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Abstract

In this paper, we obtain generalizations on some classical fixed point the-
orems which will be defined in spaces that have two metrics. We will, also,
obtain some methods of construction of the majorant metric.
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1 Introduction

In this section we will present some classical fixed point theorems.

Theorem 1 (Kannan). Let (X, d) be a complete metric space and T be a mapping
of X into X. If there exists a ∈ [0, 12) such that

d(Tx, Ty) ≤ a · [d(x, Tx) + d(y, Ty)], ∀x, y ∈ X,

then T has a unique fixed point in X.

Theorem 2 (Reich). Let (X, d) be a complete metric space and T be a mapping
of X into X such that

d(Tx, Ty) ≤ a · d(x, Tx) + b · d(y, Ty) + c · d(x, y), ∀x, y ∈ X,

where a, b, c ≥ 0 and a+ b+ c < 1. Then T has a unique fixed point in X.
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Definition 1. Let (X, d) be a metric space. A mapping T : X → X is called
asymptotically regular if

lim
n→∞

d(Tnx, Tn+1x) = 0, ∀x ∈ X,

where Tnx are elements of Picard iteration Tnx which is defined as follows: for
x0 ∈ X,

T 0x0 = x0 and T
nx0 = T (Tn−1x0).

The following theorems are consequences of Reich theorem.

Theorem 3. Let (X, d) be a complete metric space and T be an asymptotically
regular mapping of X into X. If there exists a ∈ (0, 1) such that

d(Tx, Ty) ≤ a · [d(x, Tx) + d(y, Ty)], ∀x, y ∈ X,

then T has a unique fixed point in X.

Theorem 4. Let (X, d) be a complete metric space and T be an asymptotically
regular mapping of X into X. If there exists M < 1 such that

d(Tx, Ty) ≤M · [d(x, Tx) + d(y, Ty) + d(x, y)], ∀x, y ∈ X,

then T has a unique fixed point in X.

Another important fixed point theorem is:

Theorem 5 (Chatterjea). Let (X, d) be a complete metric space and T be a
mapping of X into X. If there exists b ∈ [0, 12) such that

d(Tx, Ty) ≤ b[·(x, Ty) + d(y, Tx)], ∀x, y ∈ X,

then T has a unique fixed point in X.

Definition 2. Let (X, d) be a metric space. A mapping T : X → X is called
contraction if there exists c ∈ (0, 1) such that

d(Tx, Ty) ≤ c · d(x, y), ∀x, y ∈ X.

The following theorem states the conditions for a contraction to have a unique
fixed point:

Theorem 6. (Banach) Let (X, d) be a complete metric space and T a mapping
from X to X and a contraction with respect to d. Then T has a unique fixed point.

Maria Grazia Maia [4] obtained a generalization of Banach’s theorem:

Theorem 7. Let (X, d, δ) be a space with two metrics such that d(x, y) ≤ δ(x, y)
for all x, y ∈ X, let (X, d) be a complete metric space and T a continuous mapping
with respect to d and a contraction with respect to δ. Then T has a unique fixed
point in X.
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In the following theorem M.G. Maia [4] obtained a method of construction for
the majorant metric.

Theorem 8. Let (X, d) be a metric space and T be a mapping of X into X. Let

∞∑
0

λnd(Tnx, Tny) (1)

be a power series. Assuming that for a certain λ > 1 series (1) is converging for
all x, y ∈ X then δ is defined as follows:

δ(x, y) =
∞∑
0

λnd(Tnx, Tny).

With the previous construction:

1. δ is a metric on X and d(x, y) ≤ δ(x, y), ∀x, y inX;

2. T is a contraction with respect to δ.

2 Main results

In this section we will give generalizations of the previously mentioned results.

Theorem 9. Let (X, d, δ) be a space with two metrics such that d(x, y) ≤ δ(x, y)
for all x, y ∈ X. Let X be a complete space with respect to metric d and suppose
there exists a ∈ [0, 12) and T a continuous mapping of X into X with respect to
the metric d such that:

δ(Tx, Ty) ≤ a[δ(x, Tx) + δ(y, Ty)]. (2)

Then T has a unique fixed point in X.

