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Abstract

In the present paper we study ∗-Ricci solitons in (ε)−para Sasakian man-
ifolds and prove that if an (ε)−para Sasakian 3-manifold with constant scalar
curvature admits a ∗-Ricci soliton, then the ∗-Ricci soliton is steady if and
only if £V ξ is g-orthogonal to ξ provided a =Trφ is constant. Beside these,
we study gradient ∗-Ricci solitons on (ε)−para Sasakian 3-manifolds.
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1 Introduction

In this paper, we introduce a new type of Ricci solitons, called ∗-Ricci solitons
in (ε)−para Sasakian manifolds with indefinite metric which play a functional role
in contemporary mathematics. The properties of a manifold solely depend on the
nature of the metric defined on it. With the help of indefinite metric, A. Bejancu
and K. L. Duggal [1] introduced (ε)−Sasakian manifolds. Also, Xufeng and Xi-
aoli [18] showed that every (ε)−Sasakian manifold must be a real hypersurface of
some indefinite Kähler manifold. In 2010, Tripathi et.al[14] studied (ε)−almost
paracontact manifolds, and in particular, (ε)−para Sasakian manifolds. They in-
troduced the notion of an (ε)−para Sasakian structure. Since Sasakian manifolds
with indefinite metric play significant role in physics [8], our natural trend is to
study various contact manifolds with indefinite metric.

A Ricci soliton is a generalization of an Einstein metric. We recall the notion
of Ricci soliton according to [5]. On manifold M , a Ricci soliton is a triple (g, V, λ)
with g a Riemannian metric, V a vector field, called potential vector field and λ
a real scalar such that

£V g + 2S + 2λg = 0, (1)
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where £ is the Lie derivative. Metrics satisfying (1) are interesting and useful in
physics and are often referred as quasi-Einstein ([6],[7]).

The Ricci soliton is said to be shrinking, steady and expanding accordingly as
λ is negative, zero and positive respectively. Ricci solitons have been studied by
several authors such as ([21],[20],[12],[13]) and many others.

Ricci solitons have been generalized in several ways, such as almost Ricci
solitons ([9],[16],[10]), η-Ricci solitons ([2],[3]), generalized Ricci soliton, ∗-Ricci
solitons and many others.

As a generalization of Ricci soliton, Tachibana [17] introduced the notion of
∗-Ricci tensor on almost Hermitian manifolds. Later, in [11] Hamada studied ∗-
Ricci flat real hypersurfaces in non-flat complex space forms and Blair [4] defined
∗-Ricci tensor in contact metric manifolds by

S∗(X,Y ) = g(Q∗X,Y ) = Trace{φ ◦R(X,φY )}, (2)

where Q∗ is called the ∗-Ricci operator.

Definition 1. [15] A Riemannian (or semi-Riemannian) metric g on M is called
∗-Ricci soliton if

£V g + 2S∗ + 2λg = 0, (3)

where λ is a constant.

Definition 2. [15] A Riemannian (or semi-Riemannian) metric g on M is called
gradient ∗-Ricci soliton if

∇∇f + S∗ + λg = 0, (4)

where ∇∇f denotes the hessian of the smooth function f on M with respect to g
and λ is a constant.

Definition 3. A contact metric manifold of dimension n > 2 is called ∗-Einstein
if the ∗-Ricci tensor S∗ of type (0, 2) satisfies the relation

S∗ = λg, (5)

where λ is a constant.

If an (ε)−para Sasakian manifold M satisfies relation (3), then we say that M
admits a ∗-Ricci soliton.

The present paper focuses on the study of (ε)−para Sasakian 3-manifolds M
admitting a ∗-Ricci soliton. More precisely, the following theorems are proved.

Theorem 1. If an (ε)−para Sasakian 3-manifold (M,φ, ξ, η, g, ε) with constant
scalar curvature admits a ∗-Ricci soliton, then the ∗-Ricci soliton is steady if and
only if £V ξ is g-orthogonal to ξ provided a =Trφ is constant.

Theorem 2. A gradient ∗-Ricci soliton with potential vector field of gradient type,
V = Df , satisfying £ξf = 0 on an (ε)−para Sasakian 3-manifold (M,φ, ξ, η, g, ε)
is ∗-Einstein provided a =Trφ is constant.
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2 Preliminaries

A (2n + 1)−dimensional smooth manifold M together with a (1, 1)-tensor
field φ, a vector field ξ, a 1-form η and a semi-Riemannian metric g is called an
(ε)−almost paracontact metric manifold if

φ2X = X − η(X)ξ, η(ξ) = 1, (6)

g(ξ, ξ) = ε, η(X) = εg(X, ξ), (7)

g(φX, φY ) = g(X,Y )− εη(X)η(Y ), (8)

where ε is 1 or -1 accordingly as ξ is spacelike or timelike, and the rank of φ is
2n. It is important to mention that in the above definition, ξ is never a lightlike
vector field. It follows that φξ = 0, η ◦ φ = 0 and g(X,φY ) = g(φX, Y ), for any
X,Y ∈ χ(M).

