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Abstract

In the present paper we study *-Ricci solitons in (¢)—para Sasakian man-
ifolds and prove that if an (€)—para Sasakian 3-manifold with constant scalar
curvature admits a *-Ricci soliton, then the *-Ricci soliton is steady if and
only if £v€ is g-orthogonal to £ provided a =Tr¢ is constant. Beside these,
we study gradient *-Ricci solitons on (€)—para Sasakian 3-manifolds.
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1 Introduction

In this paper, we introduce a new type of Ricci solitons, called *-Ricci solitons
in (€)—para Sasakian manifolds with indefinite metric which play a functional role
in contemporary mathematics. The properties of a manifold solely depend on the
nature of the metric defined on it. With the help of indefinite metric, A. Bejancu
and K. L. Duggal [1] introduced (€)—Sasakian manifolds. Also, Xufeng and Xi-
aoli [18] showed that every (e)—Sasakian manifold must be a real hypersurface of
some indefinite Kdhler manifold. In 2010, Tripathi et.al[14] studied (e)—almost
paracontact manifolds, and in particular, (¢)—para Sasakian manifolds. They in-
troduced the notion of an (€)—para Sasakian structure. Since Sasakian manifolds
with indefinite metric play significant role in physics [8], our natural trend is to
study various contact manifolds with indefinite metric.

A Ricci soliton is a generalization of an Einstein metric. We recall the notion
of Ricci soliton according to [5]. On manifold M, a Ricci soliton is a triple (g, V, A)
with g a Riemannian metric, V' a vector field, called potential vector field and A
a real scalar such that

Lyg+25+2\g =0, (1)
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where £ is the Lie derivative. Metrics satisfying (1) are interesting and useful in
physics and are often referred as quasi-Einstein ([6],[7]).

The Ricci soliton is said to be shrinking, steady and expanding accordingly as
A is negative, zero and positive respectively. Ricci solitons have been studied by
several authors such as ([21],[20],[12],[13]) and many others.

Ricci solitons have been generalized in several ways, such as almost Ricci
solitons ([9],[16],[10]), n-Ricci solitons ([2],[3]), generalized Ricci soliton, *-Ricci
solitons and many others.

As a generalization of Ricci soliton, Tachibana [17] introduced the notion of
x-Ricci tensor on almost Hermitian manifolds. Later, in [11] Hamada studied x-
Ricci flat real hypersurfaces in non-flat complex space forms and Blair [4] defined
x-Ricci tensor in contact metric manifolds by

SH(X,Y) =g(Q"X,Y) = Trace{¢ o R(X, ¢Y)}, (2)
where QQ* is called the x-Ricci operator.

Definition 1. [15] A Riemannian (or semi-Riemannian) metric g on M is called
x-Ricci soliton if
£yg+ 2S5 +2Xg = 0, (3)

where \ is a constant.

Definition 2. [15] A Riemannian (or semi-Riemannian) metric g on M is called
gradient *-Ricci soliton if

VVf+S5*+Ag=0, (4)

where VV f denotes the hessian of the smooth function f on M with respect to g
and A is a constant.

Definition 3. A contact metric manifold of dimension n > 2 is called *-Finstein
if the x-Ricci tensor S* of type (0,2) satisfies the relation

S* = Mg, (5)
where \ is a constant.

If an (€)—para Sasakian manifold M satisfies relation (3), then we say that M
admits a *-Ricci soliton.

The present paper focuses on the study of (¢)—para Sasakian 3-manifolds M
admitting a *-Ricci soliton. More precisely, the following theorems are proved.

Theorem 1. If an (€)—para Sasakian 3-manifold (M, $,&,n, g,€) with constant
scalar curvature admits a *-Ricci soliton, then the x-Ricci soliton is steady if and
only if £v& is g-orthogonal to & provided a =Tr¢ is constant.

Theorem 2. A gradient x-Ricci soliton with potential vector field of gradient type,
V = Df, satisfying Lef =0 on an (€)—para Sasakian 3-manifold (M, ¢,&,n, g, ¢€)
is x-Finstein provided a =Tr¢ is constant.
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2 Preliminaries

A (2n + 1)—dimensional smooth manifold M together with a (1,1)-tensor
field ¢, a vector field &, a 1-form 7 and a semi-Riemannian metric g is called an
(e)—almost paracontact metric manifold if

¢*X = X —n(X)¢, n¢) =1, (6)
9(576):67 TI(X) :69(X7§)7 (7)
9(¢X,9Y) = g(X,Y) — en(X)n(Y), (8)

where € is 1 or -1 accordingly as £ is spacelike or timelike, and the rank of ¢ is
2n. It is important to mention that in the above definition, £ is never a lightlike
vector field. Tt follows that ¢ =0, no¢ = 0 and g(X, oY) = g(¢X,Y), for any
X,Y € x(M).

