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Abstract

The paper deals with Bessel systems and Riesz-Fisher systems in Banach
spaces with respect to some Banach space of vector-valued sequences. The
notions of X̃-Bessel systems and X̃-Riesz-Fisher systems were introduced
and the characterization of such systems were established. X̃-frames and
X̃-Riesz g-bases are also studied in this paper. The relations between them
are obtained.
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1 Introduction

In recent times, due to numerical applications, the interest in frames has in-
creased greatly. The frames have found applications in signaling processes, data
compression, information processing, when studying the features of surfaces of
crystals and nano-objects and in other fields. The notion of frame was introduced
by R.J.Duffin and A.C.Schaeffer [1] when studying the theory of nonharmonic
Fourier series with respect to the perturbed system of exponents. In [1] the frames
in abstract Hilbert spaces were also studied. Note that the non-empty system of
non-zero elements of Hilbert spaces {fn}n∈N is called a frame in H if there exist
constants A > 0 and B > 0 such that for each f ∈ H

A ‖f‖2H ≤
∞∑
n=1

|(f, fn)|2 ≤ B ‖f‖2H ,
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where ‖·‖H is a norm in H generated by the scalar product (·, ·). If {fn}n∈N ⊂ H
is a frame, then there exists a frame {gn}n∈N ⊂ H such that every f ∈ H has a
representation of the form

f =
∞∑
n=1

(f, gn)fn =
∞∑
n=1

(f, fn)gn.

Later, a lot of literature was devoted to frames (see, for example [2-7]). It is
known that the frames in Hilbert spaces are the generalizations of the Riesz bases
introduced and studied by N.K.Bari [8], i.e. the bases equivalent to orthonormal
ones. The stability of frames is very important to obtain new frames. Similarly to
theorems of stability of orthonormal bases, the stability of frames in Hilbert spaces
was studied in [9-11]. One of the important directions of frames in Hilbert spaces
is the study of generalizations of frames. The notions of g-frame and g-Riesz bases
were introduced and several properties of frames and Riesz bases in Hilbert spaces
were obtained in [12]. The g-frames were also considered in [13, 14]. Another
generalization of frames in Hilbert spaces was studied in [15, 16], where the notion
of t-frames was introduced and many properties and noetherian perturbation of
such frames were studied. The Banach generalizations of frames were first studied
by K. Gröchenig in [17]; in this paper, the notions of Banach frame and atomic
decomposition were introduced. Banach frames, atomic decomposition and their
stability were also studied in [18-20]. The important results were obtained in the
case of spaces lp, p 6= 2. In [21] the p-frames and atomic decompositions with
respect to shift of subspaces Lp were obtained as generalizations of frames and
Riesz bases in Banach spaces. The results with respect to p-frame decompositions
and its relationship with q-Riesz bases were studied in [22]. Then the results of
[23-25] were taken to general Banach spaces of number sequences (for these and
other facts see [11]).

The Banach generalization of frames with respect to Banach spaces of vector-
valued sequences were considered, the notions of X̃-frame and X̃-Riesz g-bases
were introduced, necessary and sufficient condition theorems were established in
[26, 27]. The present paper was devoted to the generalization of Bessel systems and
Riesz-Fisher system with respect to space X̃. The notions of X̃-Bessel systems
and X̃-Riesz-Fisher systems were introduced, the criteria of X̃-Bessel property
of the system and X̃-Riesz-Fisher system were proved and their relations with
X̃-Riesz g-bases were studied.

2 Auxiliary notions and results

Let X and Z be Banach spaces with appropriate norms ‖·‖X and ‖·‖Z . The
dual space of the to space X is denoted by X∗. By πX : X → X∗∗ we denote a
canonical mapping of space X into space X∗∗, i.e.

πX(x)(x∗) = x∗(x), ∀x ∈ X,∀x∗ ∈ X∗.
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For a reflexive space X the canonical mapping is an isometric isomorphism. The
image of the operator T : X → Z is denoted by ImT . The adjoint of an operator
T ∈ L(X,Z) is denoted by T ∗, where L(X,Z) denotes the space of all linear
bounded operators acting from X to Z. We need the following theorem.

Theorem 1. [28]. Let X and Z be Banach spaces and let T ∈ L(X,Z). Then
the equality ImT = Z holds if and only if there is a number c > 0 such that

‖T ∗f‖X∗ ≥ c ‖f‖Z∗ ,∀f ∈ Z∗.

Let X̃ be some Banach space of sequences consisting of the vectors of X
with coordinate vise linear operations such that operators ek : X → X̃, ek(x) =
{δikx}i∈N and e∗k : X̃ → X, e∗k({xn}n∈N ) = xk are continuous ( KB-space). X̃ is

said to be CB-space if for every x̃ = {xk}k∈N ∈ X̃

x̃ =
∞∑
k=1

ek(xk).

