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DIFFERENTIAL TRANSFORMATION METHOD FOR
CIRCULAR MEMBRANE VIBRATIONS
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SOMBOON3

Abstract

The purpose of this research is to present the steps of one-dimensional
differential transformation method (DTM) to find the series solutions for the
vibrations of a circular membrane under the specified initial and boundary
conditions. The problems will be studied in the both cases of vibrations de-
pending only on radius and of the vibrations depending on both radius and
angle. We illustrate four examples of problems which the exact solutions can
be solve analytically and compare them to the DTM results, to show that the
DTM is reliable and of high accuracy. This work shows that the DTM is eas-
ier to use than the analytical method from the point of view of programming.
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1 Introduction

Circular membranes are important parts of drums, pumps, microphones, and
other devices. This accounts for their great importance in engineering. We con-
sider the case when the circular membrane is plane and its material is elastic, but
offers no resistance to bending (this excludes thin metallic membranes). Then the
vibrations of the circular membrane is given in the form of two-dimensional wave
equation in polar coordinates,
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∂2u

∂t2
= c2

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

)
,

u(R, θ, t) = 0 for all t ≥ 0, u(r, θ, 0) = f(r, θ), ut(r, θ, 0) = g(r, θ).

(1)

where 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π, c2 = T/ρ in term of the membranes tension T and
density ρ,R is a radius of a membrane, a membrane is fixed along the boundary
circle radius R, f(r, θ) is the initial shape at time t = 0 and g(r, θ) is the initial
velocity (see [4]).

The differential transformation method (DTM) is an alternative procedure for
obtaining an approximate Taylor series solution or the semi-analytical solution of
differential equations. The main advantage of this method is that it can be applied
directly to nonlinear differential equations without the requiring linearization and
discretization. The concept of the DTM was introduced by Zhou [10], who solved
linear and nonlinear problems in electrical circuits and many other problems re-
lated to differential equations (see also [3], [5], [6], [7], [8] and [9])

In the present paper, we will show how to extend the method of differential
transformation to the problem of vibrations of a circular membrane. The com-
putation consists of three steps. The first step is using the method of separation
of variables to obtain ODEs from the wave equation in Eq.(1). The next step is
applying the DTM to ODEs from the previous step to obtain recursive relations.
The last step is to find the coefficients of the series solutions for ODEs using the
recursive relations.

The present paper has been organized as follows. In the section 2, the one-
dimensional differential transformation method is introduced, and the Fourier
Bessel series are described. In the section 3, the analysis of the method for the
vibrations of a circular membrane both the vibrations depending on only radius
and the vibrations depending on both radius and angle are described, as shown
in subsection 3.1 and subsection 3.2, respectively. Four examples of vibrations of
a circular membrane with different conditions corresponding to the three steps in
the section 3, have been presented in the section 4. The conclusion is given at the
end of the paper in the section 5.

2 Preliminaries

The basic definitions and fundamental operations of the differential transform
are introduced as follows.

2.1 The one-dimensional differential transformation

Definition 1. The one-dimensional differential transform of the function x(t) is
defined as

X(k) =
1

k!

[
dkx(t)

dtk

]
t=0

, k ∈ I+ ∪ {0}. (2)



DTM for circular membrane vibrations 335

In Eq.(2), x(t) is called the original function and X(k) is called the transformed
function.

Definition 2. The inverse one-dimensional differential transforms of X(k) is
defined as

x(t) =
∞∑
k=0

X(k)tk, (3)

that is,

x(t) =
∞∑
k=0

tk

k!

[
dkx(t)

dtk

]
t=0

. (4)

Equation (4) implies that the concept of differential transformation method is de-
rived from Taylor series expansion. Actually, in concrete applications, the func-
tion x(t) is expressed by a truncated series and Eq.(3) becomes

x(t) =
N∑
k=0

X(k)tk. (5)

The fundamental operations of one-dimensional the DTM are shown in Table
1.

Table 1: The fundamental operations of one-dimensional DTM.

Original function x(t) Transformed function X(k)

x(t) ± y(t) X(k) ± Y (k)
λx(t) λX(k)

x(t)y(t)
∑k

r=0X(r)Y (k − r)

x(t)y(t)z(t)
∑k

r=0

∑r
l=0X(l)Y (r − l)Z(k − r)

dr

dtr
x(t)

(k + r)!

k!
X(k + r)

2.2 Fourier-Bessel series

The series solutions of the presented problems consist of the coefficients of the
Fourier-Bessel series corresponding to the Bessel functions of the first kind (see
also [1]). The following theorem explain the meaning of the Fourier-Bessel series
based on the orthogonality relations.