Proof. Let x0 ∈ X be a point and we define the sequence {xn}n≥1 as follows:
xn = Tnx0 − the Picard iteration. By applying (2) with x = xn−1 and y = xn we
get: δ(Txn−1, Txn) = δ(xn, xn+1) ≤ a[δ(xn−1, xn) + δ(xn, xn+1)]. Then we have:

δ(xn, xn+1) ≤
a

1− a
δ(xn−1, xn), (3)

where by supposing a
1−a < 1 we obtain condition a < 1

2 . From (3) we have:

δ(xn, xn+1) ≤
a

1− a
δ(xn−1, xn) ≤ · · · ≤

( a

1− a

)n
δ(x0, x1).

Therefore, {xn} is a Cauchy sequence with respect to δ. But δ is a majorant
metric for d so {xn} is a Cauchy sequence with respect to d and by completeness
of X with respect to d we have that {xn} is a converging sequence. Now suppose

lim
n→∞

xn = x∗,
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we prove that x∗ is a fixed point for T :

x∗ = lim
n→∞

xn+1 = lim
n→∞

T (xn) = T ( lim
n→∞

xn) = Tx∗.

Uniqueness: Suppose there are two fixed points x∗ and y∗. By applying (2) we
get:

δ(Tx∗, Ty∗) ≤ a[δ(x∗, Tx∗) + δ(y∗, Ty∗)],

which is
δ(x∗, y∗) ≤ 0,

so δ(x∗, y∗) = 0 which implies x∗ = y∗.

Remark 1. It is not necessary for T to be a continuous mapping.

Proof. By applying (2) with x = x∗ and y = xn:

δ(Tx∗, Txn) ≤ a[δ(x∗, Tx∗) + δ(xn, Txn)],

⇔ δ(Tx∗, xn+1) ≤ a[δ(x∗, Tx∗) + δ(xn, xn+1)].

For n→∞ we get:
δ(Tx∗, x∗) ≤ aδ(x∗, Tx∗),

and because a < 1
2 we have δ(Tx∗, x∗) = 0 so x∗ = Tx∗ which means x∗ is a fixed

point.

Theorem 10. Let (X, d, δ) be a space with two metrics such that d(x, y) ≤ δ(x, y)
for all x, y ∈ X. Let X be a complete space with respect to metric d and T a
continuous mapping of X into X with respect to metric d such that:

δ(Tx, Ty) ≤ aδ(x, Tx) + bδ(y, Ty) + cδ(x, y), (4)

where a, b, c ≥ 0 and a+ b+ c < 1. Then T has a unique fixed point in X.

Proof. Because of the symmetry of δ we have:

δ(Tx, Ty) ≤ aδ(x, Tx) + bδ(y, Ty) + cδ(x, y),

δ(Ty, Tx) ≤ aδ(Tx, x) + bδ(Ty, y) + cδ(y, x),

and by summing these relations we get:

δ(Tx, Ty) ≤ a+ b

2
δ(x, Tx) +

a+ b

2
δ(y, Ty) + cδ(x, y),

so we can choose a = b, which means that relation (4) becomes:

δ(Tx, Ty) ≤ a[δ(x, Tx) + δ(y, Ty)] + cδ(x, y),

with 2a+ c < 1. Further, we consider x0 ∈ X a point and we define the sequence
{xn}n≥1 as follows:

xn = Tnx0 − the Picard iteration.
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By applying (4) with x = xn−1 and y = xn we get:

δ(Txn−1, Txn) = δ(xn, xn+1) ≤ a[δ(xn−1, xn) + δ(xn, Txn+1)] + cδ(xn−1, xn).