For CB-space X̃, the conjugated space X̃∗ is isometrically isomorphic to the space
Ỹ of sequences {x∗k}k∈N ⊂ X

∗ with the finite norm

∥∥{x∗k}k∈N∥∥ = sup
‖x̃‖=1

∣∣∣∣∣
∞∑
k=1

x∗k(xk)

∣∣∣∣∣ .
Indeed, for ∀x̃∗ ∈ X̃∗

x̃∗({xk}k∈N ) =

∞∑
k=1

x̃∗ek(xk) =
∞∑
k=1

x∗k(xk),

where x∗k = x̃∗ek. We have

∥∥{x∗k}k∈N∥∥Ỹ = sup
‖x̃‖=1

∣∣∣∣∣
∞∑
k=1

x∗k(xk)

∣∣∣∣∣ = sup
‖x̃‖=1

|x̃∗(x̃)| = ‖x̃∗‖X̃∗ .

Vice versa, for each such sequence {x∗k}k∈N ⊂ X∗ a linear continuous functional

x̃∗ is determined on X̃ by the formula x̃∗(x̃) =
∞∑
k=1

x∗k(xk), x̃ = {xk}k∈N ∈ X̃ and

‖x̃∗‖X̃∗ = sup
‖x̃‖=1

|x̃∗(x̃)| = sup
‖x̃‖=1

∣∣∣∣∣
∞∑
k=1

x∗k(xk)

∣∣∣∣∣ =
∥∥{x∗k}k∈N∥∥Ỹ .

Throughout the paper, space X̃∗ is identified with space Ỹ . Let us consider the
system of operators {gk}k∈N ⊂ L(Z,X). The following notion is the generalization
of the notion of frame in Hilbert spaces.
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Definition 1. The system {gk}k∈N is said to be X̃-frames in Z if there exist
constants A > 0 and B > 0 such that

A ‖z‖Z ≤
∥∥{gk(z)}k∈N

∥∥
X̃
≤ B ‖z‖Z ,∀z ∈ Z. (1)

Constants A and B are called X̃-frame bounds of {gk}k∈N . If there exists an

operator S ∈ L(X̃, Z) such that S
(
{gn(z)}n∈N

)
= z,∀z ∈ Z, then

(
{gk}k∈N , S

)
is called Banach X̃-frame in Z.

Obviously, the system {gk}k∈N is X̃-frame in Z if and only if the operator

U : Z → X̃, given by the formula

U(z) = {gk(z)}k∈N , ∀z ∈ Z (2)

is bounded and has a bounded inverse on ImU .
By LX∗

(
{gn}n∈N

)
we denote the set of all possible finite sums of the form∑

k

x∗kgk, where x∗k ∈ X∗.

Definition 2. The system {gk}k∈N is said to be g-complete in Z∗ if LX∗
(
{gn}n∈N

)
=

Z∗ in the norm of Z∗. The system {gk}k∈N is called g-biorthogonal in Z∗ if there
exists a system {Λj}j∈N ⊂ L(X,Z) such that

gkΛj = δkj .

The system {gk}k∈N is said to be g-biorthogonal system to {Λj}j∈N ⊂ L(X,Z).
The system {gk}k∈N is said to be g-minimal in Z∗ if ∀x∗ ∈ X∗, x∗ 6= 0 and

∀k ∈ N the relation x∗gk /∈ LX∗

(
{gn}n6=k

)
holds.

Lemma 1. The g-minimal system {gk}k∈N ⊂ L(Z,X) is minimal.

Proof. Assume the contrary, i.e. let the system {gk}k∈N be not minimal. Then

∃k0 such that gk0 ∈ L
(
{gn}n6=k0

)
. Consequently,

gk0 = lim
n→∞

mn∑
i=1,i 6=k0

αmn
i gi.

Hence ∀x∗ ∈ X∗, x∗ 6= 0, we get

x∗gk0 = lim
n→∞

mn∑
i=1,i 6=k0

αmn
i x∗gi,

which means that x∗gk0 ∈ LX∗

(
{gn}n6=k0

)
. This contradicts g-minimality of the

system {gk}k∈N . The obtained contradiction proves the theorem.

The following lemma holds as for an ordinary basis.
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Lemma 2. Let X̃ be a reflexive CB-space. Then for ∀x̃∗ = {x∗k}k∈N ∈ X̃
∗ the

following expansion holds

x̃∗ =
∞∑
k=1

x∗ke
∗
k.