Theorem 1 (Orthogonality of the Bessel Functions [3]). For each fixed nonneg-
ative integer n the sequence of the Bessel functions of the first kind Jn(hn1r),
Jn(hn2r), ... with hnm = αnm/R where αnm is the mth positive zero of Jn, (m =
1, 2, 3, ...), forms an orthogonal set on the interval 0 ≤ r ≤ R with respect to the
weight function r, that is∫ R

0
rJn(hnmr)Jn(hnjr)dr = 0 (j 6= m,n fixed). (6)
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The Fourier-Bessel series for vibrations of a circular membrane independent of
angle in subsection 3.1 corresponding to Jn (n fixed) is f(r) =

∑∞
m=1AnmJn(hnmr),

(with hnm = αnm/R). Here the coefficients are

Anm =
2

R2J2
n+1(αnm)

∫ R

0
rf(r)Jn(hnmr)dr, (7)

where Jn(hnmr) =
∑∞

l=0

(−1)l(hnmr)
2l+n

22l+nl!(n+ l)!
is the Bessel function of order n of the

first kind and αnm is the mth positive zero of Jn, (m = 1, 2, 3, ...),

The Fourier-Bessel series for vibrations of a circular membrane depending on
both radius and angle in subsection 3.2 corresponding to Jn is

f(r, θ) =
∞∑
n=0

∞∑
m=1

Jn(hnmr)
(
Anm cos(nθ) +Bnm sin(nθ)

)
.

Here the coefficients are

Anm =
2

πR2J2
n+1(αnm)

∫ 2π

0

∫ R

0
f(r, θ)Jn(hnmr) cos(nθ)rdrdθ, (8)

Bnm =
2

πR2J2
n+1(αnm)

∫ 2π

0

∫ R

0
f(r, θ)Jn(hnmr) sin(nθ)rdrdθ, (9)

where Jn(hnmr) =
∑∞

l=0

(−1)l(hnmr)
2l+n

22l+nl!(n+ l)!
is the Bessel function of order n of the

first kind and αnm is the mth positive zero of Jn, (n = 0, 1, 2, ...,m = 1, 2, 3, ...).

3 Analysis of method

In this section, we will show how to use the DTM to the problems of vibrations
of a circular membrane. The presented problems include the vibrations of a circu-
lar membrane independent of angle studied in subsection 3.1 and the vibrations
of a circular membrane depending on both radius and angle studied in subsection
3.2.

3.1 Vibrations of a circular membrane independent of angle θ.

In this section, we consider a circular membrane of radius R which is fixed
along the boundary circle, the initial shape f(r), and assume that the initial
velocity g(r) is equal to zero. The model of the problem is

∂2u

∂t2
= c2

(
∂2u

∂r2
+

1

r

∂u

∂r

)
, (10)

u(R, t) = 0 for all t ≥ 0, u(r, 0) = f(r), ut(r, 0) = 0. (11)



DTM for circular membrane vibrations 337

The calculation consists of the following three steps.

Step 1 By the method of separation of variables, we obtain two linear ODEs form
the wave equation in Eq.(10).
The method of separation of variables uses the substitution

u(r, t) = w(r)g(t). (12)

Differentiating Eq.(12), we obtain

∂2u

∂t2
= w

d2g

dt2
,
∂u

∂r
=
dw

dr
g, and

∂2u

∂r2
=
d2w

dr2
g. (13)

By substituting Eq.(13) into Eq.(10), we obtain

w
d2g

dt2
= c2

(
d2w

dr2
g +

1

r

dw

dr
g

)
. (14)

Dividing the result by c2wg, we have

1

c2g

d2g

dt2
=

1

w

(
d2w

dr2
+

1

r

dw

dr

)
. (15)

The variables are now separated. Hence, both sides are independent and this can
only be so if they are equal to a constant. This constant must be negative in order
to obtain solutions that satisfy the boundary condition without being identically
zero. Thus,

1

c2g

d2g

dt2
=

1

w

(
d2w

dr2
+

1

r

dw

dr

)
= −h2nm. (16)