Then we have:

δ(xn, xn+1) ≤
c+ a

1− a
δ(xn−1, xn), (5)

where c+a
1−a < 1 because 2a+ c < 1. From (5) we obtain:

δ(xn, xn+1) ≤
c+ a

1− a
δ(xn−1, xn) ≤ · · · ≤

( c+ a

1− a

)n
δ(x0, x1),

which means that {xn} is a Cauchy sequence with respect to δ. But δ is a majorant
metric for d so {xn} is a Cauchy sequence with respect to d and by completeness
of the space (X, d) we get that {xn} is a converging sequence. Now supposing

lim
n→∞

xn = x∗,

we will prove that x∗ is a fixed point for T :

x∗ = lim
n→∞

xn+1 = lim
n→∞

T (xn) = T ( lim
n→∞

xn) = Tx∗.

Uniqueness. Let x∗, y∗ be two fixed points. Applying (4) with x = x∗ and y = y∗

we get:
δ(Tx∗, Ty∗) ≤ a[δ(x∗, Tx∗) + δ(y∗, T y∗)] + cδ(x∗, y∗),

which is
δ(x∗, y∗) ≤ cδ(x∗, y∗),

where c < 1. Therefore δ(x∗, y∗) = 0, which means x∗ = y∗.

Remark 2. It is not necessarily for T to be a continuous mapping. The proof is
similar to the one in Remark 1.

In the following result we use the concept of asymptotically regular mapping.

Theorem 11. Let (X, d, δ) be a space with two metrics such that d(x, y) ≤ δ(x, y)
for all x, y ∈ X and (X, d) is a complete metric space. Let T be an asymptotically
regular continuous mapping of X into X with respect to metric d. Assuming there
exists a ∈ (0, 1) such that:

δ(Tx, Ty) ≤ a[δ(Tx, x) + δ(Ty, y)], ∀x, y ∈ X. (6)

Then T has a unique fixed point in X.

Proof. Let x0 ∈ X be a point, we define the sequence {xn}n≥1 as follows:

xn = Tnx0 − the Picard iteration.
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By applying (6) with x = xn−1 and y = xn+p−1 we get:

δ(Txn−1, Txn+p−1) = δ(xn, xn+p) ≤ a[δ(xn−1, xn) + δ(xn+p−1, xn+p)] =

a[δ(Tn−1x0, T
nx0) + δ(Tn+p−1x0, T

n+px0)].

Using the hypothesis that T is an asymptotically regular mapping we get:

δ(xn, xn+p)→ 0. (7)

Therefore, we have that {xn} is a Cauchy sequence with respect to δ, and because
d is majorated by δ, then {xn} is a Cauchy sequence with respect to d and by
completeness of the space (X, d) we get that {xn} is a converging sequence, and
let x∗ be its converging point.

Now we prove that x∗ is a fixed point for T :

x∗ = lim
n→∞

xn+1 = lim
n→∞

T (xn) = T ( lim
n→∞

xn) = Tx∗.

Uniqueness. Suppose there are two fixed points x∗ and y∗. By applying (6)
we get:

δ(Tx∗, T y∗) ≤ a[δ(x∗, Tx∗) + δ(y∗, T y∗)],

which is
δ(x∗, y∗) ≤ 0,

so δ(x∗, y∗) = 0 which implies x∗ = y∗.

Remark 3. It is not necessary for T to be a continuous mapping. The proof is
similar to the one in Remark 1.

Theorem 12. Let (X, d, δ) be a space with two metrics such that d(x, y) ≤ δ(x, y)
for all x, y ∈ X. Let X be a complete space with respect to metric d and T a con-
tinuous mapping with respect to metric d and an asymptotically regular mapping
of X into X with respect to metric δ such that:

δ(Tx, Ty) ≤M [δ(x, Tx) + δ(y, Ty) + δ(x, y)], (8)

where M < 1. Then T has a unique fixed point in X.