If moreover, the manifold satisfies

(Vxd)Y = —g(¢X, ¢Y ) — en(Y)$° X, 9)

where V denotes the Riemannian connection of g, then we shall call the manifold
an (€)—para Sasakian manifold .

On an (e)—para Sasakian manifold (M, ¢, &, 1, g, €), the following relations hold
[14]:

Vxé = ehX, (10)

(Vxn)Y = eg(Y, ¢X), (11)

R(X,Y)§ = n(X)Y —n(Y)X, (12)
n(R(X,Y)Z) = e[g(X, Z)n(Y) — g(Y, Z)n(X)], (13)
S(X,€) = —2nn(X), (14)

QE = —€2ng, (15)

where V, R, S and @) denote respectively, the Riemannian connection, the curva-
ture tensor of type (1,3), the Ricci tensor of type (0,2) and the Ricci operator of

type (1,1).
Lemma 1. In an (€)—para Sasakian manifold (M, ¢,&,m, g, €), we have
R(X,Y)¢Z = oR(X,Y)Z —€[g(Y,2Z)9X —g(X, Z)¢Y]

2e[g(X, 0Z)n(Y) — g(Y, 0 Z)n(X)]€
2(n(Y)pX — n(X)oYn(2). (16)

+ + +
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Proof. To prove the above Lemma we shall use equation (9).

Now

R(X,Y)$Z
VxVy¢Z —VyVx¢Z — Vixy)9Z
Vx(@(VyZ) —g(Y, 2)§ —en(2)Y + 2en(Y)n(Z)¢€)

- Vy(o(VxZ) —9(X, Z)§ — en(Z) X + 2en(X)n(Z)¢€)
- (‘b(v[X,Y]Z) - g([Xv Y]? Z)§ - GW(Z)[X7Y] + 2677([X7 Y])n(z)f)

P(VxVyZ) —g(X,Vy2)§ —en(Vy Z)X + 2en(X)n(Vy Z)§

- Vxg(Y,2){ —eg(Y, Z)9pX — eVxn(2)Y —en(Z)VxY

+ o+ o+l +

2eVxn(Y)N(Z)E + 2en(Y )V xn(Z)E 4 2en(Y)n(Z) 9 X
d(VyVxZ)+g(X,VxZ)§+en(Vx2)Y —2en(Y)n(VxZ)§
Vyg(X, 2)¢ +eg(X, Z)pY + eVyn(Z)X + en(Z2)Vy X
2eVyn(X)n(2)€ = 2en(X)Vyn(Z)§ — 2en(X)n(Z)sY
*(Vixy1Z) +9(VxY, 2)§ — g(Vy X, Z)¢

en(2)VxY —en(Z)Vy X = 2en(VxY)n(2)E + 2en(Vy X)n(Z)§
OR(X,Y)Z — €[g(Y, 2)p X — g(X, Z)pY]

elg(Y,02)X — g(X,92)Y]

2e[g(X, 0Z)n(Y) — g(Y, ¢Z)n(X)]€

2[n(Y)oX —n(X)oYn(Z).

This completes the proof. [ O

Lemma 2. In an (¢)—para Sasakian manifold (M, $,&,n,g,€), we have

R(X,Y,¢Z,¢W) = R(X,Y,Z W)+ 29(Y, Z)n(X)n(W) — 29(X, Z)n(Y )n(W)

— €lg(Y, 2)g(X, W) — g(X, Z)g(Y, W)
— 9(X,oW)g(Y,9Z) + g(Y, oW )g(X, ¢Z)]
+ 29(X, Wn(Y)n(Z) — 2g(Y, W)n(X)n(Z), (17)

where R(X,Y,Z,W) = g(R(X,Y)Z,W), for X,Y,Z,W € x(M).