Eq.(16) gives the two linear ODEs,

d2g

dt2
+ λ2nmg = 0, λnm = chnm, (17)

by defining s = hnmr we reduce
d2w

dr2
+

1

r

dw

dr
+ h2nmw = 0 to the Bessel equation,

that is

s2
d2w

ds2
+ s

dw

ds
+ s2w = 0. (18)

Step 2 We apply the differential transform method to ODEs in Eqs.(17) and (18)
to obtain the recursive formulas.
Applying the fundamental operations of DTM in Table 1 to Eqs.(17) and (18),
respectively, we obtain

G(k + 2) = − λ2nmG(k)

(k + 1)(k + 2)
(19)
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k∑
l=0

δ(l − 2)(k − l + 1)(k − l + 2)W (k − l + 2)+

k∑
l=0

δ(l − 1)(k − l + 1)W (k − l + 1) +
k∑
l=0

δ(l − 2)W (k − l) = 0,

(20)

with the initial values G(0) = Anm, G(1) = 0,W (0) = 1 and W (1) = 0, where
Anm are the coefficients of the Fourier-Bessel series in Eq.(7).

Step 3 Using the recursive formulas in Eqs.(19) and (20) we find the coefficients
of the series solutions of the Eqs. (17) and (18), respectively.
To find the series solution of Eq.(17), we substitute into Eq.(19), then we obtain

G(2) = −−λ
2
nmG(0)

2
= −λ

2
nmAnm

2
, G(3) = −−λ

2
nmG(1)

6
= 0,

G(4) = −−λ
2
nmG(2)

12
=
λ2nmAnm

24
, G(5) = −−λ

2
nmG(3)

20
= 0,

G(6) = −−λ
2
nmG(4)

30
= −λ

2
nmAnm
720

, G(7) = −−λ
2
nmG(5)

42
= 0,

...
...

where, G(0), G(1), G(2), ... are the coefficients of the series solution.
Hence, we obtain the solution corresponding to Eq.(17), by substituting λnm =

c
αnm
R

,

gnm(t) = Anm

(
1− 2c2α2

nmt
2

R2
+

2c4α4
nmt

4

3R4
− 4c6α6

nmt
6

45R6
+

2c8α8
nmt

8

315R8
− · · ·

)
. (21)

To find the series solution of Eq.(18), we substitute k = 1, 2, ... into Eq.(20) and
we obtain

k = 1; δ(0− 2)(1− 0 + 1)(1− 0 + 2)W (1− 0 + 2)+

δ(0− 1)(1− 0 + 1)W (1− 0 + 1)+

δ(0− 2)W (1− 0) + δ(1− 2)(1− 1 + 1)(1− 1 + 2)W (1− 1 + 2)+

δ(1− 1)(1− 1 + 1)W (1− 1 + 1) + δ(1− 2)W (1− 1) = 0

W (1) = 0

k = 2; W (2) =
−W (0)

4
= −1

4
, k = 3; W (3) =

−W (1)

9
= 0

k = 4; W (4) =
−W (2)

16
=

1

64
, k = 5; W (5) =

−W (3)

25
= 0

...
...

Since, W (k) =
−W (k − 2)

k2
, k = 2, 3, 4, ... or W (k+2) =

−W (k)

(k + 2)2
, k = 0, 1, 2, 3, ...

and W (0),W (1),W (2), ... are the coefficients of the series solution. Hence, we
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obtain the series solution corresponding to Eq.(18), by substituting s = hnmr =
αnm
R

r,

wnm(r) = 1− α
2
nmr

2

4R2
+
α4
nmr

4

64R4
− α6

nmr
6

2304R6
+

α8
nmr

8

147456R8
− α10

nmr
10

14745600R10
+ · · · . (22)

Therefore, the series solution of vibrations of a circular membrane is

u(r, t) =

∞∑
m=1

wnm(r)gnm(t) =

∞∑
m=1

Anm

(
1− 2c2α2

nmt
2

R2
+ · · ·

)(
1− α2

nmr
2

4R2
+ · · ·

)
,

(23)
where Anm are the coefficients of the Fourier-Bessel series corresponding to Jn
which can be calculated by Eq.(7) and αnm is the mth positive zero of Jn.
Next, let us consider the general case, when the solution can also depend on angle
θ.

3.2 Vibrations of a circular membrane depending on both radius
and angle.

We now consider a circular membrane of radius R which is fixed along the
boundary circle, with the initial shape f(r, θ), and the initial velocity g(r, θ) equal
zero. The model of the problem is

∂2u

∂t2
= c2

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

)
, (24)

u(R, θ, t) = 0 for all t ≥ 0, u(r, θ, 0) = f(r, θ), ut(r, θ, 0) = 0. (25)

The calculation consists of the following three steps.

