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Abstract

The aim of the present paper is to study the concircular curvature tensor,
projective curvature tensor, Weyl conformal curvature tensor of Kenmotsu
manifolds admitting Schouten-van Kampen connection and an example is
given to verify our results.
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1 Introduction

The Schouten-van Kampen connection has been introduced for studying non-
holomorphic manifolds. It preserves by parallelism, a pair of complementary dis-
tributions on a differentiable manifold endowed with an affine connection [2] [6]
[13]. Then Olszak has studied the Schouten-van Kampen connection to adapt
to an almost contact metric structure [11]. He has characterized some classes of
almost contact metric manifolds with the Schouten-van Kampen connection and
established certain curvature properties with respect to this connection. Recently
Gopal Ghosh [5], Nagaraja [8] and Yildiz [16] have studied the Schouten-van Kam-
pen connection in Sasakian manifolds and f -Kenmotsu manifolds respectively.
Kenmotsu manifolds introduced by Kenmotsu in 1971[7] have been extensively
studied by many authors [9] [10] [12].
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The present paper is organized as follows: After a brief review of Kenmotsu
manifolds in section 2, we prove that if the curvature tensor with respect to the
Schouten-van Kampen connection ∇∗ vanishes, then the Kenmotsu manifold is
locally isometric to the hyperbolic space H2n+1(−1). Thereafter, we study con-
circularly flat, ξ-concircularly flat, pseudo-concircularly flat and φ-concircularly
semisymmetric Kenmotsu manifolds with respect to Schouten-van Kampen con-
nection and proved R∗.C∗ = R∗.R∗. Further, we study the projective curvature
tensor, Weyl projective curvature tensor and recurrent conditions of Kenmotsu
manifold with respect to the Schouten-van Kampen connection. Finally, in the
last section we give an example of a 5-dimensional Kenmotsu manifold admitting
Schouten-van Kampen connection to verify our results.

2 Preliminaries

A (2n + 1)-dimensional smooth manifold M is said to be an almost contact
metric manifold if it admits an almost contact metric structure (φ, ξ, η, g) consist-
ing of a tensor field φ of type (1, 1), a vector field ξ, a 1-form η and a Riemannian
metric g compatible with (φ, ξ, η) satisfying

φ2X = −X + η(X)ξ, φξ = 0, g(X, ξ) = η(X), η(ξ) = 1, η ◦ φ = 0 (1)

and

g(φX, φY ) = g(X,Y )− η(X)η(Y ). (2)

An almost contact metric manifold is said to be a Kenmotsu manifold [3] if

(∇Xφ)Y = −g(X,φY )ξ − η(Y )φX, (3)

where ∇ denotes the Riemannian connection of g.
In a Kenmotsu manifold the following relations hold [4].

∇Xξ = X − η(X)ξ, (4)

(∇Xη)Y = g(∇Xξ, Y ), (5)

R(X,Y )ξ = η(X)Y − η(Y )X, (6)

R(ξ,X)Y = η(Y )X − g(X,Y )ξ, (7)

η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y, Z)η(X), (8)

S(X, ξ) = −2nη(X), (9)

Qξ = −2nξ, (10)

S(φX, φY ) = S(X,Y ) + 2nη(X)η(Y ), (11)

for any vector fields X,Y, Z on M , where R denotes the curvature tensor of type
(1, 3) on M .
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3 Some curvature properties of Kenmotsu manifolds
with Schouten-van Kampen connection

Throughout this paper we associate ∗ with the quantities with respect to the
Schouten-van Kampen connection. The Schouten-van Kampen connection ∇∗
associated to the Levi-Civita connection ∇ is given by [11]

∇∗XY = ∇XY − η(Y )∇Xξ + (∇Xη)(Y )ξ, (12)

for any vector fields X, Y on M .
Using (4) and (5), the above equation yields,

∇∗XY = ∇XY + g(X,Y )ξ − η(Y )X. (13)

By taking Y = ξ in (13) and using (4) we obtain

∇∗Xξ = 0. (14)

We now calculate the Riemann curvature tensor R∗ using (13) as follows:

R∗(X,Y )Z = R(X,Y )Z + g(Y, Z)X − g(X,Z)Y. (15)

Using (6) and taking Z = ξ in (15) we get

R∗(X,Y )ξ = 0. (16)

On contracting (15), we obtain the Ricci tensor S∗ of a Kenmotsu manifold with
respect to the Schouten-van Kampen connection ∇∗ as

S∗(Y, Z) = S(Y,Z) + 2ng(Y, Z). (17)

This gives

Q∗Y = QY + 2nY. (18)

Contracting with respect to Y and Z in (17), we get

r∗ = r + 2n(2n+ 1), (19)

where r∗ and r are the scalar curvatures with respect to the Schouten-van Kampen
connection ∇∗ and the Levi-Civita connection ∇ respectively.