Proof. Let x0 ∈ X be a point, we define the sequence {xn}n≥1 as follows: xn =
Tnx0 − the Picard iteration. By applying (6) with x = xn−1 and y = xn+p−1
we get: δ(Txn−1, Txn+p−1) = δ(xn, xn+p) ≤ M [δ(xn−1, xn) + δ(xn+p−1, xn+p) +
δ(xn−1, xn+p−1)].Using the triangle inequality we get: δ(xn, xn+p) ≤M [δ(xn−1, xn)
+ δ(xn+p−1, xn+p) + δ(xn−1, xn) + δ(xn, xn+p) + δ(xn+p, xn+p−1)], which is

δ(xn, xn+p) ≤
M

1−M
[δ(xn−1, xn)+δ(xn+p−1, xn+p)+δ(xn−1, xn)+δ(xn+p, xn+p−1)].

Now using the hypothesis that T is an asymptotically regular mapping and if
n→∞ we get:

δ(xn, xn+p)→ 0. (9)



Fixed point theorems 299

By (9) we have that {xn} is a Cauchy sequence with respect to δ, and because
d is majorated by δ, then {xn} is a Cauchy sequence with respect to d and by
completeness of space (X, d) we get that {xn} is a converging sequence, and let
x∗ be its converging point.

Now we prove that x∗ is a fixed point for T :

x∗ = lim
n→∞

xn+1 = lim
n→∞

T (xn) = T ( lim
n→∞

xn) = Tx∗.

Uniqueness. Suppose there are two fixed points x∗ and y∗. By applying (6)
we get:

δ(Tx∗, T y∗) ≤M [δ(x∗, Tx∗) + δ(y∗, T y∗) + δ(x∗, y∗)],

which is

δ(x∗, y∗) ≤Mδ(x∗, y∗).

Because M < 1 we have δ(x∗, y∗) = 0 which implies x∗ = y∗.

Remark 4. It is not necessary for T to be a continuous mapping. The proof is
similar to the one in Remark 1.

The following result is a generalization of Chatterjea theorem.

Theorem 13. Let (X, d, δ) be a space with two metrics such that d(x, y) ≤ δ(x, y)
for all x, y ∈ X and (X, d) is a complete metric space. Let T be a continuous
mapping of X into X with respect to metric d. Assuming there exists b ∈ (0, 12)
such that:

δ(Tx, Ty) ≤ b[δ(x, Ty) + δ(y, Tx)]. (10)

Then T has a unique fixed point.

Proof. Let x0 ∈ X be a point, we define the sequence {xn}n≥1 as follows:

xn = Tnx0 − the Picard iteration.

By applying (10) with x = xn−1 and y = xn we get:

δ(Txn−1, Txn) = δ(xn, xn+1) ≤ b[δ(xn−1, Txn) + δ(xn, Txn−1)],

which is

δ(xn, xn+1) ≤
b

1− b
δ(xn−1, xn),

where b
1−b < 1. We obtain:

δ(xn, xn+1) ≤
b

1− b
δ(xn−1, xn) ≤ · · · ≤

( b

1− b

)n
δ(x1, x0),

which implies that {xn} is a Cauchy sequence with respect to δ. But, d is ma-
jorated by δ and (X, d) is a complete metric space, therefore {xn} is a Cauchy
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converging sequence with respect to d. Let x∗ be its converging point. We now
prove that x∗ is a fixed point for T .

x∗ = lim
n→∞

xn+1 = lim
n→∞

T (xn) = T ( lim
n→∞

xn) = Tx∗.

Uniqueness. Suppose there are two fixed points x∗ and y∗. By applying (10)
we get:

δ(Tx∗, T y∗) ≤ b[δ(x∗, T y∗) + δ(y∗, Tx∗)],

which is
δ(x∗, y∗) ≤ 2bδ(x∗, y∗).

Because b < 1
2 we have 2b < 1, so δ(x∗, y∗) = 0 which implies x∗ = y∗.

Remark 5. It is not necessary for T to be a continuous mapping. The proof is
similar to the one in Remark 1.

The following result gives a way to construct the δ metric.