If moreover, the manifold satisfies

(∇Xφ)Y = −g(φX, φY )ξ − εη(Y )φ2X, (9)

where ∇ denotes the Riemannian connection of g, then we shall call the manifold
an (ε)−para Sasakian manifold .

On an (ε)−para Sasakian manifold (M,φ, ξ, η, g, ε), the following relations hold
[14]:

∇Xξ = εφX, (10)

(∇Xη)Y = εg(Y, φX), (11)

R(X,Y )ξ = η(X)Y − η(Y )X, (12)

η(R(X,Y )Z) = ε[g(X,Z)η(Y )− g(Y, Z)η(X)], (13)

S(X, ξ) = −2nη(X), (14)

Qξ = −ε2nξ, (15)

where ∇, R, S and Q denote respectively, the Riemannian connection, the curva-
ture tensor of type (1, 3), the Ricci tensor of type (0, 2) and the Ricci operator of
type (1, 1).

Lemma 1. In an (ε)−para Sasakian manifold (M,φ, ξ, η, g, ε), we have

R(X,Y )φZ = φR(X,Y )Z − ε[g(Y,Z)φX − g(X,Z)φY ]

+ ε[g(Y, φZ)X − g(X,φZ)Y ]

+ 2ε[g(X,φZ)η(Y )− g(Y, φZ)η(X)]ξ

+ 2[η(Y )φX − η(X)φY ]η(Z). (16)
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Proof. To prove the above Lemma we shall use equation (9).

Now

R(X,Y )φZ

= ∇X∇Y φZ −∇Y∇XφZ −∇[X,Y ]φZ

= ∇X(φ(∇Y Z)− g(Y,Z)ξ − εη(Z)Y + 2εη(Y )η(Z)ξ)

− ∇Y (φ(∇XZ)− g(X,Z)ξ − εη(Z)X + 2εη(X)η(Z)ξ)

− (φ(∇[X,Y ]Z)− g([X,Y ], Z)ξ − εη(Z)[X,Y ] + 2εη([X,Y ])η(Z)ξ)

= φ(∇X∇Y Z)− g(X,∇Y Z)ξ − εη(∇Y Z)X + 2εη(X)η(∇Y Z)ξ

− ∇Xg(Y,Z)ξ − εg(Y, Z)φX − ε∇Xη(Z)Y − εη(Z)∇XY
+ 2ε∇Xη(Y )η(Z)ξ + 2εη(Y )∇Xη(Z)ξ + 2εη(Y )η(Z)φX

− φ(∇Y∇XZ) + g(X,∇XZ)ξ + εη(∇XZ)Y − 2εη(Y )η(∇XZ)ξ

+ ∇Y g(X,Z)ξ + εg(X,Z)φY + ε∇Y η(Z)X + εη(Z)∇YX
− 2ε∇Y η(X)η(Z)ξ − 2εη(X)∇Y η(Z)ξ − 2εη(X)η(Z)φY

− φ(∇[X,Y ]Z) + g(∇XY, Z)ξ − g(∇YX,Z)ξ

+ εη(Z)∇XY − εη(Z)∇YX − 2εη(∇XY )η(Z)ξ + 2εη(∇YX)η(Z)ξ

= φR(X,Y )Z − ε[g(Y,Z)φX − g(X,Z)φY ]

+ ε[g(Y, φZ)X − g(X,φZ)Y ]

+ 2ε[g(X,φZ)η(Y )− g(Y, φZ)η(X)]ξ

+ 2[η(Y )φX − η(X)φY ]η(Z).

This completes the proof. �

Lemma 2. In an (ε)−para Sasakian manifold (M,φ, ξ, η, g, ε), we have

R̃(X,Y, φZ, φW ) = R̃(X,Y, Z,W ) + 2g(Y,Z)η(X)η(W )− 2g(X,Z)η(Y )η(W )

− ε[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )

− g(X,φW )g(Y, φZ) + g(Y, φW )g(X,φZ)]

+ 2g(X,W )η(Y )η(Z)− 2g(Y,W )η(X)η(Z), (17)

where R̃(X,Y, Z,W ) = g(R(X,Y )Z,W ), for X,Y, Z,W ∈ χ(M).