Definition 1. A Kenmotsu manifold with respect to the Levi-Civita connection
is of constant curvature if its curvature tensor R is of the form

g(R(X,Y )Z,U) = k{g(Y, Z)g(X,U)− g(X,Z)g(Y,U)},

where k is a constant.
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If R∗ = 0, then the equation (15) becomes

R(X,Y, Z, U) = −{g(Y,Z)g(X,U)− g(X,Z)g(Y,U)}. (20)

From which it follows that the Kenmotsu manifold with respect to the Levi-Civita
connection is of constant curvature −1.
This leads to the following :

Theorem 1. If the curvature tensor of a Kenmotsu manifold with respect to
Schouten-van Kampen connection ∇∗ vanishes, then the Kenmotsu manifold is
locally isometric to the hyperbolic space H2n+1(−1).

Definition 2. [1] For each plane p in the tangent space Tx(M), the sectional

curvature K(p) is defined by K(p) =
R(X,Y,X, Y )

g(X,X)g(Y, Y )− g(X,Y )2
, where {X,Y }

is the orthonormal basis for p. Clearly K(p) is independent of the choice of the
orthonormal basis {X,Y }.

Taking Z = X, U = Y in (20), we get

R(X,Y,X, Y ) = {g(X,X)g(Y, Y )− g(X,Y )g(X,Y )}. (21)

Then, from the above equation we conclude that

K(p) =
R(X,Y,X, Y )

g(X,X)g(Y, Y )− g(X,Y )2
= −1. (22)

Thus, we can state the following theorem :

Theorem 2. If in a Kenmotsu manifold, the curvature tensor of a Schouten-
van Kampen connection ∇∗ vanishes, then the sectional curvature of the plane
determined by two vectors X,Y ∈ ξ⊥ is −1.

Now, an interesting invariant of a concircular transformation is the concircular
curvature tensor. The concircular curvature tensor [14] C∗ with respect to the
Schouten-van Kampen connection ∇∗ is defined by

C∗(X,Y )Z = R∗(X,Y )Z − r∗

2n(2n+ 1)
{g(Y,Z)X − g(X,Z)Y }, (23)

for all vector fields X, Y , Z on M .

By interchanging X and Y in (23), we have

C∗(Y,X)Z = R∗(Y,X)Z − r∗

2n(2n+ 1)
{g(X,Z)Y − g(Y,Z)X}. (24)

By adding (23) and (24) and using the fact that R(X,Y )Z + R(Y,X)Z = 0, we
get

C∗(X,Y )Z + C∗(Y,X)Z = 0. (25)
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From (15), (23) and first Bianchi identity R(X,Y )Z+R(Y,Z)X +R(Z,X)Y = 0
with respect to ∇, we obtain

C∗(X,Y )Z + C∗(Y,Z)X + C∗(Z,X)Y = 0. (26)

Hence, (25) and (26), show that concircular curvature tensor with respect to the
Schouten-van Kampen connection in a Kenmotsu manifold is skew-symmetric and
cyclic.
Next, we assume that the manifold M with respect to the Schouten-van Kampen
connection is concircularly flat, that is, C∗(X,Y )Z = 0. Then from (23), it follows
that

R∗(X,Y )Z =
r∗

2n(2n+ 1)
{g(Y, Z)X − g(X,Z)Y }. (27)

Taking the inner product of the above equation with ξ, we have

g(R∗(X,Y )Z, ξ) =
r∗

2n(2n+ 1)
{g(Y,Z)η(X)− g(X,Z)η(Y )}. (28)

Using (1), (8), (15) and (19) in (28), we get

r + 2n(2n+ 1)

2n(2n+ 1)
{g(Y,Z)η(X)− g(X,Z)η(Y )} = 0. (29)

This implies that either the scalar curvature of M is r = −2n(2n+ 1) or

g(Y, Z)η(X)− g(X,Z)η(Y ) = 0. (30)

Taking Y = ξ in (30) and using (1), yields

η(X)η(Z)− g(X,Z) = 0. (31)

Replacing X by QX in (31) and using (10), we get

S(X,Z) = −2nη(X)η(Z). (32)

Hence we can state the following theorem:

Theorem 3. For a concircularly flat Kenmotsu manifold with respect to the
Schouten-van Kampen connection, either the scalar curvature is −2n(2n + 1) or
the manifold is a special type of η-Einstein manifold.