Proof. Let us take ∀x̃∗ = {x∗k}k∈N ∈ X̃
∗ and ε > 0. By virtue of the fact that X̃

is CB-space, ∃M > 0 such that ∀x̃ = {xk}k∈N ∈ X̃∥∥∥∥∥
n∑

k=1

ek(xk)

∥∥∥∥∥
X̃

≤M ‖x̃‖X̃ ,∀n ∈ N.

Taking this and x∗k = x̃∗ek into account , we get∥∥∥∥∥
n∑

k=1

x∗ke
∗
k

∥∥∥∥∥
X̃∗

= sup
‖x̃‖=1

∣∣∣∣∣
n∑

k=1

x∗ke
∗
k(x̃)

∣∣∣∣∣ =

= sup
‖x̃‖=1

∣∣∣∣∣x̃∗
(

n∑
k=1

ek(xk)

)∣∣∣∣∣ ≤M ‖x̃∗‖X̃∗ . (3)

Let us show the validity of the relation LX∗

({
e∗k
}
k∈N

)
= X̃∗. Assume the

contrary. By virtue of reflexivity of X̃, there exists x̃ = {xk}k∈N ∈ X̃, x̃ 6= 0 such
that

x∗e∗k(x̃) = 0, ∀x∗ ∈ X∗, ∀k ∈ N

i.e. x∗(xk) = 0. So, x̃ = 0. This contradicts the assumption. Therefore, ∃ỹ∗ ∈
LX∗

(
{e∗k}k∈N

)
such that

‖x̃∗ − ỹ∗‖X̃∗ <
ε

M + 1
. (4)

Using (3) and (4) we get∥∥∥∥∥x̃∗ −
n∑

k=1

x∗ke
∗
k

∥∥∥∥∥
X̃∗

≤ ‖x̃∗ − ỹ∗‖X̃∗ +

∥∥∥∥∥
n∑

k=1

(x̃∗ − ỹ∗)eke∗k

∥∥∥∥∥
X̃∗

≤

≤ (1 +M) ‖x̃∗ − ỹ∗‖X̃∗ < ε.

Definition 3. The system {gk}k∈N is said to be X̃∗-Riesz g-basis in Z∗ if {gk}k∈N
is g-complete in Z∗ and there exist constants A > 0 and B > 0 such that

A ‖x̃∗‖X̃∗ ≤

∥∥∥∥∥
∞∑
k=1

x∗kgk

∥∥∥∥∥
Z∗

≤ B ‖x̃∗‖X̃∗ ,∀x̃∗ ∈ X̃∗. (5)

Constants A and B are called lower and upper bounds of the X̃∗-Riesz g-basis
{gk}k∈N , recpectively.
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It is easily shown that the system {gk}k∈N forms X̃∗-Riesz g-basis in Z∗ if

and only if operator T : X̃∗ → Z∗, determined by the formula

T (x̃∗) =
∞∑
k=1

x∗kgk, ∀x̃∗ = {x∗k}k∈N ∈ X̃
∗, (6)

is bounded and bounded invertible.

3 X̃-Bessel systems and X̃-Riesz-Fisher systems

In this section we study Bessel systems and Riesz-Fisher systems in Banach
space with respect to Banach space of the sequence of vectors. We establish
their characterization and also relation between the frames and Riesz bases in
Banach space with respect to CB-space X̃. Let X and Z be Banach spaces, X̃
be CB-space and {gk}k∈N ⊂ L(Z,X).

The following notion is the generalization of Bessel sequence with respect to
Banach space of scalars.

Definition 4. The system {gk}k∈N is said to be X̃-Bessel in Z if

{gk(z)}k∈N ∈ X̃, ∀z ∈ Z.

We have the following criteria of X̃-Bessel property of the system.

Theorem 2. The system {gk}k∈N is X̃-Bessel in Z if and only if there exists
an operator U ∈ L(Z,X) such that

e∗nU = gn,∀n ∈ N. (7)

Proof. Necessity. Let the system {gk}k∈N be X̃-Bessel in Z. Let us consider

operator Un : Z → X̃, ∀n ∈ N defined by the formula

Un(z) =

n∑
k=1

engk(z).

It is clear that Un ∈ L(Z,X). By condition, ∀z ∈ Z relation {gk(z)}k∈N ∈ X̃
holds. So,

lim
n→∞

Un(z) = U(z).