Proof. To prove the above Lemma we shall use equations (8),(13) and (16).
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Now

R̃(X,Y, φZ, φW )

= g(φR(X,Y )Z, φW )− ε[g(Y, Z)g(φX, φW )

− g(X,Z)g(φY, φW )]− ε[g(X,φZ)g(Y, φW )− g(Y, φZ)g(X,φW )]

− 2ε[g(Y, φZ)η(X)− g(X,φZ)η(Y )]η(φW )

+ 2[g(φX, φW )η(Y )− g(φY, φW )η(X)]η(Z)

= g(R(X,Y )Z,W )− εη(R(X,Y )Z)η(W ) + ε[g(Y,Z)g(X,W )

− εg(Y,Z)η(X)η(W )− g(X,Z)g(Y,W ) + εg(X,Z)η(Y )η(W )

− ε[g(X,φZ)g(Y, φW )− g(Y, φZ)g(X,φW )]

+ 2[g(X,W )η(Y )− g(Y,W )η(X)]η(Z)

= R̃(X,Y, Z,W ) + 2g(Y,Z)η(X)η(W )− 2g(X,Z)η(Y )η(W )

− ε[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )

− g(X,φW )g(Y, φZ) + g(Y, φW )g(X,φZ)]

+ 2g(X,W )η(Y )η(Z)− 2g(Y,W )η(X)η(Z).

This completes the proof. �

For a 3-dimensional (ε)−para Sasakian manifold (M,φ, ξ, η, g, ε), we have

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

−r
2

[g(Y, Z)X − g(X,Z)Y ], (18)

for any X,Y, Z ∈ χ(M), where Q is the Ricci operator, that is, g(QX,Y ) =
S(X,Y ) and r is the scalar curvature of the manifold.

Putting Z = ξ in (18) and using (12) we have

η(Y )QX − η(X)QY =
(r

2
+ ε
)

[η(Y )X − η(X)Y ]. (19)

Again replacing Y by ξ in the foregoing equation and using (15), we get

QX =
(r

2
+ ε
)
X −

(r
2

+ 3ε
)
η(X)ξ, (20)

which implies

S(X,Y ) =
(r

2
+ ε
)
g(X,Y )−

(r
2

+ 3ε
)
εη(X)η(Y ). (21)

Now we prove the following Lemma which will be used later.

Lemma 3. In an (ε)−para Sasakian 3-manifold (M,φ, ξ, η, g, ε), the ∗-Ricci ten-
sor is given by

S∗(X,Y ) = S(X,Y )− [εg(X,Y ) + ag(X,φY )] + 3η(X)η(Y ), (22)

where S and S∗ are the Ricci tensor and the ∗-Ricci tensor of type (0, 2), respec-
tively and a=Trφ .
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Proof. Let {ei}, i = 1, 2, 3 be an orthonormal basis of the tangent space at each
point of the manifold. From (2) and using (17), we infer

S∗(Y, Z) =
3∑
i=1

R̃(ei, Y, φZ, φei)

=
3∑
i=1

{R̃(ei, Y, Z, ei) + 2g(Y,Z)η(ei)η(ei)− 2g(ei, Z)η(Y )η(ei)

− ε[g(Y, Z)g(ei, ei)− g(ei, Z)g(Y, ei)

− g(ei, φei)g(Y, φZ) + g(Y, φei)g(ei, φZ)]

+ 2g(ei, ei)η(Y )η(Z)− 2g(Y, ei)η(ei)η(Z)}
= S(Y, Z)− ε[g(Y,Z) + ag(Y, φZ)] + 3η(Y )η(Z).

Hence, the ∗-Ricci tensor is

S∗(Y,Z) = S(Y, Z)− ε[g(Y,Z) + ag(Y, φZ)] + 3η(Y )η(Z),

for any Y,Z ∈ χ(M). This completes the proof. �

From the above Lemma, the (1, 1) ∗-Ricci operator Q∗ and the ∗-scalar cur-
vature r∗ are given by

Q∗X = QX − ε(X + aφX) + 3εη(X)ξ, (23)

r∗ = r − 4εa2. (24)

Hereafter, unless otherwise stated, let us assume that a =Trφ is constant.

3 Proof of the main theorems

In view of equation (21), the ∗-Ricci tensor is given by

S∗(X,Y ) =
r

2
g(X,Y )− r

2
εη(X)η(Y )− aεg(X,φY ). (25)

Again from the equation of ∗-Ricci soliton we have

(£V g)(X,Y ) = −2S∗(X,Y )− 2λg(X,Y )

= −(r + 2λ)g(X,Y ) + rεη(X)η(Y ) + 2aεg(X,φY ).
(26)

Taking the covariant derivative with respect to Z, we get

(∇Z£V g)(X,Y ) =− (Zr)g(φX, φY )

+ r[g(φX,Z)η(Y ) + g(φY,Z)η(X)].
(27)

Following Yano ([19], pp. 23), the following formula holds

(£V∇Xg −∇X£V g −∇[V,X]g)(Y,Z)

= −g((£V∇)(X,Y ), Z)− g((£V∇)(X,Z), Y ),
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for any X,Y, Z ∈ χ(M). As g is parallel with respect to the Levi-Civita connection
∇, the above relation becomes

(∇X£V g)(Y,Z) = g((£V∇)(X,Y ), Z) + g((£V∇)(X,Z), Y ), (28)

for any X,Y, Z ∈ χ(M). Since £V∇ is a symmetric tensor of type (1, 2), that is,
(£V∇)(X,Y ) = (£V∇)(Y,X), then it follows from (28) that

g((£V∇)(X,Y ), Z)

=
1

2
(∇X£V g)(Y,Z) +

1

2
(∇Y £V g)(X,Z)− 1

2
(∇Z£V g)(X,Y ).