Definition 3. A Kenmotsu manifold with respect to the Schouten-van Kampen
connection ∇∗ is said to be ξ- concircularly flat if C∗(X,Y )ξ = 0.

Now, we assume that the manifold M with respect to the Schouten-van Kam-
pen connection is ξ-concircularly flat, that is, C∗(X,Y )ξ = 0. Then from (23), it
follows that

R∗(X,Y )ξ =
r∗

2n(2n+ 1)
{η(Y )X − η(X)Y }. (33)
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In view of (16) and (19), we have

r + 2n(2n+ 1)

2n(2n+ 1)
{η(Y )X − η(X)Y } = 0. (34)

Taking Y = ξ in (34) and using (1), we get

r + 2n(2n+ 1)

2n(2n+ 1)
{X − η(X)ξ} = 0. (35)

Taking the inner product of the above equation with U , we have

r + 2n(2n+ 1)

2n(2n+ 1)
{g(X,U)− η(X)η(U)} = 0. (36)

This implies that either the scalar curvature of M is r = −2n(2n+ 1) or

g(X,U)− η(X)η(U) = 0. (37)

Now, replacing X by QX in (37) and using (10), we get

S(X,U) = −2nη(X)η(U). (38)

Hence we can state the following theorem:

Theorem 4. For a ξ-concircularly flat Kenmotsu manifold with respect to the
Schouten-van Kampen connection, either the scalar curvature is −2n(2n + 1) or
the manifold is a special type of η-Einstein manifold.

Definition 4. A Kenmotsu manifold is said to be pseudo-concircularly flat with
respect to the Schouten-van Kampen connection ∇∗ if it satisfies

g(C∗(φX, Y )Z, φW ) = 0, (39)

for any vector fields X,Y, Z on M .

In view of (23) and (39), we have

g(R∗(φX, Y )Z − r∗

2n(2n+ 1)
{g(Y,Z)φX − g(φX,Z)Y }, φW ) = 0. (40)

Making use of (15) and (19) in (40), we get

g(R(φX, Y )Z, φW )− r

2n(2n+ 1)
{g(Y, Z)g(φX, φW )−g(φX,Z)Y, g(Y, φW )} = 0.

(41)
Let {e1, e2, e3, .......e2n+1} be a local orthonormal basis of vector fields in M . Then
by putting Y = Z = ei in (41) and summing up with respect to i, 1 ≤ i ≤ 2n+ 1,
we obtain

S(φX, φW ) =
r

2n+ 1
g(φX, φW ). (42)



Kenmotsu manifolds with the Schouten-van Kampen connection 357

On using (1) and (11) in (42), we get

S(X,W ) =
r

2n+ 1
g(X,W )− {2n+

r

2n+ 1
η(X)η(W )}. (43)

Again taking X = W = ei in (43) and summing up with respect to i, 1 ≤ i ≤
2n+ 1, we obtain

r = −2n(2n+ 1). (44)

By virtue of (43) and (44), we get

S(X,W ) = −2ng(X,W ). (45)

Thus, M is an Einstein manifold.
Hence, we state the following:

Theorem 5. Let the Kenmotsu manifold M with Schouten-van Kampen connec-
tion be pseudo-concircularly flat if and only if S(Y,Z) = −2ng(Y, Z).

Definition 5. [17] A Kenmotsu manifold is said to be φ-concircularly semisym-
metric with respect to Schouten-van Kampen connection ∇∗ if C∗(X,Y ).φ = 0
holds on M .