Step 1 Three ODEs form the wave equation in Eq.(24) using the method of
separation variables.
We define a solution in the method of separation of variables,

u(r, θ, t) = z(r, θ)g(t). (26)

Differentiating Eq.(26), we obtain

∂2u

∂t2
= z

d2g

dt2
,
∂u

∂r
=
∂z

∂r
g,

∂2u

∂r2
=
∂2z

∂r2
g and

∂2u

∂θ2
=
∂2z

∂θ2
g. (27)

Substituting Eq.(27) into Eq.(24) gives

z
d2g

dt2
= c2

(
∂2z

∂r2
g +

1

r2
∂z

∂r
g +

1

r2
∂2z

∂θ2
g

)
. (28)

Dividing both sides by c2zg yields

1

c2g

d2g

dt2
=

1

z

(
∂2z

∂r2
+

1

r2
∂z

∂r
+

1

r2
∂2z

∂θ2

)
. (29)
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The variables are now separated. Hence, both sides must equal a constant, that
is

1

c2g

d2g

dt2
=

1

z

(
∂2z

∂r2
+

1

r2
∂z

∂r
+

1

r2
∂2z

∂θ2

)
= −h2nm, (30)

Eq.(30) gives an ODE and a PDE, as follows:

d2g

dt2
+ λ2nmg = 0, λnm = chnm (31)

∂2z

∂r2
+

1

r

∂z

∂r
+

1

r2
∂2z

∂θ2
+ h2nmz = 0. (32)

The PDE as Eq.(32) can be separated by substituting z = w(r)q(θ) and its deriva-
tives into Eq.(32), we obtain

d2w

dr2
q +

1

r

dw

dr
q +

1

r2
w
d2q

dθ2
+ h2nmwq = 0. (33)

On the both sides, multiplying by r2/wq and then rearranging the equation, we
obtain

1

q

d2q

dθ2
= − 1

w

(
r2
d2w

dr2
+ r

dw

dr

)
− h2nmr2. (34)

The variables are now separated. The expressions on both sides must equal a
constant, that is

1

q

d2q

dθ2
= − 1

w

(
r2
d2w

dr2
+ r

dw

dr

)
− h2nmr2 = −n2, (35)

Eq.(35) gives two ODEs, as follows:

d2q

dθ2
+ n2q = 0, (36)

r2
d2w

dr2
+ r

dw

dr
+ (h2nmr

2 − n2)w = 0, (37)

Eq.(37) is known as the Bessel equation of order n where n = 1, 2, 3, .... The
nonnegative integer n in Eqs.(36) and (37) depends on the initial shape as shown
in Table 2.

Table 2: The values of nonnegative integer n corresponding to given initial shape
f(r, θ), and the initial values G(0), G(1), Q(0) and Q(1).

Initial shape f(r, θ) Value of n G(0) G(1) Q(0) Q(1)

w(r) 0 A0m 0 1 0
w(r) sin(Nθ), N = 0, 1, ... N BNm 0 0 N
w(r) cos(Nθ), N = 0, 1, ... N ANm 0 1 0
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Step 2 We apply the differential transform method to ODEs in Eqs.(31), (36)
and (37) to obtain recursive formulas.
Taking the DTM of Eqs. (31), (36) and (37),respectively, we obtain

G(k + 2) = − −λ2nmG(k)

(k + 1)(k + 2)
, (38)

Q(k + 2) = − n2Q(k)

(k + 1)(k + 2)
, (39)

n2W (k) =

k∑
l=0

δ(l − 2)(k − l + 1)(k − l + 2)W (k − l + 2)+

k∑
l=0

δ(l − 1)(k − l + 1)W (k − l + 1) +
α2
nm

R2

k∑
l=0

δ(l − 2)W (k − l).