Proof. To prove the above Lemma we shall use equations (8),(13) and (16).
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Now

R(X,Y,¢Z,¢W)
= g(oR(X,Y)Z,¢W) — €[g(Y, Z)g(6 X, W)
9(X, 2)g(oY, W) — e[g(X, ¢Z)g(Y, oW) — g(Y, $Z)g(X, pW)]
— 26[g(Y,0Z)n(X) — g(X, 0Z)n(Y)|n(eW)
+ 2[g(dX, oW )n(Y) — g(¢Y, oW)n(X)|n(Z)
= g(R(X,Y)Z, W) —en(R(X,Y)Z)n(W) + €[g(Y, Z)g(X, W)
eg(Y, Z)n(X)n(W) — g9(X, Z)g(Y, W) + eg(X, Z)n(Y)n(W)
— €[g(X,02)g(Y,oW) — g(Y, 0 Z)g(X, sW)]
+  2[g(X, W)n(Y) — g(Y, W)n(X)In(Z)
= R(XY,Z,W)+29(Y, Z)n(X)n(W) — 29(X, Z)n(Y )n(W)
elg(Y, Z)g(X, W) — g(X, Z)g(Y, W)
— 9(X,oW)g(Y, 0Z) + g(Y,9W)g(X, ¢Z)]
+ 29(X, Wn(Y)n(Z) —29(Y, W)n(X)n(Z).

This completes the proof. [J ]
For a 3-dimensional (¢)—para Sasakian manifold (M, ¢,&,n, g, €), we have
RIX,V)Z = g(Y,2)QX — g(X,Z)QY + S(Y, 2)X — S(X, Z)Y

—5lo(Y. 2)X = g(X, 2)Y], (18)

for any X,Y,Z € x(M), where @ is the Ricci operator, that is, g(QX,Y) =
S(X,Y) and r is the scalar curvature of the manifold.
Putting Z = ¢ in (18) and using (12) we have

n(Y)QX = n(X)QY = (5 +¢) 1Y) X —n(X)Y]. (19)
Again replacing Y by ¢ in the foregoing equation and using (15), we get
0X = (g + e) X - (g + 36) n(X)E, (20)
which implies
S(Y) = (5 +¢) g, Y) = (5 +3€) en(X)n(Y). (21)

Now we prove the following Lemma which will be used later.

Lemma 3. In an (¢)—para Sasakian 3-manifold (M, ¢,&,n, g, €), the x-Ricci ten-
sor is given by

SHX,Y) = S(X,Y) = [e9(X,Y) + ag(X, ¢Y)] + 3n(X)n(Y), (22)

where S and S* are the Ricci tensor and the *-Ricci tensor of type (0,2), respec-
tively and a=Tr¢ .
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Proof. Let {e;}, i = 1,2,3 be an orthonormal basis of the tangent space at each
point of the manifold. From (2) and using (17), we infer

3
S*Y,Z) = Y R(e:Y,0Z, pe;)
=1
3
= > {R(e,Y, Z,es) + 29(Y, Z)n(ei)n(e:) — 2g(es, Z)n(Y )n(es)
=1
- [ (Y, Z)g(ei, ei) — glei, Z)g(Y, e;)
- gles, ¢61)9(Ya 0Z) + g(Y de;)g(ei, ¢Z)]
+ 2g(ei,ei)n(Y)n(Z) —2g(Y, ei)n(e))n(Z2)}
= S, 2) —€lg(Y, Z2) + ag(Y,9Z)] + 3n(Y)n(Z).

Hence, the *-Ricci tensor is
S*(Y,2) = 5(Y, Z) — elg(Y, Z) + ag(Y, 9 Z)] + 3n(Y)n(Z),
for any Y, Z € x(M). This completes the proof. [J O

From the above Lemma, the (1,1) x-Ricci operator Q* and the *-scalar cur-
vature r* are given by

Q"X =QX — (X +agpX) + 3en(X)E, (23)
r* =1 — 4ea’. (24)

Hereafter, unless otherwise stated, let us assume that a =Tr¢ is constant.

3 Proof of the main theorems
In view of equation (21), the *-Ricci tensor is given by

S'(XY) = Z9(X,Y) = Sen(X)n(Y) — aeg(X, ¢Y). (25)

Again from the equation of *-Ricci soliton we have

(£vg)(X,Y) = ~25%(X,Y) — 2Ag(X.Y)

26
—(r+2N)g9(X,Y) + ren(X)n(Y) + 2aeg(X, ¢Y). (26)
Taking the covariant derivative with respect to Z, we get

+rlg(¢X, Z)n(Y) + g(8Y, Z)n(X)].

