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∗-CRITICAL POINT EQUATION ON N(k)-CONTACT
MANIFOLDS
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Abstract

The object of the present paper is to characterize N(k)-contact metric
manifolds satisfying the ∗-critical point equation. It is proved that, if (g, λ)
is a non-constant solution of the ∗-critical point equation of a non-compact
N(k)-contact metric manifold, then (1) the manifold M is locally isometric
to the Riemannian product of a flat (n + 1)-dimensional manifold and an
n-dimensional manifold of positive curvature 4 for n > 1 and flat for n = 1,
(2) the manifold is ∗-Ricci flat and (3) the function λ is harmonic. The result
is also verified by an example.
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1 Introduction

The Ricci tensor S of a Riemannian manifold M is a tensor field of type (0, 2)
and is given by

S(X,Y ) = g(QX,Y ) = trace{Z 7→ R(Z,X)Y }, (1)

where Q is the (1, 1) Ricci operator.
In 1959, Tachibana [15] introduced the notion of ∗-Ricci tensor on almost

Hermitian manifolds. Later in [10], Hamada defined the ∗-Ricci tensor of real
hypersurfaces in non-flat complex space form by

S∗(X,Y ) = g(Q∗X,Y ) =
1

2
(trace{φ ◦R(X,φY )}), (2)

where Q∗ is the (1, 1) ∗-Ricci operator for any vector fields X, Y on M . The
∗-scalar curvature is denoted by r∗ and is defined by r∗ = trace(S∗). In 2018,
Majhi et. al.[11] studied ∗-Ricci solitons on Sasakian 3-manifolds.
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Definition 1. A Riemannian manifold M is called ∗-η-Einstein if there exist two
smooth functions α and β on M which satisfy the relation

S∗(X,Y ) = αg(X,Y ) + βη(X)η(Y ).

Definition 2. A Riemannian manifold M is called ∗-Ricci flat if the ∗-Ricci
tensor S∗ vanishes identically.

A Riemannian manifold (M, g) of dimension n ≥ 3 with constant scalar cur-
vature and unit volume together with a non-constant smooth potential function
λ satisfying the equation

Hessλ− (S − r

n− 1
g)λ = S − r

n
g, (3)

is called a critical point equation (in short, CPE) on M , where S is the Ricci
tensor, r is the scalar curvature and Hessλ is the Hessian of the smooth function
λ.
Note that if λ = 0, then (3) becomes Einstein metric. In [2], Besse conjectured
that the solution of the CPE is Einstein. Barros and Ribeiro [1] proved that
the CPE conjecture is true for half conformally flat. In [9], Hwang proved that
the CPE conjecture is also true under certain conditions on the bounds of the
potential function λ. Very recently, Neto [12] deduced a necessary and sufficient
condition on the norm of the gradient of the potential function for a CPE metric
to be Einstein. Similar kind of critical metric was studied by Wang and Wang in
[17].

In this paper the following notion is introduced

Definition 3. A Riemannian manifold (M, g) of dimension (2n + 1) ≥ 3 with
constant ∗-scalar curvature and unit volume together with a non-constant smooth
potential function λ satisfying the equation

Hessλ− (S∗ − r∗

2n
g)λ = S∗ − r∗

2n+ 1
g, (4)

is called a ∗-critical point equation (in short, ∗-CPE) on M , where r∗ is the ∗-
scalar curvature.

In this paper, we consider the above notion of ∗-CPE in the framework of
(2n+ 1)-dimensional N(k)-contact metric manifolds and prove the following:

Theorem 1. Let M be a (2n+ 1)-dimensional non-compact N(k)-contact metric
manifold. If (g, λ) is a non-constant solution of the ∗-critical point equation, then

(1) The manifold M is locally isometric to the Riemannian product of a flat
(n + 1)-dimensional manifold and an n-dimensional manifold of positive
curvature 4 for n > 1 and flat for n = 1.

(2) The manifold M is ∗-Ricci flat.