Now, we consider φ-concircularly semisymmetric Kenmotsu manifold with re-
spect to Schouten-van Kampen connection. Then

(C∗(X,Y ).φ)Z = C∗(X,Y )φZ − φC∗(X,Y )Z = 0, (46)

for all X,Y, Z.
Taking Z = ξ in (46), we get

φ(C∗(X,Y )ξ) = 0. (47)

Using (23) and (6) in (47), we get

r + 2n(2n+ 1)

2n(2n+ 1)
{η(X)φY − η(Y )φX} = 0. (48)

Replace Y by ξ and X by φX in (48) and using (1), we get

r + 2n(2n+ 1)

2n(2n+ 1)
{X − η(X)ξ} = 0. (49)

Taking the inner product of the above equation with U , we have

r + 2n(2n+ 1)

2n(2n+ 1)
{g(X,U)− η(X)η(U)} = 0. (50)

This implies that either the scalar curvature of M is r = −2n(2n+ 1) or

g(X,U)− η(X)η(U) = 0. (51)

Now, replacing X by QX in (51) and using (10), we get

S(X,U) = −2nη(X)η(U). (52)

Hence we can state the following:
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Theorem 6. For a φ-concircularly semisymmetric Kenmotsu manifold with re-
spect to the Schouten-van Kampen connection, either the scalar curvature is
−2n(2n+ 1) or the manifold is a special type of η-Einstein manifold.

Further, we have

(R∗(X,Y ).C∗)(U, V,W ) = R∗(X,Y )C∗(U, V )W − C∗(R∗(X,Y )U, V )W

− C∗(U,R∗(X,Y )V )W − C∗(U, V )R∗(X,Y )W.
(53)

With the use of (23), (53) becomes

(R∗(X,Y ).C∗)(U, V,W ) = R∗(X,Y )R∗(U, V )W −R∗(R∗(X,Y )U, V )W

−R∗(U,R∗(X,Y )V )W −R∗(U, V )R∗(X,Y )W

+
r∗

2n(2n+ 1)
{g(R∗(X,Y )V,W )U + g(V,R∗(X,Y )W )U − g(R∗(X,Y )U,W )V

− g(U,R∗(X,Y )W )V }.
(54)

By the symmetric properties of the curvature tensor R∗ [12, ?], we get

(R∗(X,Y ).C∗)(U, V,W ) = R∗(X,Y )R∗(U, V )W −R∗(R∗(X,Y )U, V )W

−R∗(U,R∗(X,Y )V )W −R∗(U, V )R∗(X,Y )W.
(55)

Finally, we get

(R∗(X,Y ).C∗)(U, V,W ) = (R∗(X,Y ).R∗)(U, V,W ). (56)

Thus we state the following:

Theorem 7. Let M be a Kenmotsu manifold with Schouten-van Kampen con-
nection. Then R∗.C∗ = R∗.R∗.

Now, the projective curvature tensor [15] P ∗ with respect to the Schouten-van
Kampen connection ∇∗ is defined by

P ∗(X,Y )Z = R∗(X,Y )Z − 1

2n
{S∗(Y, Z)X − S∗(X,Z)Y }. (57)

By interchanging X and Y in (57), we have

P ∗(Y,X)Z = R∗(Y,X)Z − 1

2n
{S∗(X,Z)Y − S∗(Y,Z)X}. (58)

By adding (57) and (58) and using the fact that R(X,Y )Z + R(Y,X)Z = 0, we
get

P ∗(X,Y )Z + P ∗(Y,X)Z = 0. (59)

From (15), (57) and the first Bianchi identity R(X,Y )Z+R(Y, Z)X+R(Z,X)Y =
0 with respect to ∇, we obtain

P ∗(X,Y )Z + P ∗(Y,Z)X + P ∗(Z,X)Y = 0. (60)
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Hence, (59) and (60), show that the projective curvature tensor with respect to
the Schouten-van Kampen connection in a Kenmotsu manifold is skew-symmetric
and cyclic.
Now, by taking Z = ξ in (57), using (16) and (17), we get

P ∗(X,Y )ξ = 0. (61)

Thus, we can state the following:

Theorem 8. Let M be a Kenmotsu manifold with the Schouten-van Kampen
connection being ξ-projectively flat.

Definition 6. A Kenmotsu manifold is said to be φ-projectively semisymmetric
with respect to the Schouten-van Kampen connection ∇∗ if

P ∗(X,Y ).φ = 0, (62)

for any vector fields X,Y on M .