By the uniform boundedness principle, the sequence {‖Uk‖}k∈N is bounded. There-
fore, U ∈ L(Z,X). Furthermore

e∗nU(z) = e∗n
(
{gk(z)}k∈N

)
= gn(z),

i.e. (7) holds.
Sufficiency. Let there exist an operator U ∈ L(Z, X̃) and let condition (7)

be fulfilled. We take ∀z ∈ Z and set U(z) = x̃. Then it follows from gn(z) =
e∗nU(z) = xn that {gk(z)}k∈N = x̃, i.e. the system {gk}k∈N is X̃-Bessel in Z.
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The following statement follows from this theorem.

Corollary 1. Let the system {gk}k∈N be X̃-Bessel in Z. Then ∃B > 0:∥∥{gk(z)}k∈N
∥∥ ≤ B ‖z‖Z , z ∈ Z.

Proof. By Theorem 2 operator U : Z → X̃ determined by formula (2) is bounded.
Therefore ∀z ∈ Z we have∥∥{gk(z)}k∈N

∥∥ = ‖U(z)‖X̃ ≤ ‖U‖ ‖z‖Z .

Thus, the required number satisfies condition ‖U‖ ≤ B.

Theorem 3. In order for the system {gk}k∈N to be X̃-Bessel in Z it is necessary,

and in the case of reflexivity of X̃, it is also sufficient that the following relation∥∥∥∥∥∑
k

x∗kgk

∥∥∥∥∥
Z∗

≤ B ‖{x∗k}‖X̃∗ (8)

holds for any finite sequence {x∗k} ⊂ X∗.

Proof. Necessity. Let the system {gk}k∈N be X̃-Bessel in Z. Let us take an
arbitrary finite sequence {x∗k} ⊂ X∗. Taking into account Corollary 1 we get∥∥∥∥∥∑

k

x∗kgk

∥∥∥∥∥
Z∗

= sup
‖z‖=1

∣∣∣∣∣∑
k

x∗kgk(z)

∣∣∣∣∣ ≤
≤ ‖{x∗k}‖X̃∗ sup

‖z‖=1

∥∥{gk(z)}k∈N
∥∥ ≤ B ‖{x∗k}‖X̃∗ ,

i.e. (8) holds.
Sufficiency. Assume that (8) holds for any finite sequence {x∗k} ⊂ X∗. Take

∀ {x∗k}k∈N ∈ X̃
∗. Since X̃ is reflexive , by Lemma 2 the expansion x̃∗ =

∞∑
k=1

x∗ke
∗
k

holds. Therefore, ∥∥∥∥∥
m∑

k=n

x∗ke
∗
k

∥∥∥∥∥
X̃∗

→ 0

for m > n and n→∞. Then ∀z ∈ Z for m > n and n→∞, using (8), we get∣∣∣∣∣
m∑

k=n

x∗kgk(z)

∣∣∣∣∣ ≤
∥∥∥∥∥

m∑
k=n

x∗kgk

∥∥∥∥∥
Z∗

‖z‖ ≤ B

∥∥∥∥∥
m∑

k=n

x∗ke
∗
k

∥∥∥∥∥
X̃∗

‖z‖ → 0.

Thus, ∀z ∈ Z the series
∞∑
k=1

x∗kgk(z) converges and so, {gk(z)}k∈N ∈ X̃ i.e. the

system {gk}k∈N is X̃-Bessel in Z.

The following definition generalizes the notion of Riesz-Fisher system (Hilbert
system) in Hilbert space (see [8, 29]).
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Definition 5. The system {gk}k∈N is said to be X̃-Riesz-Fisher ( X̃-Hilbert) in
Z if

∀ {xk}k∈N ∈ X̃, ∃z ∈ Z : gk(z) = xk.

We give characterization of the X̃-Riesz-Fisher system.

Theorem 4. For the system {gk}k∈N to be X̃-Riesz-Fisher in Z, it is sufficient,
and in the case of g-completeness of {gk}k∈N in Z∗ it is also necessary that there

be S ∈ L(X̃, Z) such that
gnS = e∗n, ∀n ∈ N. (9)

Proof. Sufficiency. Let ∃S ∈ L(X̃, Z) be such that (9) holds. We take ∀x̃ ∈ X̃.
Let S(x̃) = z. According to (9) we have

gn(z) = gnS(x̃) = e∗n(x̃) = xn,

i.e. the system {gk}k∈N is the X̃-Riesz-Fisher system in Z.

Necessity. Let {gk}k∈N be g-complete in Z∗ and X̃-Riesz-Fisher system in Z.