Following Yano ([19], pp. 23), the following formula holds

(£vVxg—Vx£Lyg— Vi x9)(Y,2)
*g((fvv)(Xa Y)’ Z) - 9((£VV)(X7 Z)’Y)v
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forany X,Y, Z € x(M). As g is parallel with respect to the Levi-Civita connection
V, the above relation becomes

(VX£V9)(Y7 Z) = g((.f\/V)(X, Y)v Z) + g((fVV)(X, Z)7Y)> (28)

for any X,Y,Z € x(M). Since £V is a symmetric tensor of type (1,2), that is,
(LyV)(X,Y) = (£vV)(Y, X), then it follows from (28) that

g(("ng)(Xv Y)’ Z)

1 1 1 (29)
= §(VX£V9)(Y7 Z) + §(VY£V9)(X’ Z) - §(VZ£V9)(X7Y)'
Using (27) in (29) yields
29((£vV)(X,Y), Z) = —(X1)g(¢Y, ¢2)
+rlg(X, 0Y)n(Z) + g(X, 0Z)n(Y)]
— (Yr)g(oX,9Z) (30)
+r[g(¢ X, Y)n(Z) + g(Y, 0 Z)n(X)
+ (Zr)g(¢X, ¢Y)
—rlg(¢X, Z)n(Y) + g(¢Y, Z)n(X).
Removing Z from (30), it follows that
2(LvV)(X)Y) = —=(Xr){Y —en(Y)¢}
+rg(X, 9Y)E + ¢ Xn(Y)]
— (VX - en(X)¢) )

+r[g(¢X,Y)E + oY n(X)
+ (Dr)g(¢X, ¢Y)
—r[¢Xn(Y) + oY n(X),

where (Xa) = g(Da, X), for D the gradient operator with respect to g. Substi-
tuting Y = £ in the foregoing equation and using r = constant (hence, (Dr) =0
and (£r)=0), we have

(£1V)(X,€) = 0. (32)
Taking the covariant derivative of (32) with respect to Y, we infer
(Vy £y V)(X,€) =0. (33)
Again from [19]
(LvR)(X,Y,Z) = (VxLvV)(Y, Z) = (Vy LvV)(X, Z). (34)
Therefore (33) and (34) yield

(LvR)(X,Y,§) =0, (35)
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for any X,Y € x(M). Setting Y = & in (26) it follows that (£yg)(X,&) =
—2Xen(X). Lie-differentiating the equation (7) along V' and by virtue of the last
equation we have

(Lvn)(X) —eg(£vE X) +2Mn(X) = 0. (36)
Putting X = £ in the foregoing equation gives
A =n(£vE). (37)

Thus, we can say that the %-Ricci soliton is steady if and only if £y £ is g-
orthogonal to &. This completes the proof of Theorem 1.1. [J

Let (M, ®,&,m,g,€) be an (e)—para Sasakian 3-manifold with g as a gradient
«-Ricci soliton. Then equation (4) can be written as

VxDf + Q"X + X =0, (38)

for any X € x(M), where D denotes the gradient operator with respect to g.
From (38) it follows that

R(X,Y)Df = (VyQ)X — (VxQ)Y, X,Y € x(M). (39)

Using (12), we have

9(R(§, X)Df, &) = n(X)(£f) — e(X [). (40)
With the help of (25), we have
(wx@y = B0y g
— 5 [9(X,6Y)E + n(¥)oX] (4D

+ aelg(X,Y)E = 2en(X)n(Y)E — en(Y) X].

Interchanging X and Y, we have

(r@)x = U1 - enxyg
— Slg(Y, 6X)€ +n(X)oY] “42)

+ aelg(X, Y)E = 2en(X)n(Y)E — en(X)Y].
Making use of (41) and (42) we get

(vr@)X — (VxQ Y = B0y —enrye) - T2 1x - enxg

— 5I(Y)6X —n(X)$Y]+aln(¥)X — n(X)Y]

(43)
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Putting X = £ in (43) and taking inner product with &, we infer that

9(Vy Q7)€ = (VeQ)Y,§) =0, (44)

for any Y € x(M). From (40) and (44) we get

e(Xf) =n(X) (&), (45)

for any X € x(M). Therefore, Df = (£f){. Taking the covariant derivative with
respect to X and using (38) it follows that

SUXY) = =[A+ (£)8lg(X,Y) — e(§)g(0X,Y), (46)

for any X,Y € x(M). This completes the proof of Theorem 1.2. [J

Also remark that if we assume £¢f = 0, from (45) we obtain that f is a
constant function.
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