Now, (62) turns into

(P ∗(X,Y ).φ)Z = P ∗(X,Y )φZ − φP ∗(X,Y )Z = 0. (63)

Making use of (57), (15) and (17) in (63), we get

R(X,Y )φZ − φR(X,Y )Z − 1

2n
{S(Y, φZ)X − S(X,φZ)Y

+ S(X,Z)φY − S(Y, Z)φX} = 0.
(64)

Taking Y by ξ in (64), using (6) and (9), we get

S(X,φZ)ξ = −2ng(X,φZ)ξ. (65)

Taking an inner product with ξ and Replacing X by φX, using (2) and (11) in
(65), we get

S(Y, Z) = −2ng(Y,Z). (66)

and
r = −2n(2n+ 1). (67)

Again by substituting (67) in (57), we obtain

P ∗(X,Y )Z = R(X,Y )Z + {g(Y,Z)X − g(X,Z)Y }. (68)

Thus we can state the following :

Theorem 9. Let M be a Kenmotsu manifold with the Schouten-van Kampen con-
nection being φ-projectively semisymmetric if and only if S(Y, Z) = −2ng(Y,Z).
Further, if P ∗ = 0 then M is isomorphic to the hyperbolic space H2n+1(−1).
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In a Riemannian manifold, the Weyl conformal curvature tensor K∗ with
respect to the Schouten-van Kampen connection ∇∗ is defined as

K∗(X,Y )Z = R∗(X,Y )Z − 1

2n− 1
{S∗(Y,Z)X − S∗(X,Z)Y + g(Y, Z)Q∗X

− g(X,Z)Q∗Y }+
r∗

2n(2n− 1)
{g(Y,Z)X − g(X,Z)Y }.

(69)

By making use of (15), (17), (18), (19) in (69) yields

K∗(X,Y )Z = K(X,Y )Z. (70)

for all X,Y, Z. Thus we state the following:

Theorem 10. The Weyl conformal curvature tensor of Kenmotsu manifold with
respect to the LeviCivita connection and the Schouten-van Kampen connection are
equivalent.

Definition 7. A Kenmotsu manifold with respect to the Schouten-van Kampen
connection ∇∗ is called recurrent, if its curvature tensor R∗ satisfies the condition

(∇∗WR∗)(X,Y )Z = A(W )R∗(X,Y )Z, (71)

where R∗ is the curvature tensor with respect to the connection ∇∗.

Using (71), we can write

∇∗WR∗(X,Y )Z −R∗(∇∗WX,Y )Z −R∗(X,∇∗WY )Z −R∗(X,Y )∇∗WZ
= A(W )R∗(X,Y )Z.

(72)

Making use of (13), (15) and (17) in (72), we get

g(W,R(X,Y )Z)ξ − g(W,X)R(ξ, Y )Z − g(W,Y )R(X, ξ)Z − g(W,Z)R(X,Y )ξ

− η(R(X,Y )Z)W + η(X)R(W,Y )Z + η(Y )R(X,W )Z + η(Z)R(X,Y )W

− η(W ){φR(X,Y )Z −R(φX, Y )Z −R(X,φY )Z −R(X,Y )φZ}
= A(W ){g(Y, Z)X − g(X,Z)Y }.

(73)

Replacing Z by ξ and using (1), (6), (7) and (8), we get

A(W ){η(Y )X − η(X)Y } = g(W,Y )X − g(W,X)Y +R(X,Y )W. (74)

Taking an inner product with U in (74), we have

A(W ){η(Y )g(X,U)− η(X)g(Y,U)}
= g(W,Y )g(X,U)− g(W,X)g(Y,U) +R(X,Y,W,U).

(75)
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Let {e1, e2, e3, .......e2n+1} be a local orthonormal basis of vector fields in M . Then
by putting X = U = ei in (75) and summing up with respect to i, 1 ≤ i ≤ 2n+ 1,
we obtain

S(Y,W ) = −2n{g(Y,W ) + η(Y )A(W )}. (76)

Suppose the associated 1-form A is equal to the associated 1-form η, then from
(76), we get

S(Y,W ) = −2n{g(Y,W ) + η(Y )η(W )}. (77)

Thus we state the following :

Theorem 11. If a Kenmotsu manifold whose curvature tensor of manifold is co-
variant constant with respect to the Schouten-van Kampen connection, the mani-
fold is recurrent and the associated 1-form A is equal to the associated 1-form η,
then the manifold is an η-Einstein manifold.