(3) The function λ is harmonic.
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2 Preliminaries

By an almost contact structure on a (2n+1)-dimensional manifold M we mean
a structure (φ, ξ, η) satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0, (5)

where φ is a (1, 1)-tensor field, ξ is a unit vector field and η is a smooth 1-form dual
to ξ with respect to the Riemannian metric g. Let g be a compatible Riemannian
metric with almost contact structure (φ, ξ, η), that is,

g(φX, φY ) = g(X,Y )− η(X)η(Y ). (6)

Then M becomes an almost contact metric manifold equiped with an almost
contact metric structure (φ, ξ, η, g). Using (5), we can easily see from the above
equation that

g(φX, Y ) = −g(X,φY ), g(X, ξ) = η(X). (7)

An almost contact metric structure becomes a contact metric structure if g(X,φY ) =
dη(X,Y ) for all vector fields X, Y on M . The (1, 1)-tensor field h is defined by
h = 1

2£ξφ, where £ denotes the Lie differentiation. The tensor field h is symmetric
and satisfies

hφ = −φh, trace(h) = trace(φh) = 0, hξ = 0. (8)

Also,

∇Xξ = −φX − φhX. (9)

The k-nullity distribution N(k) of a Riemannian manifolds is defined by [16]

N(k) = {Z ∈ T (M) : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ]},

k being a real number and T (M) is the Lie algebra of all vector fields on M . If
the characteristic vector field ξ ∈ N(k), then we call a contact metric manifold as
N(k)-contact metric manifold [16]. However, for a N(k)-contact metric manifold
M of dimension (2n+ 1), we have ([4], [5])

h2 = (k − 1)φ2, (10)

R(X,Y )ξ = k[η(Y )X − η(X)Y ], (11)

R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X], (12)

S(X,Y ) = 2(n− 1)g(X,Y ) + 2(n− 1)g(hX, Y )

+[2(1− n) + 2nk]η(X)η(Y ), n ≥ 1. (13)
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S(X, ξ) = 2nkη(X), (14)

(∇Xη)(Y ) = g(X + hX, φY ), (15)

for any vector fields X, Y where R is the Riemannian curvature tensor and S
is the Ricci tensor. N(k)-contact metric manifolds have been studied by several
authors such as ([6], [13], [14]) and many others.

3 ∗-Critical point equation

To prove the main theorem we need to state the following lemmas.

Lemma 1. ([3]) A contact metric manifold M2n+1 satisfying condition R(X,Y )ξ =
0 for all X, Y is locally isometric to the Riemannian product of a flat (n + 1)-
dimensional manifold and an n-dimensional manifold of positive curvature 4, i.e.,
En+1(0)× Sn(4) for n > 1 and flat for n = 1.

Lemma 2. ([8]) Let M2n+1(φ, ξ, η, g) be a contact metric manifold and {ξ, ej , φej}
a local orthonormal φ-basis. Then

2n∑
i=0

g(R(X,Y )φhei, ei) = 0

for any vector fields X, Y on M .

Lemma 3. In a (2n+ 1)-dimensional N(k)-contact metric manifold

(DivR)(X,Y )ξ = −4kg(φX, Y )

for any vector fields X, Y on M , where “Div” stands for divergence.

Proof. It is well known that [18]

(DivR)(X,Y )Z = (∇XS)(Y, Z)− (∇Y S)(X,Z).

Hence,

(DivR)(X,Y )ξ = (∇XS)(Y, ξ)− (∇Y S)(X, ξ). (16)

Now,

(∇Y S)(X, ξ) = ∇Y S(X, ξ)− S(∇YX, ξ)− S(X,∇Y ξ).

Using (9), (13)-(15) in the foregoing equation yields

(∇Y S)(X, ξ) = 2nk[g(φX, Y ) + g(φX, hY )] + S(X,φY ) + S(X,φhY ). (17)

Making use of (17) in (16) and then using (8), (10) and (13) we get the desired
result.
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Lemma 4. A (2n+1)-dimensional N(k)-contact metric manifold is ∗-η-Einstein
and the ∗-Ricci tensor S∗ is given by

S∗(X,Y ) = −k[g(X,Y )− η(X)η(Y )]. (18)

Proof. Differentiating (11) covariantly along any vector field Z we have

∇ZR(X,Y )ξ = k[(∇Zη(Y ))X + η(Y )∇ZX − (∇Zη(X))Y − η(X)∇ZY ]. (19)

Now,

(∇ZR)(X,Y )ξ = ∇ZR(X,Y )ξ −R(∇ZX,Y )ξ −R(X,∇ZY )ξ −R(X,Y )∇Zξ.

Using (9) and (11) in the foregoing equation we have

∇ZR(X,Y )ξ = (∇ZR)(X,Y )ξ + k[η(Y )∇ZX − η(∇ZX)Y ]

+k[η(∇ZY )X − η(X)∇ZY ]−R(X,Y )φZ

−R(X,Y )φhZ. (20)

Substituting (18) in (17) and then using (15) we infer that

(∇ZR)(X,Y )ξ −R(X,Y )φZ −R(X,Y )φhZ

= k[g(φY,Z)X + g(hZ, φY )X − g(φX,Z)Y − g(hZ, φX)Y ]. (21)

Let {ei}, i = 1, 2, . . . , (2n + 1) be an orthonormal basis of the tangent space at
each point of the manifold. Now contracting Z in (19) and using (8) we obtain

(DivR)(X,Y )ξ − g(R(X,Y )φei, ei)− g(R(X,Y )φei, ei) = −2kg(φX, Y ). (22)

Now using Lemma 2 and Lemma 3 in the above equation yields

g(R(X,Y )φei, ei) = −2kg(φX, Y ).

