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Abstract

In this paper, by the use of some recent Young’s type scalar inequalities
we obtain some inequalities for the weighted geometric mean of two positive
operators on a complex Hilbert space.
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1 Introduction

The famous Young inequality for scalars says that if a, b > 0 and ν ∈ [0, 1],
then

a1−νbν ≤ (1− ν) a+ νb (1)

with equality if and only if a = b. The inequality (1) is also called ν-weighted
arithmetic-geometric mean inequality.

We recall that Specht’s ratio is defined by [7]

S (h) :=


h

1
h−1

e ln

(
h

1
h−1

) if h ∈ (0, 1) ∪ (1,∞) ,

1 if h = 1.

(2)

It is well known that limh→1 S (h) = 1, S (h) = S
(
1
h

)
> 1 for h > 0, h 6= 1. The

function is decreasing on (0, 1) and increasing on (1,∞) .
The following inequality provides a refinement and a multiplicative reverse for

Young’s inequality

S
((a

b

)r)
a1−νbν ≤ (1− ν) a+ νb ≤ S

(a
b

)
a1−νbν , (3)
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where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν}.
The second inequality in (3) is due to Tominaga [8] while the first one is due

to Furuichi [3].

We also consider the Kantorovich’s ratio defined by

K (h) :=
(h+ 1)2

4h
, h > 0. (4)

The function K is decreasing on (0, 1) and increasing on [1,∞) , K (h) ≥ 1 for
any h > 0 and K (h) = K

(
1
h

)
for any h > 0.

The following multiplicative refinement and reverse of Young inequality in
terms of Kantorovich’s ratio holds

Kr
(a
b

)
a1−νbν ≤ (1− ν) a+ νb ≤ KR

(a
b

)
a1−νbν (5)

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν} .
The first inequality in (5) was obtained by Zou et al. in [9] while the second

by Liao et al. [6].

In [9] the authors also showed that Kr (h) ≥ S (hr) for h > 0 and r ∈
[
0, 12
]

implying that the lower bound in (5) is better than the lower bound from (3).

In the recent paper [1] we obtained the following reverse of Young’s

1 ≤ (1− ν) a+ νb

a1−νbν
≤ exp

[
4ν (1− ν)

(
K
(a
b

)
− 1
)]
, (6)

where a, b > 0, ν ∈ [0, 1].

It has been shown in [1] that there is no ordering for the upper bounds of the

quantity (1−ν)a+νb
a1−νbν incorporated in the inequalities (3), (5) and (6).

In [2] we obtained the following refinement and reverse of Young’s inequality:

exp

[
1

2
ν (1− ν)

(
1− min {a, b}

max {a, b}

)2
]

(7)

≤ (1− ν) a+ νb

a1−νbν

≤ exp

[
1

2
ν (1− ν)

(
max {a, b}
min {a, b}

− 1

)2
]
,

for any a, b > 0 and ν ∈ [0, 1] .

It has been shown in [2] that there is no ordering between the upper bounds

of the quantity (1−ν)a+νb
a1−νbν provided by (6) and (7).

In this paper, by the use of some Young’s type scalar inequalities (3), (5),
(6) and (7) we obtain some inequalities for the weighted geometric mean of two
positive operators on a complex Hilbert space.
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2 Operator Inequalities

Throughout this paper A, B are positive operators on a complex Hilbert space
(H, 〈·, ·〉) . We use the following notations for operators

A]νB := A1/2
(
A−1/2BA−1/2

)ν
A1/2, the weighted geometric mean,

where ν ∈ [0, 1] . When ν = 1
2 we write A]B for brevity.

The definition of the weighted geometric mean can be extended for any real
number ν ∈ R and positive operators A, B on the Hilbert space (H, 〈·, ·〉) .

We observe that if ν ∈ [0, 1] , then

A]ν−1B := A1/2
(
A−1/2BA−1/2

)ν−1
A1/2 = A1/2

[(
A−1/2BA−1/2

)−1]1−ν
A1/2

= A1/2
(
A1/2B−1A1/2

)1−ν
A1/2 = A−1]1−νB

−1.