(40)

Step 3 Using the recursive formulas in Eqs.(38), (39) and (40) to find the coeffi-
cients of the series solutions of ODEs.
Substituting k = 0, 1, 2, ... into Eq.(38), we obtain

G(2) = −−λ
2
nmG(0)

2
, G(3) = −−λ

2
nmG(1)

6
= 0,

G(4) = −−λ
2
nmG(2)

12
=
λ2nmG(0)

24
, G(5) = −−λ

2
nmG(3)

20
= 0,

G(6) = −−λ
2
nmG(4)

30
= −λ

2
nmG(0)

720
, G(7) = −−λ

2
nmG(5)

42
= 0,

...
...

where, G(0), G(1), G(2), ... are the coefficients of the series solution. Hence, we
obtain the solution corresponding to Eq.(31),

gnm(t) = G(0)

(
1− c2α2

nmt
2

2R2
+
c4α4

nmt
4

24R4
− c6α6

nmt
6

720R6
+
c8α8

nmt
8

40320R8
− · · ·

)
. (41)

where the values of G(0) depend on the initial shape, as shown in Table 2.
Substituting k = 0, 1, 2, ... into Eq.(36), we obtain

Q(2) = −n
2Q(0)

2
, Q(3) = −n

2Q(1)

6
,

Q(4) = −n
2G(2)

12
=
n4Q(0)

24
, Q(5) = −n

2Q(3)

20
=
n4Q(1)

120
,

Q(6) = −n
2Q(4)

30
= −n

2Q(0)

720
, Q(7) = −n

2Q(5)

42
= −n

6Q(1)

5040
,

...
...
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where, Q(0), Q(1), Q(2), ... are the coefficients of the series solution. Hence, we
obtain the solution corresponding to Eq.(39),

qn(θ) = Q(0)+Q(1)θ− n
2Q(0)

2
θ2− n

2Q(1)

6
θ3+

n4Q(0)

24
θ4+

n4Q(0)

120
θ5−· · · . (42)

Substituting k = 1, 2, 3, ... into Eq.(37), we obtain

k = 1; n2W (1) = W (1), k = 2; W (2) =
α2
nmW (0)

n2 − 4
,

k = 3; W (3) =
α2
nmW (1)

n2 − 9
, k = 4; W (4) =

α2
nmW (2)

n2 − 16
,

k = 5; W (3) =
α2
nmW (3)

n2 − 25
, k = 6; W (6) =

α2
nmW (4)

n2 − 36
,

...
...

Since, W (k) =
α2
nmW (k − 2)

n2 − k2
, k = 2, 3, 4, ..., or W (k + 2) =

α2
nmW (k)

n2 − (k + 2)2
, k =

0, 1, 2, .... Hence, we obtain the solution corresponding to Eq.(40),

wnm(r) = W (0) +W (1)r +W (2)r2 +W (3)r3 + · · · (43)

Therefore, the solutions of vibrations of a circular membrane is

u(r, θ, t) =
∞∑
n=0

∞∑
m=1

wnm(r)qnm(t)qn(θ)

=

∞∑
n=0

∞∑
m=1

G(0)
(
W (0) +W (1)r +W (2)r2 + · · ·

)
(

1− c2α2
nmt

2

2R2
+
c4α4

nmt
4

24R4
− · · ·

)
(
Q(0) +Q(1)θ − n2Q(0)

2
θ2 − n2Q(1)

6
θ3 + · · ·

)
,

(44)

where the values of G(0) depend on the initial shape function, it can be Anm
or Bnm (see Table 2), here Anm and Bnm are calculated by Eqs.(8) and (9),
respectively, and αnm is the mth positive zero of Jn.

The following shows the calculations of Anm and Bnm corresponding to the
value of nonnegative integer n. Let us recall Eqs.(8) and (9), we have

Anm =
2

πR2J2
n+1(αnm)

∫ 2π

0

∫ R

0
f(r, θ)Jn(hnmr) cos(nθ)rdrdθ, and

Bnm =
2

πR2J2
n+1(αnm)

∫ 2π

0

∫ R

0
f(r, θ)Jn(hnmr) sin(nθ)rdrdθ,

As we can see Eqs.(8) and (9) consist of the integral forms of the initial shape
function f(r, θ) = w(r)q(r). Here, we illustrate the three cases of q(θ) i.e., (i)
q(θ) = 1 (ii) q(θ) = cos(Nθ) and (iii) q(θ) = sin(Nθ), here the calculations of
Anm and Bnm are as follows:
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1. If q(θ) = 1, then
∫ 2π
0 cos(nθ)dθ = 0 for N ≤ 1 except n = 0. Thus Anm are

available for n = 0. That is A0m are obtainable when q(θ) = 1.

2. If q(θ) = cos(Nθ), N = 0, 1, 2, ..., then
∫ 2π
0 cos(Nθ) cos(nθ)dθ = 0 for n 6= N .

Thus Anm = 0 when n 6= N . Besides
∫ 2π
0 cos(Nθ) sin(nθ)dθ = 0 for all n.