4 Example of a 5-dimensional Kenmotsu manifold with
respect to the Schouten-van Kampen connection

We consider the five-dimensional manifolod M = {(x, y, z, u, v) ∈ R5}, where
(x, y, z, u, v) are the standard coordinates in R5. The vector fields

E1 = e−v
∂

∂x
, E2 = e−v

∂

∂y
, E3 = e−v

∂

∂z
, E4 = e−v

∂

∂u
, E5 = e−v

∂

∂v

are linearly independent at each point of M . Let g be the Riemannian metric
defined by

gij =

{
1 for i = j,

0 for i 6= j.

Let η be the 1-form defined by η(Z) = g(Z,E3) for any Z ∈ χ(M). Let φ be the
(1, 1) tensor field defined by φE1 = E3, φE2 = E4, φE3 = −E1, φE4 = −E2, φE5 =
0. Then using the linearity of φ and g we have

η(E5) = 1, φ2(Z) = −Z + η(Z)E5, g(φZ, φU) = g(Z,U)− η(Z)η(U),

for any Z,U ∈ χ(M). Thus for E5 = ξ, (φ, ξ, η, g) defines an almost contact metric
structure on M .
Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

[E1, E2] = [E1, E3] = [E1, E4] = [E2, E3] = 0, [E1, E5] = E1,

[E4, E5] = E4, [E2, E4] = [E3, E4] = 0, [E2, E5] = E2, [E3, E5] = E3.

The Riemannian connection ∇ of metric g is given by the Koszul’s formula

2g(∇XY, Z) = X(g(Y,Z)) + Y (g(Z,X))− Z(g(X,Y ))

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).
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By Koszul’s formula, we get

∇E1E1 = −E5, ∇E1E2 = 0, ∇E1E3 = 0, ∇E1E4 = 0, ∇E1E5 = E1,

∇E2E1 = 0, ∇E2E2 = −E5, ∇E2E3 = 0, ∇E2E4 = 0, ∇E2E5 = E2,

∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 = −E5, ∇E3E4 = 0, ∇E3E5 = E3,

∇E4E1 = 0, ∇E4E2 = 0, ∇E4E3 = 0, ∇E4E4 = −E5, ∇E4E5 = E4,

∇E5E1 = 0, ∇E5E2 = 0, ∇E5E3 = 0, ∇E5E4 = 0, ∇E5E5 = 0.

Further, we obtain the following:

∇∗Ei
Ej = 0, i, j = 1, 2, 3, 4, 5.

and hence
(∇∗Ei

φ)Ej = 0, i, j = 1, 2, 3, 4, 5.

From the above expressions it follows that the manifold satisfies (2), (3) and (4)
for ξ = E5. Hence the manifold is a Kenmotsu manifold. With the help of the
above results we can verify the following results.

R(E1, E2)E2 = R(E1, E3)E3 = R(E1, E4)E4 = R(E1, E5)E5 = −E1,

R(E1, E2)E1 = E2, R(E1, E3)E1 = R(E5, E3)E5 = R(E2, E3)E5 = E3,

R(E2, E3)E3 = R(E2, E4)E4 = R(E2, E5)E5 = −E2, R(E3, E4)E4 = −E3,

R(E2, E5)E2 = R(E1, E5)E1 = R(E4, E5)E4 = R(E3, E5)E3 = E5,

R(E1, E4)E1 = R(E2, E4)E2 = R(E3, E4)E3 = R(E5, E4)E5 = E4

and
R∗(Ei, Ej)Ek = 0, i, j, k = 1, 2, 3, 4, 5.

From the above expressions of the curvature tensor of the Kenmotsu manifold it
can be easily seen that the manifold has a constant sectional curvature −1.
Making use of the above results we obtain the Ricci tensors as follows:

S(E1, E1) = g(R(E1, E2)E2, E1) + g(R(E1, E3)E3, E1) + g(R(E1, E4)E4, E1)

+ g(R(E1, E5)E5, E1) = −4.

Similarly, we have

S(E2, E2) = S(E3, E3) = S(E3, E3) = S(E4, E4) = S(E5, E5) = −4 (78)

and

S∗(E1, E1) = S∗(E2, E2) = S∗(E3, E3) = S∗(E4, E4) = S∗(E5, E5) = 0.

and

r =

5∑
i=1

S(ei, ei) = −20 and r∗ =

5∑
i=1

S∗(ei, ei) = 0.

Therefore, from (78) it can be easily verified that the manifold is an Einstein
manifold with respect to the Levi-Civita connection.
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