have

r+2n(2n+1)

X (X -0
2n(2n+1) {9(X,U) =n(X)n(U)} =0 (50)

This implies that either the scalar curvature of M is r = —2n(2n+ 1) or
9(X,U) = n(X)n(U) = 0. (51)

Now, replacing X by QX in (51) and using (10), we get
S(X,U) = =2np(X)n(U). (52)

Hence we can state the following:
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Theorem 6. For a ¢-concircularly semisymmetric Kenmotsu manifold with re-
spect to the Schouten-van Kampen connection, either the scalar curvature is
—2n(2n 4+ 1) or the manifold is a special type of n-Einstein manifold.

Further, we have

(R*(X,Y).C*)(U,V,W) = R*(X,Y)C*(U,V)W — C*(R*(X,Y)U, V)W

— C*(U, R*(X,Y)V)W — C*(U, V)R*(X,Y)W. (53)

With the use of (23), (53) becomes

(R*(X,Y).C*)(U,V,W) = R*(X,Y)R*(U, V)W — R*(R*(X,Y)U, V)W
— R*(U, R*(X,Y)V)W — R*(U,V)R*(X, Y)W

,',,*

(54)
By the symmetric properties of the curvature tensor R* [12, 7], we get
(R*(X,Y).C*)(U,V,W)=R"X,Y)R" (U V)W — R"(R*"(X,Y)U, V)W (55)
— R*(U,R* (X, Y)V)W — R*(U,V)R*(X,Y)W.
Finally, we get
(R*(X,Y).C*)(U,V,W)=(R"(X,Y).R")(U,V,W). (56)

Thus we state the following:

Theorem 7. Let M be a Kenmotsu manifold with Schouten-van Kampen con-
nection. Then R*.C* = R*.R".

Now, the projective curvature tensor [15] P* with respect to the Schouten-van
Kampen connection V* is defined by

1
PY(X,Y)Z = R'(X,Y)Z — 3 {S"(Y,Z)X - §"(X, Z)Y}. (57)
By interchanging X and Y in (57), we have
1
P(Y.X)Z = R'(Y.X)Z - o {S"(X,2)Y - §"(Y, Z)X}. (58)

By adding (57) and (58) and using the fact that R(X,Y)Z + R(Y,X)Z = 0, we
get
P*(X,Y)Z+ P*(Y,X)Z = 0. 9)

(5
From (15), (57) and the first Bianchi identity R(X,Y)Z+R(Y,Z)X+R(Z,X)Y =
0 with respect to V, we obtain

PY(X,Y)Z + P*(Y, Z)X + P*(Z,X)Y = 0. (60)
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Hence, (59) and (60), show that the projective curvature tensor with respect to
the Schouten-van Kampen connection in a Kenmotsu manifold is skew-symmetric
and cyclic.

Now, by taking Z = ¢ in (57), using (16) and (17), we get

P (X, Y)¢=0. (61)
Thus, we can state the following;:

Theorem 8. Let M be a Kenmotsu manifold with the Schouten-van Kampen
connection being &-projectively flat.

Definition 6. A Kenmotsu manifold is said to be ¢-projectively semisymmetric
with respect to the Schouten-van Kampen connection V* if

P (X,Y).9¢=0, (62)
for any vector fields X, Y on M.
Now, (62) turns into
(P*(X,Y).0)Z = P*(X,Y)oZ — ¢P*(X,Y)Z = 0. (63)

Making use of (57), (15) and (17) in (63), we get

R(X,Y)$pZ — R(X,Y)Z — %{S(Y, 0Z2)X — S(X,02)Y

(64)
+ S(X,Z)6Y — S(Y, Z)$X} = 0.
Taking Y by £ in (64), using (6) and (9), we get
S(X,9Z)§ = —2ng(X, ¢Z)¢. (65)

Taking an inner product with £ and Replacing X by ¢X, using (2) and (11) in
(65), we get
S(Y.2) = ~2ng(Y, 2). (66)

and
r=-—2n(2n+1). (67)