Theorem 1. Let A, B be positive operators and such that there exists the positive
numbers 0 < m < M with the property

mI ≤ A−1/2BA−1/2 ≤MI, (8)

then we have

min
x∈[m,M ]

S (xr)A ≤ (1− ν)A]νB + νA]ν−1B ≤ max
x∈[m,M ]

S (x)A (9)

for any ν ∈ [0, 1] , where r := min {1− ν, ν} .
In particular,

min
x∈[m,M ]

S
(√
x
)
A ≤ 1

2

(
A]B +A−1]B−1

)
≤ max

x∈[m,M ]
S (x)A. (10)

Proof. From (3) we have

S (xr)x1−ν ≤ (1− ν)x+ ν ≤ S (x)x1−ν , (11)

where x > 0, ν ∈ [0, 1] and r = min {1− ν, ν} .
If we divide (11) by x1−ν > 0 then we get

S (xr) ≤ (1− ν)xν + νxν−1 ≤ S (x) , (12)

for any x > 0.
If x ∈ [m,M ] then by (12) we get

min
x∈[m,M ]

S (xr) ≤ (1− ν)xν + νxν−1 ≤ max
x∈[m,M ]

S (x) . (13)

Using the functional calculus for continuous functions we have by (13) that

min
x∈[m,M ]

S (xr) I ≤ (1− ν)Xν + νXν−1 ≤ max
x∈[m,M ]

S (x) I (14)
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for any selfadjoint operator X with Sp(X) ⊂ [m,M ] .
Now, if we write the inequality (14) for X = A−1/2BA−1/2, then we get

min
x∈[m,M ]

S (xr) I ≤ (1− ν)
(
−1/2BA−1/2

)ν
+ ν

(
−1/2BA−1/2

)ν−1
(15)

≤ max
x∈[m,M ]

S (x) I.

By multiplying both sides of (15) by A1/2 we get (9).

We have:

Corollary 1. If either 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤ MI for positive real
numbers m, m′, M, M ′ or 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤MI, then by putting
h := M

m , h
′ := M ′

m′ we have

S
((
h′
)r)

A ≤ (1− ν)A]νB + νA]ν−1B ≤ S (h)A, (16)

for any ν ∈ [0, 1] , where r =: min {1− ν, ν} .
In particular,

S
(√

h′
)
A ≤ 1

2

(
A]B +A−1]B−1

)
≤ S (h)A. (17)

Proof. If 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤MI, then we have

0 < h′I ≤ A−1/2BA−1/2 ≤ hI.

Since h > h′ > 1 then maxx∈[h′,h] S (x) = S (h) and minx∈[h′,h] S (xr) = S ((h′)r)
and by (9) we have (16).

If 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤MI, then we have

0 <
1

h
I ≤ A−1/2BA−1/2 ≤ 1

h′
I.

Since 1
h <

1
h′ < 1 then maxx∈[ 1

h
, 1
h′ ]
S (x) = S

(
1
h

)
= S (h) and minx∈[ 1

h
, 1
h′ ]
S (xr) =

S
((

1
h′

)r)
= S ((h′)r) and by (9) we also have (16).

Theorem 2. With the assumptions of Theorem 1, we have

min
x∈[m,M ]

Kr (x)A ≤ (1− ν)A]νB + νA]ν−1B ≤ max
x∈[m,M ]

KR (x)A (18)

for any ν ∈ [0, 1] \
{
1
2

}
, where r := min {1− ν, ν} and R := max {1− ν, ν} .

Proof. From (5) we have

Kr (x)x1−ν ≤ (1− ν)x+ ν1 ≤ KR (x)x1−ν (19)

where x > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν}.
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If we divide (19) by x1−ν > 0, then we get

Kr (x) ≤ (1− ν)xν + νxν−1 ≤ KR (x) , (20)

for any x > 0.
This inequality implies that

min
x∈[m,M ]

Kr (x) ≤ (1− ν)xν + νxν−1 ≤ max
x∈[m,M ]

KR (x) , (21)

for any x ∈ [m,M ] .
Using the functional calculus for continuous functions we have by (21) that

min
x∈[m,M ]

Kr (x) I ≤ (1− ν)Xν + νXν−1 ≤ max
x∈[m,M ]

KR (x) I (22)

for any selfadjoint operator X with Sp(X) ⊂ [m,M ] , where ν ∈ [0, 1], r =
min {1− ν, ν} and R = max {1− ν, ν} .

Now, if we write the inequality (14) for X = A−1/2BA−1/2 then we get

min
x∈[m,M ]

Kr (x) I ≤ (1− ν)
(
−1/2BA−1/2

)ν
+ ν

(
−1/2BA−1/2

)ν−1
(23)

≤ max
x∈[m,M ]

KR (x) I.

By multiplying both sides of (23) by A1/2 we get (18).

Corollary 2. If either 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤ MI for positive real
numbers m, m′, M, M ′ or 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤MI, then by putting
h := M

m , h
′ := M ′

m′ we have

Kr
(
h′
)
A ≤ (1− ν)A]νB + νA]ν−1B ≤ KR (h)A, (24)

for any ν ∈ [0, 1] \
{
1
2

}
, where r := min {1− ν, ν} and R := max {1− ν, ν} .

The proof is similar to the one from Corollary 1 and we omit the details.
The following result concerning another upper bound for

(1− ν)A]νB + νA]ν−1B

also holds.