(29)

Using (27) in (29) yields

2g((£V∇)(X,Y ), Z) = −(Xr)g(φY, φZ)

+ r[g(X,φY )η(Z) + g(X,φZ)η(Y )]

− (Y r)g(φX, φZ)

+ r[g(φX, Y )η(Z) + g(Y, φZ)η(X)

+ (Zr)g(φX, φY )

− r[g(φX,Z)η(Y ) + g(φY,Z)η(X).

(30)

Removing Z from (30), it follows that

2(£V∇)(X,Y ) = −(Xr){Y − εη(Y )ξ}
+ r[g(X,φY )ξ + φXη(Y )]

− (Y r){X − εη(X)ξ}
+ r[g(φX, Y )ξ + φY η(X)

+ (Dr)g(φX, φY )

− r[φXη(Y ) + φY η(X),

(31)

where (Xα) = g(Dα,X), for D the gradient operator with respect to g. Substi-
tuting Y = ξ in the foregoing equation and using r = constant (hence, (Dr) = 0
and (ξr)=0), we have

(£V∇)(X, ξ) = 0. (32)

Taking the covariant derivative of (32) with respect to Y , we infer

(∇Y £V∇)(X, ξ) = 0. (33)

Again from [19]

(£VR)(X,Y, Z) = (∇X£V∇)(Y,Z)− (∇Y £V∇)(X,Z). (34)

Therefore (33) and (34) yield

(£VR)(X,Y, ξ) = 0, (35)
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for any X,Y ∈ χ(M). Setting Y = ξ in (26) it follows that (£V g)(X, ξ) =
−2λεη(X). Lie-differentiating the equation (7) along V and by virtue of the last
equation we have

(£V η)(X)− εg(£V ξ,X) + 2λη(X) = 0. (36)

Putting X = ξ in the foregoing equation gives

λ = η(£V ξ). (37)

Thus, we can say that the ∗-Ricci soliton is steady if and only if £V ξ is g-
orthogonal to ξ. This completes the proof of Theorem 1.1. �

Let (M,φ, ξ, η, g, ε) be an (ε)−para Sasakian 3-manifold with g as a gradient
∗-Ricci soliton. Then equation (4) can be written as

∇XDf +Q∗X + λX = 0, (38)

for any X ∈ χ(M), where D denotes the gradient operator with respect to g.
From (38) it follows that

R(X,Y )Df = (∇YQ∗)X − (∇XQ∗)Y, X, Y ∈ χ(M). (39)

Using (12), we have

g(R(ξ,X)Df, ξ) = η(X)(ξf)− ε(Xf). (40)

With the help of (25), we have

(∇XQ∗)Y =
(Xr)

2
[Y − εη(Y )ξ]

− r

2
[g(X,φY )ξ + η(Y )φX]

+ aε[g(X,Y )ξ − 2εη(X)η(Y )ξ − εη(Y )X].

(41)

Interchanging X and Y , we have

(∇YQ∗)X =
(Y r)

2
[X − εη(X)ξ]

− r

2
[g(Y, φX)ξ + η(X)φY ]

+ aε[g(X,Y )ξ − 2εη(X)η(Y )ξ − εη(X)Y ].

(42)

Making use of (41) and (42) we get

(∇YQ∗)X − (∇XQ∗)Y =
(Xr)

2
[Y − εη(Y )ξ]− (Y r)

2
[X − εη(X)ξ]

− r

2
[η(Y )φX − η(X)φY ] + a[η(Y )X − η(X)Y ].

(43)
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Putting X = ξ in (43) and taking inner product with ξ, we infer that

g((∇YQ∗)ξ − (∇ξQ∗)Y, ξ) = 0, (44)

for any Y ∈ χ(M). From (40) and (44) we get

ε(Xf) = η(X)(ξf), (45)

for any X ∈ χ(M). Therefore, Df = (ξf)ξ. Taking the covariant derivative with
respect to X and using (38) it follows that

S∗(X,Y ) = −[λ+ (ξf)ξ]g(X,Y )− ε(ξf)g(φX, Y ), (46)

for any X,Y ∈ χ(M). This completes the proof of Theorem 1.2. �

Also remark that if we assume £ξf = 0, from (45) we obtain that f is a
constant function.
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