Again by substituting (67) in (57), we obtain

P*(X,Y)Z = R(X,Y)Z + {g(Y, 2)X — g(X, Z)Y}. (68)

Thus we can state the following :

Theorem 9. Let M be a Kenmotsu manifold with the Schouten-van Kampen con-
nection being ¢-projectively semisymmetric if and only if S(Y,Z) = —2ng(Y, Z).
Further, if P* = 0 then M is isomorphic to the hyperbolic space H*"T1(—1).
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In a Riemannian manifold, the Weyl conformal curvature tensor K* with
respect to the Schouten-van Kampen connection V* is defined as

K*(X,Y)Z = R(X,Y)Z — 2n1_ (S' (V. 2)X = SU (X, 2)Y +g(V, 2)Q"X
~9(X.2)QV} + g {9V 2)X (X 2)Y )
(69)
By making use of (15), (17), (18), (19) in (69) yields
K*(X,Y)Z = K(X,Y)Z. (70)

for all X,Y,Z. Thus we state the following;:

Theorem 10. The Weyl conformal curvature tensor of Kenmotsu manifold with
respect to the LeviCivita connection and the Schouten-van Kampen connection are
equivalent.

Definition 7. A Kenmotsu manifold with respect to the Schouten-van Kampen
connection V* is called recurrent, if its curvature tensor R* satisfies the condition

(Viy B)(X,Y)Z = A(W)R*(X,Y)Z, (71)
where R* s the curvature tensor with respect to the connection V*.
Using (71), we can write

Viy R (X,Y)Z — R*(Viy X,Y)Z — R*(X,ViyY)Z — R*(X,Y)Viy Z

— A(W)R*(X,Y)Z. (72)
Making use of (13), (15) and (17) in (72), we get

gW, R(X,Y)Z2)§ = g(W, X)R(§,Y)Z — g(W, Y )R(X,£)Z — g(W, Z) R(X, V)¢
—(R(X,Y)Z)W +n(X)R(W,Y)Z +n(Y)R(X,W)Z +n(Z)R(X,Y)W
—n(W){R(X,Y)Z — R(¢X,Y)Z — R(X,¢Y)Z — R(X,Y)$Z}

= AW){g(Y,2)X — g(X, Z)Y'}.

Replacing Z by ¢ and using (1), (6), (7) and (8), we get
AW){n(Y)X = n(X)Y} = g(W,Y)X —g(W, X)Y + R(X,Y)W.  (74)

Taking an inner product with U in (74), we have

AW){n(Y)g(X,U) —n(X)g(Y,U)}

— (W Y)g(X,U) — g(W, X)g(Y.U) + R(X. Y. W.U). (75)
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Let {e1, €2, €3, ....... ean+1} be alocal orthonormal basis of vector fields in M. Then
by putting X = U = ¢; in (75) and summing up with respect to 7,1 <i < 2n+1,
we obtain

S(Y,W) = =2n{g(Y, W) +n(Y)A(W)}. (76)

Suppose the associated 1-form A is equal to the associated 1-form 7, then from
(76), we get

S(Y,W) = =2n{g(Y,W) +n(Y)n(W)}. (77)
Thus we state the following :
Theorem 11. If a Kenmotsu manifold whose curvature tensor of manifold is co-
variant constant with respect to the Schouten-van Kampen connection, the mani-

fold is recurrent and the associated 1-form A is equal to the associated 1-form n,
then the manifold is an n-FEinstein manifold.

4 Example of a 5-dimensional Kenmotsu manifold with
respect to the Schouten-van Kampen connection

We consider the five-dimensional manifolod M = {(x,y, z,u,v) € R®}, where
(x,y,2,u,v) are the standard coordinates in R®. The vector fields

0

0
9 el
oxr’ 2 €

B = e ?
1 € 8y7

are linearly independent at each point of M. Let g be the Riemannian metric

defined by
_J1 fori=yj,
95730 fori+j.