Theorem 14. Let (X, d) be a metric space and T a mapping of X into X. Let

∞∑
n=0

λn[d(Tnx, Tn+1x) + d(Tny, Tn+1y)] (11)

be a power series. Assuming there exists λ > 1 such that the series (11) is con-
verging for all x, y ∈ X and d(x, y) ≤ d(x, Tx) + d(y, Ty), we define:

δ(x, y) =

{∑∞
n=0 λ

n[d(Tnx, Tn+1x) + d(Tny, Tn+1y)], x 6= y

0, x = y
. (12)

Then:

(i) δ is a majorant metric for d,

(ii) T is a Kannan type operator with respect to δ,

(iii) T is a Chatterjea type operator with respect to δ.

Proof. (i) By definition (12), δ is a metric. Now we have

δ(x, y) =
∞∑
n=0

λn[d(Tnx, Tn+1x) + d(Tny, Tn+1y)]

= d(x, Tx) + d(y, Ty) +

∞∑
n=1

λn[d(Tnx, Tn+1x) + d(Tny, Tn+1y)]

≥ qd(x, Tx) + d(y.Ty) ≥ d(x, y),

which is true because series (12) has positive terms, so δ is a majorant metric for
d.
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(ii) We consider the following relations:

δ(x, Tx) =

∞∑
n=0

λn[d(Tnx, Tn+1x) + d(Tn+1x, Tn+2x)],

δ(y, Ty) =
∞∑
n=0

λn[d(Tny, Tn+1y) + d(Tn+1y, Tn+2y)],

and by summing these relations we get:

δ(x, Tx) + δ(y, Ty) =
∞∑
n=0

λn[d(Tnx, Tn+1x) + d(Tny, Tn+1y)]

+

∞∑
n=0

λn[d(Tn+1x, Tn+2x) + d(Tn+1y, Tn+2y)].

Which is:
δ(x, Tx) + δ(y, Ty) = δ(x, y) + δ(Tx, Ty). (13)

Hence,

δ(x, y) = d(x, Tx) + d(y, Ty) + λ

∞∑
n=0

λn[d(Tn+1x, Tn+2x) + d(Tn+1y, Tn+2y)] =

= d(x, Tx) + d(y, Ty) + λδ(Tx, Ty).

Therefore, we have:

δ(Tx, Ty) =
1

λ
(δ(x, y)− d(x, Tx)− d(y, Ty) ≤ 1

λ
δ(x, y).

So by summation with 1
λδ(Tx, Ty) in the last inequality we get:(

1 +
1

λ

)
δ(Tx, Ty) ≤ 1

λ
(δ(x, y) + δ(Tx, Ty)).

Now by using relation (13) we obtain:

δ(Tx, Ty) ≤ 1

λ+ 1
[δ(x, Tx) + δ(y, Ty)]

But, because λ > 1 then 1
λ+1 <

1
2 , so T is a Kannan type operator with respect

to δ.
(iii) To prove that T is a Chatterjea type operator with respect to δ we consider:

δ(x, Ty) =
∞∑
n=0

λn[d(Tnx, Tn+1x) + d(Tn+1y, Tn+2y)]

and

δ(y, Tx) =

∞∑
n=0

λn[d(Tny, Tn+1y) + d(Tn+1x, Tn+2x)].
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Then, by summation we get:

δ(x, Ty) + δ(y, Tx) = δ(x, y) + δ(Tx, Ty). (14)

But,

δ(x, y) = d(x, Tx) + d(y, Ty) + λ
∞∑
n=0

λn[d(Tn+1x, Tn+2x) + d(Tn+1y, Tn+2y)] =

= d(x, Tx) + d(y, Ty) + λδ(Tx, Ty).

Which means that:

δ(Tx, Ty) =
1

λ
(δ(x, y)− d(x, Tx)− d(y, Ty) ≤ 1

λ
δ(x, y).

So by summation with 1
λδ(Tx, Ty) in the last inequality we get:(

1 +
1

λ

)
δ(Tx, Ty) ≤ 1

λ
(δ(x, y) + δ(Tx, Ty)).

Now by using relation (14) we obtain:

δ(Tx, Ty) ≤ 1

λ+ 1
[δ(x, Ty) + δ(y, Tx)].

From hypothesis 1
λ+1 <

1
2 , T is a Chatterjea type operator.
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