As {gk}k∈N is X̃-Riesz-Fisher system in Z for ∀x̃ ∈ X̃, ∃z ∈ Z : gn(z) = xn. Such
an element is unique. Indeed, let ∃z1 ∈ Z : gn(z1) = xn. Then gn(z − z1) = 0 for
∀n ∈ N . By g-completeness in Z∗ of the system {gk}k∈N we have f(z − z1) =
0, f ∈ Z∗. This is possible only if z = z1. We define operator S assuming S(x̃) = z.
Let us show the closeness of operator S. Suppose that

lim
n→∞

x̃n = x̃, S(x̃n) = zn

and
lim
n→∞

S(x̃n) = z.

Since {gk}k∈N is X̃-Riesz-Fisher system in Z, there exist zn ∈ Z such that

{gk(zn)}k∈N = x̃n. Let x̃n =
{
x
(n)
k

}
k∈N

and x̃ = {xk}k∈N . Then lim
n→∞

gk(zn) =

lim
n→∞

x
(n)
k = xk. It follows from lim

n→∞
zn = z that lim

n→∞
gk(zn) = gk(z) and therefore

{gk(z)}k∈N = x̃, i.e. S(x̃) = z, operator S is closed. By the closed graph theorem
operator S is bounded. On the other hand, we have

gnS(x̃) = gn(z) = xn = e∗n(x̃),∀x̃ ∈ X̃,

i.e. (9) holds.

The following properties of g-complete X̃-Riesz-Fisher system follows from
this theorem.

Corollary 2. Let the system {gk}k∈N be g-complete in Z∗ and be X̃-Riesz-Fisher
system in Z. Then ∃A > 0:

A ‖z‖Z ≤
∥∥{gk(z)}k∈N

∥∥
X̃
,

for any z ∈ Z for which {gk(z)}k∈N ∈ X̃.
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Proof. Let z ∈ Z be such that {gk(z)}k∈N ∈ X̃. By Theorem 4 there exists an

operator S ∈ L(X̃, Z) such that S({gk(z)}k∈N ) = z. Then

‖z‖Z =
∥∥S({gk(z)}k∈N )

∥∥
Z
≤ ‖S‖

∥∥{gk(z)}k∈N
∥∥
X̃
.

Consequently, A ≤ 1
‖S‖ is the required constant.

Corollary 3. Let the system {gk}k∈N be g-complete in Z∗ and be X̃-Riesz-Fisher
system in Z. Then the system {gk}k∈N is g-minimal.

Proof. Assume the contrary, i.e. let the system {gk}k∈N be not g-minimal. Then

there exist x∗ ∈ X∗, x∗ 6= 0, and k0 ∈ N such that x∗gk0 ∈ LX∗

(
{gn}n 6=k0

)
. We

have

x∗gk0 = lim
n→∞

mn∑
i=1,i 6=k0

x
(mn)∗
i gi (10)

By Theorem 4 there exists operator S ∈ L(X̃, Z) such that (9) holds. From (10)
we get

x∗e∗k0 = x∗gk0S = lim
n→∞

mn∑
i=1,i 6=k0

x
(mn)∗
i giS = lim

n→∞

mn∑
i=1,i 6=k0

x
(mn)∗
i e∗i .

Hence, for ∀x ∈ X we get x∗(x) = x∗gk0Sek0(x) = 0. Therefore, x∗ = 0. The
obtained contradiction proves the theorem.

In the case of reflexive space we have the following criterion for X̃-Riesz-Fisher
system.

Theorem 5. Let X̃ be a reflexive CB-space and Z be reflexive. The system
{gk}k∈N is X̃-Riesz-Fisher system in Z satisfying condition ∀x̃ = {xk}k∈N ∈
X̃, ∃z ∈ Z : gk(z) = xk and

A ‖z‖Z ≤
∥∥{xk}k∈N∥∥X̃ (11)

if and only if condition

A ‖{x∗k}‖X̃∗ ≤

∥∥∥∥∥∑
k

x∗kgk

∥∥∥∥∥
Z∗

, (12)

holds for any finite sequence {x∗k} ⊂ X∗, where A is some positive constant.

Proof. Necessity. Let {gk}k∈N be X̃-Riesz-Fisher system in Z and condition (11)

be fulfilled. Let us take an arbitrary finite system {x∗k} ∈ X̃∗. By reflexivity of X̃

there exists {xk}k∈N ∈ X̃ such that
∥∥{xk}k∈N∥∥X̃ = 1 and

∑
k

x∗k(xk) = ‖{x∗k}‖X̃∗ .
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Since {gk}k∈N is X̃-Riesz-Fisher system in Z, there exists z ∈ Z : gk(z) = xk.
Then

‖{x∗k}‖X̃∗ =

∣∣∣∣∣∑
k

x∗k(xk)

∣∣∣∣∣ =

∣∣∣∣∣∑
k

x∗kgk(z)

∣∣∣∣∣ ≤
≤ ‖z‖Z

∥∥∥∥∥∑
k

x∗kgk

∥∥∥∥∥
Z∗

≤ 1

A

∥∥∥∥∥∑
k

x∗kgk

∥∥∥∥∥
Z∗

.