Substituting Y = φY and using (2) in the foregoing equation we complete the
proof.

Remark 1. The above Lemma can also be obtained from Lemma 5.3 of [8]. For
completeness, we give the detailed proof here.

Proof of Theorem 1:

Tracing (18) we get r∗ = −2nk. Substituting the value of r∗ and S∗ from (18)
in (4) we obtain

Hessλ(X,Y ) = − k

2n+ 1
g(X,Y ) + k(1 + λ)η(X)η(Y ),

which implies

∇XDλ = − k

2n+ 1
X + k(1 + λ)η(X)ξ. (23)
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Differentiating (23) covariantly along any vector field Y we get

∇Y∇XDλ = − k

2n+ 1
∇YX + k(Y λ)η(X)ξ + k(1 + λ)(∇Y η(X))ξ

+k(1 + λ)η(X)(−φY − φhY ). (24)

Interchanging X and Y in the above equation we obtain

∇X∇YDλ = − k

2n+ 1
∇XY + k(Xλ)η(Y )ξ + k(1 + λ)(∇Xη(Y ))ξ

+k(1 + λ)η(Y )(−φX − φhX). (25)

Again from (23) we have

∇[X,Y ]Dλ = − k

2n+ 1
(∇XY −∇YX) + k(1 + λ)η(∇XY −∇YX)ξ. (26)

Now,

R(X,Y )Dλ = ∇X∇YDλ−∇Y∇XDλ−∇[X,Y ]Dλ. (27)

Substituting (24)-(26) in (27) we get

R(X,Y )Dλ = k(Xλ)η(Y )ξ − k(Y λ)η(X)ξ − 2k(1 + λ)g(φX, Y )

+k(1 + λ)(η(X)(φY + φhY )− η(Y )(φX + φhX)). (28)

Putting X = ξ in (28) yields

R(ξ, Y )Dλ = k(ξλ)η(Y )ξ − k(Y λ)ξ + k(1 + λ)(φY + φhY ). (29)

Taking inner product of the foregoing equation with X we obtain

g(R(ξ, Y )Dλ,X) = k(ξλ)η(X)η(Y )− k(Y λ)η(X)

+k(1 + λ)(g(φY,X) + g(φhY,X)). (30)

Again, using (11) we obtain

g(R(ξ, Y )Dλ,X) = −kg(X,Y )(ξλ) + kη(X)(Y λ). (31)

Hence, from the above two equations we have

−kg(X,Y )(ξλ) + kη(X)(Y λ) = k(ξλ)η(X)η(Y )− k(Y λ)η(X)

+k(1 + λ)(g(φY,X) + g(φhY,X)). (32)

Antisymmetrizing the above equation we infer that

k(Y λ)η(X)− k(Xλ)η(Y ) + k(1 + λ)g(φX, Y ) = 0. (33)

Replacing X, Y by φX, φY respectively in the above equation we get

k(1 + λ)g(φX, Y ) = 0, (34)

which implies k = 0 as λ is a non-constant smooth function. Hence, equation
(11) and Lemma 1 proves (1). Again Lemma 4 shows that the manifold becomes
∗-Ricci flat, which proves (2). Now, putting k = 0 in (23) and taking inner
product with Y and then tracing it we obtain ∆λ = Div(gradλ) = 0, where ∆
is the Laplace operator. The non-compactness of the manifold is used here, as
λ is non-constant. Therefore, λ is harmonic proving (3). This completes the proof.
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4 Example

In [7], the authors have constructed an example of a 3-dimensional N(1−α2)-
contact metric manifold. In this example we can easily calculate that

S∗(e1, e1) = 0, S∗(e2, e2) = S∗(e3, e3) = −(1− α2).

Therefore, r∗ = S∗(e1, e1) + S∗(e2, e2) + S∗(e3, e3) = −2(1− α2).
Now considering the dimension and tracing (4) we obtain ∆λ = (1−α2)λ, where
∆ is the Laplace operator given by ∆λ = Div(gradλ). If we consider α = 1, then
the manifold reduces to a flat manifold and (g, λ) is a solution of the ∗-critical
point equation, where λ satisfies the Laplace equation ∆λ = 0. Thus, our Theo-
rem 1 is verified.
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