Thus Bnm = 0, for all n. Therefore Anm are available for n = N . That is
ANm are obtainable when q(θ) = cos(Nθ), N = 0, 1, 2, ....

3. If q(θ) = sin(Nθ), N = 0, 1, 2, ..., then
∫ 2π
0 sin(Nθ) cos(nθ)dθ = 0 for all n.

Thus Anm = 0, for all n. Besides
∫ 2π
0 sin(Nθ) sin(nθ)dθ = 0 for n 6= N .

Thus Bnm = 0 when n 6= N . Therefore Bnm are available for n = N . That
is BNm are obtainable when q(θ) = sin(Nθ), N = 0, 1, 2, ....

As summarized in the Table 2, if we know the value of n then we obtain the initial
values G(0), G(1), Q(0), Q(1), and the similar for the initial values of the recursive
relation in Eq.(40). Observe that W (k), k = 0, 1, 2, ... also depend on the value of
n as shown in Table 3.

Table 3: The initial values W (k), k = 0, 1, 2, ... depending on n of Bessel equation
in Eq.(37).

Value of n W (0) W (1) W (2) W (3) · · · W (n− 1) W (n)

0 1 0

1 0
α1m

2
2 0

α2m

8
3 0

α3m

48
...

n 0
αnm

2nn!

Table 4: The values of αnm where the mth is positive zero of Bessel function Jn.

H
HHHHn

m
1 2 3 4 5 6 · · ·

0 2.40483 5.52008 8.65373 11.79153 14.93092 18.07106 · · ·
1 03.83171 7.01559 10.1735 13.3237 16.4706 19.6159 · · ·
2 5.13562 8.41724 11.6198 14.796 17.9598 21.117 · · ·
3 6.38016 9.76102 13.0152 16.2235 19.4094 22.5827 · · ·
4 7.58834 11.0647 14.3725 17.616 20.8269 24.019 · · ·
...

...
...

...
...

...
...

...
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4 Applications

In this section, four examples of the problem are illustrated corresponding to
the method in the previous section. Example 1 shows the vibrations of a circular
membrane independent on angle corresponding to the problem in the subsection
3.1. Examples 2, 3 and 4 show the vibrations of a circular membrane depending on
both and angle corresponding to the problem in the subsection 3.2. The accuracy
of the method is assessed by data value comparisons with the analytical solutions.

Example 1. Consider the problem of vibrations of a circular membrane depending
on radius in Eqs.(10) and (11) with radius 1, c = 2, the initial shape f(r) = 1−r2
and the initial velocity equal to zero. Hence, the series solutions in Eqs.(21) and
(22) are as follows:

g0m(t) = A0m

(
1− 2α2

0mt
2 +

2α4
0mt

4

3
− 4α6

0mt
6

45
+

2α8
0mt

8

315
− 4α10

0mt
10

14175
+ · · ·

)
,

w0m(r) = 1− α2
0mr

2

4
+
α4
0mr

4

64
− α6

0mr
6

2304
+
α8
0mr

8

147456
− α10

0mr
10

147456000
+ · · · ,

where A0m are calculated by Eq.(7) and α0m is the mth positive zero of J0 as shown
in Table 4. Therefore, the series solution of vibrations of a circular membrane is

u(r, t) =

∞∑
m=1

w0m(r)g0m(t)

=
∞∑
m=1

A0m

(
1− α2

0mr
2

4
+
α4
0mr

4

64
− · · ·

)(
1− 2α2

0mt
2 +

2α4
0mt

4

3
− · · ·

)
= (1− 1.44558r2 + 0.552586r4 − · · · )(1.10802− 12.8158t2 + 24.7055t4 − · · · )−

(1− 7.61782)r2 + 14.5078r4 − · · · )(0.139777− 8.51839t2 + 86.5221t4 − · · · )+
(1− 18.722r2 + 87.6281r4 − · · · )(0.045476− 6.81119t2 + 170.025t4 − · · · )− · · · .

The analytical solution of a circular membrane in this example is

u(r, t) =

∞∑
m=1

AmJ0(αmr) cos(2αmt) = 1.10801J0(2.40483r) cos(4.80966t)−

0.13978J0(5.52008r) cos(11.04016t) + 0.04548J0(8.65373r) cos(17.30746t)− · · · .