Sufficiency. Let condition (12) be fulfilled. We take ∀ {xk}k∈N ∈ X̃. Let us
determine a linear functional ϕ on LX∗({gk}k∈N ) by the formula:

ϕ

(∑
k

x∗kgk

)
=
∑
k

x∗k(xk).

Obviously, a fact that a functional is well defined follows from inequality (12).
Using (12) we get ∣∣∣∣∣ϕ

(∑
k

x∗kgk

)∣∣∣∣∣ =

∣∣∣∣∣∑
k

x∗k(xk)

∣∣∣∣∣ ≤
≤ ‖{x∗k}‖X̃∗

∥∥{xk}k∈N∥∥X̃ ≤ 1

A

∥∥{xk}k∈N∥∥X̃
∥∥∥∥∥∑

k

x∗kgk

∥∥∥∥∥
Z∗

,

i.e. the functional ϕ is bounded on LX∗({gk}k∈N ) and ‖ϕ‖ ≤ 1
A

∥∥{xk}k∈N∥∥X̃ . By
the Hahn-Banach Theorem we continue ϕ to the linear continuos functional on
the whole Z∗ preserving the norm. We denote this functional also by ϕ. Thus,
ϕ ∈ Z∗∗ and

|ϕ(f)| ≤ 1

A

∥∥{xk}k∈N∥∥X̃ ‖f‖Z∗ , f ∈ Z∗. (13)

By the reflexivity of Z there exists z ∈ Z such that ϕ(f) = f(z), f ∈ Z∗ and
‖ϕ‖ = ‖z‖Z . It is clear that ∀x∗ ∈ X∗

x∗gk(z) = ϕ(x∗gk) = x∗(xk).

Hence, from the arbitrariness of x∗ ∈ X∗ we get gk(z) = xk. Consequently,
{gk}k∈N is the X̃-Riesz-Fisher system in Z. Further, from (13) we have

‖z‖Z = ‖ϕ‖ ≤ 1

A

∥∥{xk}k∈N∥∥X̃ .

The following theorem establishes the relation between the X̃-Bessel system
and X̃-Riesz-Fisher system.

Theorem 6. Let X̃ be a reflexive CB-space and Z be reflexive. For the system
{gk}k∈N to be the X̃-Riesz-Fisher system in Z, it is sufficient, and in the case of
g-completeness of {gk}k∈N in Z∗ it is also necessary that the following conditions
hold:

1) {gk}k∈N has the g-biorthogonal system {Λk}k∈N ⊂ L(X,Z);

2) the system {Λk}k∈N is X̃∗-Bessel in Z∗.
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Proof. Sufficiency. Let the system {gk}k∈N be g-complete in Z∗ and conditions

1) and 2) be fulfilled. We take ∀ {xk}k∈N ∈ X̃. From X̃∗-Bessel property in Z∗

of the system {Λk}k∈N it follows by Theorem 1 that the operator V : Z∗ → X̃∗

determined by the formula V (f) =
{

Λ∗j (f)
}
j∈N

is bounded. Thus, for ∀x∗ ∈ X∗

we have

V (f)(x̃) =
∞∑
j=1

Λ∗j (f)(xj) =
∞∑
j=1

fΛj(xj).

Then

V (x∗gn)(x̃) =

∞∑
j=1

x∗gnΛj(xj) = x∗(xn).

On the other hand, we have

V (x∗gn)(x̃) = πX̃(x̃)(V (x∗gn)) =

= V ∗(πX̃(x̃))(x∗gn) = x∗gn(π−1Z V ∗πX̃(x̃)).

So, from the obtained relations we have x∗(xn) = x∗gn(π−1Z V ∗πX̃(x̃)). Hence, by
the arbitrariness of x∗ ∈ X∗ we have

gn(π−1Z V ∗πX̃(x̃)) = xn.

Assume that π−1Z V ∗πX̃(x̃) = z. Then gn(z) = xn, ∀n ∈ N , i.e. {gk}k∈N is the

X̃-Riesz-Fisher system in Z.
Necessity. Let {gk}k∈N be g-complete in Z∗ and be the X̃-Riesz-Fisher system

in Z. By Theorem 4 there exists an operator S ∈ L(X̃, Z) satisfying conditions
gnS = e∗n,∀n ∈ N . Assume that

Λj = Sej , j ∈ N.