Let n be the 1-form defined by n(Z) = g(Z, E3) for any Z € x(M). Let ¢ be the
(1, 1) tensor field defined by ¢y = E3,pFs = Ey,¢F3 = —E1,0FEy = —FEo, pFE5 =
0. Then using the linearity of ¢ and g we have

n(Es) =1, ¢*(Z2)=-Z+n(2)Es5, g(¢Z,¢U) = g(Z,U) —n(Z)n(U),

for any Z,U € x(M). Thus for E5 =&, (¢,&, 1, g) defines an almost contact metric
structure on M.
Let V be the Levi-Civita connection with respect to the metric g. Then we have

[E7, E9] = [E1, Es] = [Ey, E4] = [E2, E3] =0, [Ei, E5] = Ej,
(B4, B5] = By, [E2, Ey] = [E3,E4) =0, [E, Es] = E», [F3, E5] = Es.

The Riemannian connection V of metric g is given by the Koszul’s formula

29(VxY,2) = X(9(Y, 2)) + Y (9(2, X)) = Z(9(X,Y))
- g(X, [Y’ Z]) —g(Y, [X7 Z]) —l—g(Z, [Xv Y])
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By Koszul’s formula, we get

Vg By =

Vg, E1 =0,
Vi, B =0,
Vi, B =0,
Vi B =0,

—Es, Vg Ey=0, Vg E3=0, Vg E1=0, Vg Es = F,
Vg,Ey =—E5, Vg,E3=0, Vg, E4 =0, Vg,Es = E»,
Vg,E2 =0, Vg, B3 =—-F5, Vg, B4 =0, Vg,Es = Es,
Vg,E2 =0, Vg, BE3=0, Vg, Ey=—-E5, Vg, Es = E4,

Vi By =0, Vg, Es=0, Vg E =0, VgEs=0.

Further, we obtain the following:

Vi Ej =0, 4, j=1,2,34,5.

and hence
(VE, Q) E; =

From the above expressions it follows that the manifold satisfies (2), (3) and (4)

i, 7=1,2,3,4,5.

for £ = E5. Hence the manifold is a Kenmotsu manifold. With the help of the
above results we can verify the following results.
R(E1, E2)Ey = R(FE1, Es)Es = R(Ey, E4)Ey = R(Ey, E5)Es = —Ey,
R(E1,E2)Ey = Eo, R(Eh, Es)Ey = R(Es, E3)Es = R(Ey, E3)Es = Es,
R(E2, E3)E3 = R(E2, Ex)Eq = R(Eq, E5)Es = —E», R(Es3, Eq)Ey = —E3,
R(E,, E5)E> = R(En, Es)Er = R(Ey, E5)Ey = R(E3, E5)E3 = E,
R(E1,E4)FEy = R(Es, Ey)Ey = R(E3,E4)Es = R(Es, Eq)Es = Ey

R*(E;,E;)Er, =0, 14, j, k=1,2,3,4,5.
From the above expressions of the curvature tensor of the Kenmotsu manifold it
can be easily seen that the manifold has a constant sectional curvature —1.

Making use of the above results we obtain the Ricci tensors as follows:

S(E, Bv) = g(R(E1, E2)Ea, Er) + g(R(EY, E3)Es, Ev) + g(R(Eh, E)Ey, E)

g(R(E1, E5)Es5, Ey) = —4.
Similarly, we have
S(Es, Ey) = S(Fs3, E3) = S(Es, E3) = S(Ey, Ey) = S(Es5, E5) = -4 (78)
and
S*(Ey, EBy) = 57(Ey, Ea) = S™(E3, E3) = S"(Ey, Ea) = §"(E5, Es5) = 0.
and

> 5
"= Zs(eivei) =-20 and r*= ZS*(eivei) —0.

i=1
Therefore, from (78) it can be easily verified that the manifold is an Einstein
manifold with respect to the Levi-Civita connection.
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