Figure 1 shows the motion of the series solution for the first term (m =
1, α01 = 2.40483), the second term (m = 2, α02 = 5.52008) and the third term
(m = 3, α03 = 8.65373) at the initial time.
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Figure 1: Normal modes of the vibrations of a circular membrane independent of
the angle for Example 1.

Example 2. Consider the problem of vibrations of a circular membrane depending
on both r and θ in Eqs.(24) and (25) with radius 1, c = 1, the initial shape
f(r, θ) = 1 − r4 and initial velocity equal to zero. From the initial shape, the
nonnegative integer n can only be zero (see Table 2) because Anm = 0 when
n ≥ 1 (i.e., A0m 6= 0) and Bnm in Eq.(9) is always zero. The initial values are
G(0) = A0m, G(1) = 0, Q(0) = 1, Q(1) = 0,W (0) = 1 and W (1) = 0.
Hence, we obtain the series solutions corresponding to Eq.(41), (42) and (43), as
follows:

g0m = A0m

(
1− α2

0mt
2

2
+
α4
0mt

4

24
− α6

0mt
6

720
+
α8
0mt

8

40320
− α10

0mt
10

3628800
+ · · ·

)
q0(θ) = 1

w0m(r) = 1− α2
0mr

2

4
+
α4
0mr

4

64
− α6

0mr
6

2304
+
α8
0mr

8

147456
− α10

0mr
10

147456000
+ · · · ,

where A0m are calculated by Eq.(8) and α0m is the mth positive zero of J0 as shown
in Table 4. Therefore, the series solution of vibrations of a circular membrane is

u(r, θ, t) =

∞∑
n=0

qn(θ)
∞∑
m=1

wnm(r)gnm(t) = q0(θ)
∞∑
m=1

w0m(r)g0m(t)

= (1− 1.4458r2 + 0.522586r4 − · · · )(2.73318− 7.90328t2 + 3.80886t4 − · · · )−
(1− 7.61782r2 + 14.5078r4 − · · · )(0.971432− 14.8004t2 + 37.5822t4 − · · · )+
(1− 18.7218r2 + 87.6261r4 − · · · )(0.344381− 12.8948t2 + 80.4712t4 − · · · )− · · · .

The analytical solution of a circular membrane in this example is

u(r, θ, t) =
∞∑
m=1

16(α0mJ2(α0m)− 2J3(α0m))

α3
0mJ

2
1 (α0m)

J0(α0mr) cos(α0mt)

= 2.73318J0(2.40483r) cos(2.40483t)− 0.971432J0(5.52008r) cos(5.52008t)+

0.344381J0(8.65373r) cos(8.65373t)− · · · .
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Figure 2 shows the motion of the series solution for the first term (m =
1, α01 = 2.40483), the second term (m = 2, α02 = 5.52008) and the third term
(m = 3, α03 = 8.65373) at the initial time.

Figure 2: Normal modes of the vibrations of a circular membrane depending on
both r and θ for Example 2, when n = 0.

Example 3. Let us consider the Example 2 with the initial shape defined by
f(r, θ) = r(1− r4) cos(θ). From the initial shape, we obtain only n = 1 (see Table
2) because Anm = 0, when n = 0 and n > 1, and Bnm in Eq.(9) is always zero.
The initial values G(0) = A1m, G(1) = 0, Q(0) = 1, Q(1) = 0,W (0) = 0 and

W (1) =
α1m

2
. Then, we obtain the series solutions in Eqs.(41), (42) and (43) as

follows:

g1m = A1m

(
1− α2

1mt
2

2
+
α4
1mt

4

24
− α6

1mt
6

720
+
α8
1mt

8

40320
− α10

1mt
10

3628800
+ · · ·

)

q1(θ) = 1− θ2

2
− θ4

24
− θ6

720
+

θ8

40320
− · · ·

w1m(r) =
α1mr

2
− α3

1mr
3

16
+
α5
1mr

5

384
− α7

1mr
7

18432
+

α9
1mr

9

1474560
− α11

1mr
11

176947200
+ · · · ,

where A1m are calculated by Eq.(8) and α1m is the mth positive zero of J1 as shown
in Table 4. Therefore, the series solution of vibrations of a circular membrane is

u(r, θ, t) =
∞∑
n=0

qn(θ)
∞∑
m=1

wnm(r)gnm(t) = q1(θ)
∞∑
m=1

w1m(r)g1m(t)