Then ∀n, j ∈ N we get

gnΛj = gnSej = e∗nej = δnj ,

i.e. {gk}k∈N has g-biorthogonal system {Λk}k∈N ⊂ L(X,Z).

Furter, ∀x̃ = {xk}k∈N ∈ X̃ we have

S(x̃) = S(
∞∑
j=1

ej(xj)) =

∞∑
j=1

Sej(xj) =
∞∑
j=1

Λj(xj).

Consequently, ∀f ∈ Z∗

fS(x̃) =
∞∑
j=1

fΛj(xj) =

∞∑
j=1

Λ∗j (f)(xj).

Thus, for ∀x̃ = {xk}k∈N ∈ X̃ the series
∞∑
j=1

Λ∗j (f)(xj) converges, and so{
Λ∗j (f)

}
j∈N
∈ X̃∗, i.e. the system {Λk}k∈N is X̃∗-Bessel in Z∗.



314 Migdad I. Ismailov

The following theorem is a criterion for X̃∗-Riesz g-bases property of systems.

Theorem 7. Let X̃ be a reflexive CB-space and Z be reflexive. For the system
{gk}k∈N to be the X̃∗-Riesz g-bases in Z∗, it is necessary and sufficient that

{gk}k∈N be both X̃-Bessel system and X̃-Riesz-Fisher system in Z satisfying the
inequality

A ‖z‖Z ≤
∥∥{gk(z)}k∈N

∥∥
X̃
, z ∈ Z, (14)

where A > 0 is some constant.

Proof. Necessity. Let {gk}k∈N be X̃∗-Riesz g-bases in Z∗. According to Theorem

3 and Theorem 5, {gk}k∈N is X̃-Bessel system and X̃-Riesz-Fisher system in Z.
The validity of the left hand side of inequality 9 remains to be shown. We take
∀z ∈ Z. By X̃-Bessel property of the system {gk}k∈N we have {gk(z)}k∈N ∈ X̃.
Then by condition 11 there exists z0 ∈ Z such that gk(z0) = gk(z) and A ‖z0‖ ≤∥∥{gk(z0)}k∈N

∥∥
X̃

. Consequently, gk(z0−z) = 0 and therefore ∀x̃∗ = {x∗k}k∈N ∈ X̃
∗

the relation
∑
k

x∗kgk(z0 − z) = 0 holds. Then from g-completeness of system

{gk}k∈N in Z∗ we have f(z0 − z) = 0, ∀f ∈ Z∗ and hence z = z0.

Sufficiency. Let {gk}k∈N be X̃-Bessel system and X̃-Riesz-Fisher system in
Z and the left hand side of inequality (1) be fulfilled. According to Theorem 3
and Theorem 5, (5) holds. It remains to show the completeness of {gk}k∈N in Z∗.
Assume that {gk}k∈N is not g-complete in Z∗. By virtue of reflexivity of Z,

∃z ∈ Z, z 6= 0 :
∑
k

x∗kgk(z) = 0, x∗k ∈ X∗.

Then for an arbitrary x̃∗ = {x∗k}k∈N ∈ X̃∗ we get x̃∗({gk(z)}k∈N ) = 0. Hence
gk(z) = 0 and so from (14) we have z = 0. The obtained contradiction proves the
theorem.

The following theorem establishes the relation between X̃∗-Riesz g-basicity
and X̃-frame property of a system.

Theorem 8. Let X̃ be a reflexive CB-space and Z be reflexive. The system
{gk}k∈N forms X̃∗-Riesz g-basis in Z∗ with bounds A and B if and only if

1) {gk}k∈N is X̃-frame in Z with the bounds A and B;

2) {gk}k∈N is g-minimal in Z∗.

Proof. The necessity of the theorem follows immediately from Theorem 7 and
corollaries 1, 2 and 3.

Sufficiency. Let conditions 1) and 2) be fulfilled. Then operator U determined
by formula (2) is invertible on ImU and by Theorem 1 operator U∗ is surjection in
X̃∗. Let us consider operator T determined by formula (6). It is easy to show that
U∗ = T . Therefore, T is a surjection in X̃∗. Let us findKerT . Assume that T x̃∗ =
∞∑
k=1

x∗kgk = 0, x̃∗ = {x∗k}k∈N . If ∃k0 : x∗k0 6= 0, then x∗k0gk0 = −
∞∑

k=1,k 6=k0

x∗kgk and
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this contradicts g-minimality in Z∗ of the system {gk}k∈N . So ∀k we have x∗k = 0,
i.e. KerT = {0} and therefore T is bounded invertible. Consequently, the system
{gk}k∈N forms X̃∗-Riesz g-basis in Z∗.

The following theorem for X̃-Riesz Λ-basis is proved in the same way.