Theorem 3. With the assumptions of Theorem 1, we have

(A ≤) (1− ν)A]νB + νA]ν−1B ≤ exp

[
4ν (1− ν)

(
max

x∈[m,M ]
K (x)− 1

)]
A (25)

for any ν ∈ [0, 1] .
In particular, we have

(A ≤)
1

2

(
A]B +A−1]B−1

)
≤ exp

(
max

x∈[m,M ]
K (x)− 1

)
A. (26)
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Proof. From the inequality (6) we have

(1 ≤) (1− ν)xν + νxν−1 ≤ exp [4ν (1− ν) (K (x)− 1)] , (27)

for any x > 0.
This implies that

(1− ν)xν + νxν−1 ≤ max
x∈[m,M ]

{exp [4ν (1− ν) (K (x)− 1)]} (28)

= exp

[
4ν (1− ν)

(
max

x∈[m,M ]
K (x)− 1

)]
for any x ∈ [m,M ] .

Using the functional calculus for continuous functions we have by (28) that

(1− ν)Xν + νXν−1 ≤ exp

[
4ν (1− ν)

(
max

x∈[m,M ]
K (x)− 1

)]
for any selfadjoint operator X with Sp(X) ⊂ [m,M ] , where ν ∈ [0, 1].

The proof follows now in a similar way as above and we omit the details.

Corollary 3. With the assumptions of Corollary 1, we have

(A ≤) (1− ν)A]νB + νA]ν−1B ≤ exp [4ν (1− ν) (K (h)− 1)]A (29)

for any ν ∈ [0, 1] .
In particular, we have

(A ≤)
1

2

(
A]B +A−1]B−1

)
≤ exp (K (h)− 1)A. (30)

Finally, we have:

Theorem 4. With the assumptions of Theorem 1, we have

exp

[
1

2
ν (1− ν)

(
1− min {1,M}

max {1,m}

)2
]
A (31)

≤ (1− ν)A]νB + νA]ν−1B

≤ exp

[
1

2
ν (1− ν)

(
max {1,M}
min {1,m}

− 1

)2
]
A

and, in particular

exp

[
1

8

(
1− min {1,M}

max {1,m}

)2
]
A ≤ 1

2

(
A]B +A−1]B−1

)
(32)

≤ exp

[
1

8

(
max {1,M}
min {1,m}

− 1

)2
]
A.
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Proof. From the inequality (7) we have

exp

[
1

2
ν (1− ν)

(
1− min {1, x}

max {1, x}

)2
]

(33)

≤ (1− ν)xν + νxν−1

≤ exp

[
1

2
ν (1− ν)

(
max {1, x}
min {1, x}

− 1

)2
]

for any x > 0 and any ν ∈ [0, 1] .

If x ∈ [m,M ] ⊂ (0,∞) then

0 ≤ max {1, x}
min {1, x}

− 1 ≤ max {1,M}
min {1,m}

− 1

and

0 ≤ 1− min {1,M}
max {1,m}

≤ 1− min {1, x}
max {1, x}

,

which implies that

exp

[
1

2
ν (1− ν)

(
max {1, x}
min {1, x}

− 1

)2
]

≤ exp

[
1

2
ν (1− ν)

(
max {1,M}
min {1,m}

− 1

)2
]

and

exp

[
1

2
ν (1− ν)

(
1− min {1,M}

max {1,m}

)2
]

≤ exp

[
1

2
ν (1− ν)

(
1− min {1, x}

max {1, x}

)2
]
.

By (33) we then have

exp

[
1

2
ν (1− ν)

(
1− min {1,M}

max {1,m}

)2
]

(34)

≤ (1− ν)xν + νxν−1

≤ exp

[
1

2
ν (1− ν)

(
max {1,M}
min {1,m}

− 1

)2
]

for any x ∈ [m,M ] and any ν ∈ [0, 1] .
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Using the functional calculus for continuous functions we have by (34) that

exp

[
1

2
ν (1− ν)

(
1− min {1,M}

max {1,m}

)2
]

(35)

≤ (1− ν)Xν + νXν−1

≤ exp

[
1

2
ν (1− ν)

(
max {1,M}
min {1,m}

− 1

)2
]

for any selfadjoint operator X with Sp(X) ⊂ [m,M ] , where ν ∈ [0, 1].

The proof follows now in a similar way as above and we omit the details.

Corollary 4. With the assumptions of Corollary 1 we have

exp

[
1

2
ν (1− ν)

(
h′ − 1

h′

)2
]
≤ (1− ν)A]νB + νA]ν−1B (36)

≤ exp

[
1

2
ν (1− ν) (h− 1)2

]
and, in particular,

exp

[
1

8

(
h′ − 1

h′

)2
]
≤ 1

2

(
A]B +A−1]B−1

)
≤ exp

[
1

8
(h− 1)2

]
. (37)
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