=

(
1− θ2

2
+
θ4

24
− · · ·

)[
(1.91586r − 3.51607r3 + ·)(0.964141− 7.07776t2 + · · · )−

(3.5078r − 21.5811r3 + · · · )(0.387905− 9.54606t2 + · · · )+

(5.8099r − 98.0564r3 + · · · )(1.3701× 108 − 9.24954× 109t2 + · · · )− · · ·
]
.
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The analytical solution of a circular membrane in this example is

u(r, θ, t) = cos θ
∞∑
m=1

8(α1mJ3(α1m)− 2J4(α1m))

α3
1mJ

2
2 (α1m)

J1(α1mr) cos(α1mt)

= cos θ

[
0.96414J1(3.83171r) cos(3.83171t)− 0.387905J1(7.01559r) cos(7.01559t)+

1.3701× 108J1(11.6198r) cos(11.6198t)− · · ·
]
.

Figure 3 shows the motion of the series solution for the first term (m =
1, α11 = 3.83171), the second term (m = 2, α12 = 7.01559) and the third term
(m = 3, α13 = 10.1735) at the initial time.

As show in Table 5, the approximate series solutions of the vibrations of a
circular membrane obtained by using the DTM are compared with the analytical
solution. The results given in Table 5 showed that, the series solutions obtained
by the DTM are equal to the analytical solutions.

Figure 3: Normal modes of the vibrations of a circular membrane depending on
both r and θ for Example 3, when n = 1.
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Table 5: The comparison results for Example 3 between DTM solutions and
analytical solutions at the initial time.

αnm

HHH
HHr
θ 0 π 2π

DTM Analytical DTM Analytical DTM Analytical

α11 = 3.83171
0 0 0 0 0 0 0

0.01 0.01847 0.01847 -0.01847 -0.01847 0.01847 0.01847
0.02 0.03692 0.03692 -0.03692 -0.03692 0.03692 0.03692

α12 = 7.01559
0 0 0 0 0 0 0

0.01 0.01036 0.01036 -0.01036 -0.01036 0.01036 0.01036
0.02 0.02715 0.02715 -0.02715 -0.02715 0.02715 0.02715

α13 = 10.1735
0 0 0 0 0 0 0

0.01 0.00856 0.00856 -0.00856 -0.00856 0.00856 0.00856
0.02 0.00170 0.00170 -0.00170 -0.00170 0.00170 0.00170

Example 4. Let us consider the Example 2 with the initial shape defined by
f(r, θ) = r(1−r4) cos(2θ). From the initial shape, we obtain only n = 2 (see Table
2) because Anm = 0, when n = 0, 1 and n > 2, and Bnm in Eq.(9) is always zero.
The initial values are G(0) = A2m, G(1) = 0, Q(1) = 0, Q(1) = 0,W (1) = 0 and

W (2) =
α2m

8
. Therefore, the series solution of vibrations of a circular membrane

is

u(r, θ, t) =
∞∑
n=0

qn(θ)
∞∑
m=1

wnm(r)gnm(t) = q2(θ)
∞∑
m=1

w2m(r)g2m(t)

=

(
1− 2θ2 +

2θ4

3
− · · ·

)[
(0.641953r2 − 1.41094r4 + ·)(1.1876− 15.6612 + · · · )−

(1.05216r2 − 6.21209r4 + · · · )(0.145193− 5.14345t2 + · · · )+

(1.45248r2 − 16.3427r4 + · · · )(0.197975− 13.3653t2 + · · · )− · · ·
]
.

where A2m are calculated by Eq.(8) and α2m is the mth positive zero of J2 as
shown in Table 4.

5 Conclusions

The importance of the differential transformation method (DTM) lies in the
initial values of the recursive formulas derived from the conversion of the ODEs
problem, and the recursive formulas used to find the coefficients of the series so-
lution of the problem. In this work, solving of the vibration problem of a circular
membrane, the initial values of the recursive formulas can be calculated from the
coefficients of the Fourier-Bessel series which is in the integral form of the initial
shape of the membrane. The comparison of the DTM series solutions and the
analytical solutions show that these are the same, hence it follows that the DTM
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method is suitable for this type of problems. Moreover, we consider that DTM
is easier to use from the programming point of view. Since in the case of the
nonlinear vibrating circular membrane problems are difficult to be unsolvable an-
alytically, we intend to modify and apply the steps of the DTM method presented
in this work to these problems, in a future research.
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