Theorem 9. Let X̃ be a reflexive CB-space. The system {Λk}k∈N forms X̃-Riesz
Λ-basis in Z with bounds A and B if and only if

1) {Λk}k∈N is X̃∗-frame in Z∗ with bounds A and B;

2) {Λk}k∈N is Λ-minimal in Z.

We now study expansion in spaces Z and Z∗.

Theorem 10. Let
(
{gk}k∈N , S

)
be a Banach X̃-frame in Z with bounds A and

B. Then there exists X̃∗-frame in Z∗ {Λk}k∈N ⊂ L(X,Z) with bounds 1
B and 1

A
such that

z =

∞∑
k=1

Λkgk(z),∀z ∈ Z, (15)

f =

∞∑
k=1

Λ∗k(f)gk,∀f ∈ Z∗. (16)

Proof. Determine the operator Λk ∈ L(X,Z) by the formula Λk = Sek. Then
∀z ∈ Z we have

z = SU(z) = S(

∞∑
k=1

ekgk(z)) =

∞∑
k=1

Sekgk(z) =

∞∑
k=1

Λkgk(z).

Equality (16) follows immediately from (15). Further we have

S∗(f) = {Λ∗k(f)}k∈N , ∀f ∈ Z∗. (17)

Indeed, ∀x̃ = {xn}n∈N ∈ X̃ we get

S∗(f)(x̃) = f(S(x̃)) = f(

∞∑
k=1

Sek(xk)) =
∞∑
k=1

f(Λk(xk)) =
∞∑
k=

Λ∗k(f)(xk).

Then from (17) we have

∥∥{Λ∗k(f)}k∈N
∥∥
X̃∗ = ‖S∗f‖X̃∗ ≤ ‖S‖ ‖f‖Z∗ =

1

A
‖f‖Z∗ .

Using (15) we get

‖f‖Z∗ = sup
‖z‖=1

|f(z)| = sup
‖z‖=1

∣∣∣∣∣
∞∑
k=1

f(Λk(gk(z)))

∣∣∣∣∣ =
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= sup
‖z‖=1

∣∣∣∣∣
∞∑
k=1

Λ∗k(f)(gk(z))

∣∣∣∣∣ ≤ ∥∥{Λ∗k(f)}k∈N
∥∥
X̃∗ sup
‖z‖=1

∥∥{gn(z)}n∈N
∥∥
X̃
≤

≤ B
∥∥{Λ∗k(f)}k∈N

∥∥
X̃∗ ,

i.e. 1
B ‖f‖ ≤

∥∥{Λ∗k(f)}k∈N
∥∥.

In the case of X̃-Riesz Λ-basis, the following theorem is valid.

Theorem 11. Let X̃ be a reflexive CB-space and Z be reflexive. Suppose that
{gk}k∈N forms X̃∗-Riesz g-basis in Z∗ with bounds A and B. Then there exist

a unique X̃-Riesz Λ-basis {Λk}k∈N ⊂ L(X,Z) in Z with bounds 1
B and 1

A such
that equalities (15) and (16) hold. Furthermore, {Λk}k∈N is a unique system
g-biorthogonal to {gk}k∈N .

Proof. By Theorem 8 the system {gk}k∈N is X̃-frame in Z with bounds A and
B. It is clear that operator U is bounded invertible and

∥∥U−1∥∥ = 1
A . Thus,(

{gk}k∈N , U−1
)

is a Banach X̃-frame in Z. By Theorem 10 the system {Λk}k∈N ⊂
L(X,Z),Λk = U−1ek forms X̃∗-frame in Z∗ with bounds 1

B , 1
A and equalities

(15) and (16) are fulfilled. It is clear that gkΛj = δkj . Indeed, if Λj(x) = z, then
ej(x) = U(z), and so gk(z) = δkjx. The uniqueness of g-biorthogonal system
{Λk}k∈N follows from expansion (10). Let us show Λ-minimality of the system
{Λk}k∈N . Assume the contrary, let {Λk}k∈N be not Λ-minimal in Z. Then

∃x ∈ X,x 6= 0,∃k0 : Λk0(x) = LX

(
{Λj}j 6=k0

)
, i.e.

Λk0(x) = lim
n→∞

mn∑
j=1,j 6=k0

Λj(x
(mn)
j ).

Hence, we have

x = gk0(Λk0(x)) = lim
n→∞

mn∑
j=1,k 6=k0

gk0(Λj(x
(mn)
j )) = 0,

that contradicts the assumption x 6= 0. Therefore, by Theorem 9 the system
{Λk}k∈N forms X̃-Riesz Λ-basis in Z.
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